Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = erosion inventory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2980 KiB  
Article
Temporal Variations in Particulate Matter Emissions from Soil Wind Erosion in Bayingolin Mongol Autonomous Prefecture, Xinjiang, China (2001–2022)
by Shuang Zhu, Fang Li, Yue Yang, Tong Ma and Jianhua Chen
Atmosphere 2025, 16(8), 911; https://doi.org/10.3390/atmos16080911 - 28 Jul 2025
Viewed by 168
Abstract
Soil fugitive dust (SFD) emissions pose a significant threat to both human health and the environment, highlighting the need for accurate and reliable estimation and assessment in the desert regions of northwest China. This study used climate, soil, and vegetation data from Bayingolin [...] Read more.
Soil fugitive dust (SFD) emissions pose a significant threat to both human health and the environment, highlighting the need for accurate and reliable estimation and assessment in the desert regions of northwest China. This study used climate, soil, and vegetation data from Bayingolin Prefecture (2001–2022) and applied the WEQ model to analyze temporal and spatial variations in total suspended particulate (TSP), PM10, and PM2.5 emissions and their driving factors. The region exhibited high emission factors for TSP, PM10, and PM2.5, averaging 55.46 t km−2 a−1, 27.73 t km−2 a−1, and 4.14 t km−2 a−1, respectively, with pronounced spatial heterogeneity and the highest values observed in Yuli, Qiemo, and Ruoqiang. The annual average emissions of TSP, PM10, and PM2.5 were 3.23 × 107 t, 1.61 × 107 t, and 2.41 × 106 t, respectively. Bare land was the dominant source, contributing 72.55% of TSP emissions. Both total emissions and emission factors showed an overall upward trend, reaching their lowest point around 2012, followed by significant increases in most counties during 2012–2022. Annual precipitation, wind speed, and temperature were identified as the primary climatic drivers of soil dust emissions across all counties, and their influences exhibited pronounced spatial heterogeneity in Bazhou. In Ruoqiang, Bohu, Korla, and Qiemo, dust emissions are mainly limited by precipitation, although dry conditions and sparse vegetation can amplify the role of wind. In Heshuo, Hejing, and Yanqi, stable vegetation helps to lessen wind’s impact. In Yuli, wind speed and temperature are the main drivers, whereas in Luntai, precipitation and temperature are both important constraints. These findings highlight the need to consider emission intensity, land use, or surface condition changes, and the potential benefits of increasing vegetation cover in severely desertified areas when formulating regional dust mitigation strategies. Full article
Show Figures

Figure 1

14 pages, 474 KiB  
Article
Empathy-Driven Humanization: Employment Instability, Burnout, and Work Engagement Among Temporary Nurses in a Sustainable Workforce Model
by Sonia Prieto-de Benito, Carlos Ruíz-Núñez, Juan Pablo Hervás-Pérez, Cayetana Ruíz-Zaldibar, Fidel López-Espuela, Raquel Caballero de la Calle and Ivan Herrera-Peco
Nurs. Rep. 2025, 15(7), 223; https://doi.org/10.3390/nursrep15070223 - 20 Jun 2025
Viewed by 350
Abstract
Background/Objectives: Employment instability is increasingly recognized as an organizational stressor, yet its combined effect on nurse burnout, humanized care, and work engagement is poorly quantified. This study investigates those relationships and tests a serial mediation model linking contract instability, burnout, humanization, and engagement [...] Read more.
Background/Objectives: Employment instability is increasingly recognized as an organizational stressor, yet its combined effect on nurse burnout, humanized care, and work engagement is poorly quantified. This study investigates those relationships and tests a serial mediation model linking contract instability, burnout, humanization, and engagement in Spanish hospital nurses. Methods: A nationwide cross-sectional survey was completed by 400 fixed-term nurses between March and May 2025. The data included demographics, number of contracts signed during 2024, and scores on the Maslach Burnout Inventory (MBI), Utrecht Work Engagement Scale (UWES), and Health Professionals’ Humanization Scale (HUMAS). Spearman coefficients described the bivariate relations. Results: Burnout correlated positively with both contract count (r = 0.42, p = 0.039) and years of experience (r = 0.74, p = 0.040). Work engagement was inversely associated with instability (r = –0.62, p = 0.018). Humanized care was strongly and negatively related to burnout (r = –0.61, p = 0.032), particularly in sociability and self-efficacy dimensions. Discussion: Contractual precarity elevates burnout, erodes perceptions of humanized care, and, through this erosion, suppresses nurse engagement. Stabilizing workforce arrangements and strengthening empathy-centered skills may mitigate these effects and foster a socially sustainable nursing workforce. Full article
Show Figures

Figure 1

23 pages, 14330 KiB  
Article
Prediction Capability of Analytical Hierarchy Process (AHP) in Badland Susceptibility Mapping: The Foglia River Basin (Italy) Case of Study
by Margherita Bianchini, Stefano Morelli, Mirko Francioni and Roberta Bonì
Land 2025, 14(3), 651; https://doi.org/10.3390/land14030651 - 19 Mar 2025
Viewed by 1069
Abstract
Badland morphologies are prominent examples of linear erosion occurring on clay-rich slopes and are critical hotspots for sediment production. Traditional field-based mapping of these features can be both time-consuming and costly, particularly over larger basins. This research proposes a novel methodology for assessing [...] Read more.
Badland morphologies are prominent examples of linear erosion occurring on clay-rich slopes and are critical hotspots for sediment production. Traditional field-based mapping of these features can be both time-consuming and costly, particularly over larger basins. This research proposes a novel methodology for assessing badland susceptibility through a multi-criteria decision-making framework known as the Analytical Hierarchy Process (AHP). This methodology, developed and tested in the Foglia River basin of the Marche region (Italy), facilitates the identification and mapping of badland areas. More in detail, our study resulted in the creation of a comprehensive badland inventory and susceptibility map for the 102 km2 study area, identifying 276 badlands using a combination of satellite imagery, historical orthophotos, existing regional inventories, and field inspections. Key predisposing factors, including geological, land use, topographical, and hydrometric elements, were systematically analyzed using the AHP approach. The research findings indicate that badlands develop in medium to steep slopes oriented towards the southern quadrants and in proximity to watercourses; their formation is predominantly influenced by clayey–sandy lithology. The resulting inventory and susceptibility map serve as relevant tools for monitoring, preventing, and mitigating slope instability risks within the region. Full article
Show Figures

Figure 1

15 pages, 2141 KiB  
Article
Temperature-Dependent Soil Organic Carbon Turnover in Taiwan’s Forests Revealed by Stable Carbon Isotope Analysis
by Li-Wei Zheng, Meng Wu, Qianhui Li, Zhenzhen Zheng, Zhen Huang, Tsung-Yu Lee and Shuh-Ji Kao
Forests 2025, 16(2), 342; https://doi.org/10.3390/f16020342 - 14 Feb 2025
Viewed by 771
Abstract
High-standing islands, such as Taiwan, offer unique opportunities to study soil organic carbon (SOC) dynamics due to their steep terrains, rapid erosion, and strong climatic gradients. In this study, we investigated 54 forest soil profiles across northern, central, and southern Taiwan to assess [...] Read more.
High-standing islands, such as Taiwan, offer unique opportunities to study soil organic carbon (SOC) dynamics due to their steep terrains, rapid erosion, and strong climatic gradients. In this study, we investigated 54 forest soil profiles across northern, central, and southern Taiwan to assess SOC inventories and turnover using stable carbon isotope (δ13C) analyses. We applied Rayleigh fractionation modeling to vertical δ13C enrichment patterns and derived the parameter β, which serves as a proxy for SOC turnover rates. Our findings reveal that SOC stocks increase notably with elevation, aligning with lower temperatures and reduced decomposition rates at higher altitudes. Conversely, mean annual precipitation (MAP) did not show a straightforward relationship with SOC stocks or β, highlighting the moderating effects of soil drainage, topography, and local hydrological conditions. Intriguingly, higher soil nitrogen levels were associated with a negative correlation to ln(β), underscoring the complex interplay between nutrient availability and SOC decomposition. Overall, temperature emerges as the dominant factor governing SOC turnover, indicating that ongoing and future warming could accelerate SOC losses, especially in cooler, high-elevation zones currently acting as stable carbon reservoirs. These insights underscore the need for models and management practices that account for intricate temperature, moisture, and nutrient controls on SOC stability, as well as the value of stable isotopic tools for evaluating soil carbon dynamics in mountainous environments. Full article
(This article belongs to the Special Issue Soil Carbon Storage in Forests: Dynamics and Management)
Show Figures

Figure 1

18 pages, 22767 KiB  
Article
Emission Inventory of Soil Fugitive Dust Sources with High Spatiotemporal Resolution: A Case Study of Daxing District, Beijing, China
by Qianxi Liu, Yalan Liu, Shufu Liu, Jinghai Zhao, Bin Zhao, Feng Zhou, Dan Zhu, Dacheng Wang, Linjun Yu, Ling Yi and Gang Chen
Land 2024, 13(12), 1991; https://doi.org/10.3390/land13121991 - 22 Nov 2024
Cited by 1 | Viewed by 871
Abstract
Soil fugitive dust (SFD) is a significant contributor to environmental particulate matter (PM), which not only pollutes and affects air quality but also poses risks to human health. The emission inventory can provide a basis for the effective prevention and control of SFD [...] Read more.
Soil fugitive dust (SFD) is a significant contributor to environmental particulate matter (PM), which not only pollutes and affects air quality but also poses risks to human health. The emission inventory can provide a basis for the effective prevention and control of SFD pollution. However, current emission inventories with low resolution and frequency make it difficult to assess dust emissions accurately. Obtaining monthly high-resolution bare soil information is one of the solutions for compiling SFD emission inventories. Taking Daxing District, Beijing, as a case study, this study first extracted bare soil for each month of 2020, 2021, and 2022, respectively, using high-spatial-resolution remote sensing satellite data, and then constructed a 10 m-size emission grid and monthly SFD emission inventories based on the wind erosion equation by inputting vegetation cover factor, meteorological data, and soil erosion index. The total emissions of TSP, PM10, and PM2.5 in Daxing District from 2020 to 2022 were 3996.54 tons, 359.26 tons, and 25.25 tons, respectively. Temporally, the SFD emissions showed a decreasing trend over the years and were mainly concentrated in the winter and spring seasons. Spatially, the SFD emissions were predominantly concentrated in the southern and northern areas. And the emissions of PM10 exhibit a significantly stronger correlation with wind speed and the extent of bare soil area. Full article
Show Figures

Figure 1

26 pages, 17323 KiB  
Article
Linking Inca Terraces with Landslide Occurrence in the Ticsani Valley, Peru
by Gonzalo Ronda, Paul Santi, Isaac E. Pope, Arquímedes L. Vargas Luque and Christ Jesus Barriga Paria
Geosciences 2024, 14(11), 315; https://doi.org/10.3390/geosciences14110315 - 18 Nov 2024
Cited by 1 | Viewed by 2602
Abstract
Since the times of the Incas, farmers in the remote Andes of Peru have constructed terraces to grow crops in a landscape characterized by steep slopes, semiarid climate, and landslide geohazards. Recent investigations have concluded that terracing and irrigation techniques could enhance landslide [...] Read more.
Since the times of the Incas, farmers in the remote Andes of Peru have constructed terraces to grow crops in a landscape characterized by steep slopes, semiarid climate, and landslide geohazards. Recent investigations have concluded that terracing and irrigation techniques could enhance landslide risk due to the increase in water percolation and interception of surface flow in unstable slopes, leading to failure. In this study, we generated an inventory of 170 landslides and terraced areas to assess the spatial coherence, causative relations, and geomechanical processes linking landslide presence and Inca terraces in a 250 km2 area located in the Ticsani valley, southern Peru. To assess spatial coherence, a tool was developed based on the confusion matrix approach. Performance parameters were quantified for areas close to the main rivers and communities yielding precision and recall values between 64% and 81%. On a larger scale, poor performance was obtained pointing to the existence of additional processes linked to landslide presence. To investigate the role of other natural variables in landslide prediction, a logistic regression analysis was performed. The results showed that terrace presence is a statistically relevant factor that bolsters landslide presence predictions, apart from first-order natural variables like distance to rivers, curvature, and geology. To explore potential geomechanical processes linking terraces and slope failures, FEM numerical modeling was conducted. Results suggested that both decreased permeability and increased surface irrigation, at 70% of the average annual rainfall, are capable of inducing slope failure. Overall, irrigated terraces appear to further promote slope instability due to infiltration of irrigation water in an area characterized by fluvial erosion, high relief, and poor geologic materials, exposing local communities to increased landslide risk. Full article
(This article belongs to the Special Issue Landslide Monitoring and Mapping II)
Show Figures

Figure 1

20 pages, 3444 KiB  
Article
The Cross-Verification of Different Methods for Soil Erosion Assessment of Natural and Agricultural Low Slopes in the Southern Cis-Ural Region of Russia
by Mikhail Komissarov, Valentin Golosov, Andrey Zhidkin, Daria Fomicheva and Alexei Konoplev
Land 2024, 13(11), 1767; https://doi.org/10.3390/land13111767 - 28 Oct 2024
Cited by 5 | Viewed by 1642
Abstract
The conventional measuring methods (runoff plots and soil morphological comparison) and models (WaTEM/SEDEM and regional model of Russian State Hydrological Institute (SHI)) were tested with regard to the Southern Cis-Ural region of Russia, along with data from rainfall simulation for assessing soil erosion. [...] Read more.
The conventional measuring methods (runoff plots and soil morphological comparison) and models (WaTEM/SEDEM and regional model of Russian State Hydrological Institute (SHI)) were tested with regard to the Southern Cis-Ural region of Russia, along with data from rainfall simulation for assessing soil erosion. Compared with conventional methods, which require long-running field observations, using erosion models and rainfall simulation is less time-consuming and is found to be fairly accurate for assessing long-term average rates of soil erosion and deposition. In this context, 137Cs can also be used as a marker of soil redistribution on the slope. The data of soil loss and sedimentation rates obtained by using conventional measuring methods were in agreement with the data based on the used contemporary modeling approaches. According to the erosion model calculations and data on the fallout of radionuclides in the Southern Cis-Ural (54°50–25′ N and 55°44–50′ E), the average long-term annual soil losses were ~1.3 t·ha−1 yr−1 in moderate (5°) arable slopes and ~0.2 t·ha−1 yr−1 in meadows. In forests, surface erosion is negligible, or its rates are similar to the rate of soil formation of clay–illuvial chernozems. The rates of soil erosion and sediment deposition on the arable land obtained using different methods were found to be very close. All the methods, including the WaTEM/SEDEM, allowed us to measure both soil erosion and intra-slope sedimentation. The regional SHI model fairly accurately assesses soil erosion in the years when erosion events occurred; however, soil erosion as a result of snowmelt did not occur every year, which should be taken into account when modeling. The concentrations of 137Cs in the topsoil layer (0–20 cm) varied from 0.9 to 9.8 Bq·kg−1, and the 137Cs inventories were 1.6–5.1 kBq·m−2, with the highest values found under the forest. The air dose rate in the forest was higher than in open areas and above the average of 0.12 μSv·h−1 on the slope (0.1 μSv·h−1 in the meadow and 0.08 μSv·h−1 on the arable land), with the value increasing from the watershed to the lower part of the slope in all the areas. The γ-background level in the studied ecosystems did not exceed the maximum permissible levels. Full article
(This article belongs to the Section Land, Soil and Water)
Show Figures

Figure 1

28 pages, 28454 KiB  
Article
Landslide Distribution and Development Characteristics in the Beiluo River Basin
by Fan Liu, Yahong Deng, Tianyu Zhang, Faqiao Qian, Nan Yang, Hongquan Teng, Wei Shi and Xue Han
Land 2024, 13(7), 1038; https://doi.org/10.3390/land13071038 - 10 Jul 2024
Cited by 2 | Viewed by 1725
Abstract
The Beiluo River Basin, situated in the central region of the Loess Plateau, frequently experiences landslide geological disasters, posing a severe threat to local lives and property. Thus, establishing a detailed database of historical landslides and analyzing and revealing their development characteristics are [...] Read more.
The Beiluo River Basin, situated in the central region of the Loess Plateau, frequently experiences landslide geological disasters, posing a severe threat to local lives and property. Thus, establishing a detailed database of historical landslides and analyzing and revealing their development characteristics are of paramount importance for providing a foundation for geological hazard risk assessment. First, in this study, landslides in the Beiluo River Basin are interpreted using Google Earth and ZY-3 high-resolution satellite imagery. Combined with a historical landslide inventory and field investigations, a landslide database for the Beiluo River Basin is compiled, containing a total of 1781 landslides. Based on this, the geometric and spatial characteristics of the landslides are analyzed, and the relationships between the different types of landslides and landslide scale, stream order, and geomorphological types are further explored. The results show that 50.05% of the landslides have a slope aspect between 225° and 360°, 68.78% have a slope gradient of 16–25°, and 38.97% are primarily linear in profile morphology. Areas with a high landslide density within a 10 km radius are mainly concentrated in the loess ridge and hillock landform region between Wuqi and Zhidan Counties and in the loess tableland region between Fu and Luochuan Counties, with a significant clustering effect observed in the Fu County area. Loess–bedrock interface landslides are relatively numerous in the northern loess ridge and hillock landform region due to riverbed incision and the smaller thickness of loess in this area. Intra-loess landslides are primarily found in the southern loess tableland region due to headward erosion and the greater thickness of loess in this area. Loess–clay interface landslides, influenced by riverbed incision and the limited exposure of red clay, are mainly distributed in the northern part of the southern loess tableland region and on both sides of the Beiluo River Valley in Ganquan County. These results will aid in further understanding the development and spatial distribution of landslides in the Beiluo River Basin and provide crucial support for subsequent landslide susceptibility mapping and geological hazard assessment in the region. Full article
(This article belongs to the Topic Landslides and Natural Resources)
Show Figures

Figure 1

11 pages, 1438 KiB  
Article
Assessment of Neuropathic Pain in Erosive Hand Osteoarthritis
by Marta Favero, Mario Cacciavillani, Francesca Ometto, Mariagrazia Lorenzin, Giacomo Cozzi, Laura Scagnellato, Stefania Vio, Andrea Doria, Chiara Briani and Roberta Ramonda
J. Clin. Med. 2024, 13(11), 3244; https://doi.org/10.3390/jcm13113244 - 31 May 2024
Cited by 1 | Viewed by 1393
Abstract
Background/Objectives: Erosive hand osteoarthritis (EHOA) is an aggressive form of hand osteoarthritis (OA) and a severely disabling condition. Patients affected by OA frequently lament symptoms suggestive of neuropathic pain (NP). The aim of our study was to ascertain the presence and severity of [...] Read more.
Background/Objectives: Erosive hand osteoarthritis (EHOA) is an aggressive form of hand osteoarthritis (OA) and a severely disabling condition. Patients affected by OA frequently lament symptoms suggestive of neuropathic pain (NP). The aim of our study was to ascertain the presence and severity of NP in patients with EHOA and correlate its presence with EHOA clinical characteristics. Methods: In this retrospective study, we included all consecutive EHOA patients with NP symptoms who underwent upper limb electroneurography (ENoG) and nerve ultrasound. The presence of NP was screened using the ID pain neuropathic pain-screening questionnaire (ID-Pain). In addition, the following NP questionnaires were also used: Douleur Neuropathique en 4 Questions (DN4), PainDETECT, and Neuropathic Pain Symptom Inventory (NPSI). Moreover, patients completed the Australian/Canadian Osteoarthritis Hand Index (AUSCAN) and Dreiser’s algofunctional finger index questionnaires assessing EHOA disease activity. The following clinical and laboratory data were collected: age, sex, BMI, disease duration, intensity of pain (VAS 0–10), painful and swollen joints, and inflammatory indices, as well as C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR). Results: Of the 34 patients studied, 24 (70.6%) presented NP to the ID-Pain questionnaire. According to DN4, 14 (41.2%) patients had NP, while using the PainDETECT questionnaire, 67.6% had NP. Patients with NP were statistically younger and had a higher VAS pain score compared to subjects without NP. The ENoG and median nerve ultrasound were normal in 81% of patients, while four patients had carpal tunnel syndrome. The ID-Pain questionnaire correlated with the number of painful joints (r = 0.48, p = 0.03) and with the AUSCAN questionnaire (r = 0.37, p = 0.05). The DN4 questionnaire correlated with PainDETECT (r = 0.58, p < 0.01). The PainDETECT questionnaire correlated with VAS pain (r = 0.49, p = 0.02), the DN4 questionnaire (r = 0.58, p < 0.01), and AUSCAN (r = 0.51, p = 0.02). The NPSI questionnaire correlated negatively with BMI (r = −0.53, p = 0.01) and positively with the PainDETECT questionnaire (r = 0.49, p = 0.02). Conclusions: Our study revealed that 32% to 70% of EHOA patients exhibited symptoms consistent with NP, with observed variability depending on the questionnaire utilized. Despite patients frequently exhibiting symptoms compatible with NP, only 19% of patients presented alterations on ENoG and ultrasound examinations confirming CTS. This suggests a probable nociplastic component for pain in patients with EHOA, which warrants tailored treatment. In the present study, NP correlated with clinical and functional indices of EHOA. Full article
Show Figures

Figure 1

18 pages, 7820 KiB  
Article
The Loss of Soil Parent Material: Detecting and Measuring the Erosion of Saprolite
by Daniel L. Evans, Bernardo Cândido, Ricardo M. Coelho, Isabella C. De Maria, Jener F. L. de Moraes, Anette Eltner, Letícia L. Martins and Heitor Cantarella
Soil Syst. 2024, 8(2), 43; https://doi.org/10.3390/soilsystems8020043 - 9 Apr 2024
Cited by 2 | Viewed by 3210
Abstract
Soil parent material is a fundamental natural resource for the generation of new soils. Through weathering processes, soil parent materials provide many of the basic building blocks for soils and have a significant bearing on the physico-chemical makeup of the soil profile. Parent [...] Read more.
Soil parent material is a fundamental natural resource for the generation of new soils. Through weathering processes, soil parent materials provide many of the basic building blocks for soils and have a significant bearing on the physico-chemical makeup of the soil profile. Parent materials are critical for governing the stock, quality, and functionality of the soil they form. Most research on soil parent materials to date has aimed to establish and measure the processes by which soil is generated from them. Comparatively little work has been performed to assess the rates at which soil parent materials erode if they are exposed at the land surface. This is despite the threat that the erosion of soil parent materials poses to the process of soil formation and the loss of the essential ecosystem services those soils would have provided. A salient but unanswered question is whether the erosion of soil parent materials, when exposed at the land surface, outpaces the rates at which soils form from them. This study represents one of the first to detect and measure the loss of soil parent material. We applied Uncrewed Aerial Vehicle Structure-From-Motion (UAV-SfM) photogrammetry to detect, map, and quantify the erosion rates of an exposed saprolitic (i.e., weathered bedrock) surface on an agricultural hillslope in Brazil. We then utilized a global inventory of soil formation to compare these erosion rates with the rates at which soils form in equivalent lithologies and climatic contexts. We found that the measured saprolite erosion rates were between 14 and 3766 times faster than those of soil formation in similar climatic and lithological conditions. While these findings demonstrate that saprolite erosion can inhibit soil formation, our observations of above-ground vegetation on the exposed saprolitic surface suggests that weathered bedrock has the potential to sustain some biomass production even in the absence of traditional soils. This opens up a new avenue of enquiry within soil science: to what extent can saprolite and, by extension, soil parent materials deliver soil ecosystem services? Full article
Show Figures

Figure 1

28 pages, 417 KiB  
Review
Blueprint for Blue Carbon: Lessons from Seychelles for Small Island States
by Michael Bennett, Antaya March, Jeremy Raguain and Pierre Failler
Oceans 2024, 5(1), 81-108; https://doi.org/10.3390/oceans5010006 - 21 Feb 2024
Cited by 6 | Viewed by 4046
Abstract
Blue carbon has been proposed as a nature-based solution for climate change mitigation; however, a limited number of published works and data and knowledge gaps hinder the development of small island developing states’ (SIDS) national blue carbon resources globally. This paper reviews the [...] Read more.
Blue carbon has been proposed as a nature-based solution for climate change mitigation; however, a limited number of published works and data and knowledge gaps hinder the development of small island developing states’ (SIDS) national blue carbon resources globally. This paper reviews the blue carbon ecosystems of Seychelles as a case study in the context of SIDS, comparing estimations by the Blue Carbon Lab and recent blue carbon (mangrove and seagrass) evaluations submitted to the Seychelles national government. Mangroves (2195 ha, 80% in Aldabra Atoll) and seagrasses (142,065 ha) dominate in Seychelles, with coral reefs having the potential for carbon sequestration (169,000 ha). Seychelles is on track to protecting its blue carbon, but these systems are threatened by rising sea levels, coastal squeeze, erosion, severe storms, and human activities. The importance of carbon inventories, accounting institutions, and continuous monitoring of blue carbon systems is discussed. Blue accounting is necessary for accurate accounting of carbon sequestration and carbon storage, generating carbon credits, and representing impactful reductions in greenhouse gases for NDCs. Challenges and opportunities include policy legislation regarding ownership rights, accreditation and certification for carbon credits, sustainable financing mechanisms like natural asset companies and blue tokens, local engagement for long-term success, and carbon market dynamics following COP27. The restoration and regulation of blue carbon resources for optimal ecosystem services delivery, carbon inventories, and blue carbon policy are recommended development priorities. Blue carbon ecosystems have the potential to contribute to NDCs of SIDS while simultaneously offering sustainable development pathways for local communities through the multiple ecosystem services they provide. Full article
26 pages, 9640 KiB  
Article
The Lac Fallère Area as an Example of the Interplay between Deep-Seated Gravitational Slope Deformation and Glacial Shaping (Aosta Valley, NW Italy)
by Stefano Dolce, Maria Gabriella Forno, Marco Gattiglio and Franco Gianotti
GeoHazards 2024, 5(1), 38-63; https://doi.org/10.3390/geohazards5010003 - 11 Jan 2024
Cited by 1 | Viewed by 2598
Abstract
The Lac Fallère area in the upper Clusellaz Valley (tributary of the middle Aosta Valley) is shaped in micaschist and gneiss (Mont Fort Unit, Middle Penninic) and in calcschist and marble (Aouilletta Unit, Combin Zone). Lac Fallère exhibits an elongated shape and is [...] Read more.
The Lac Fallère area in the upper Clusellaz Valley (tributary of the middle Aosta Valley) is shaped in micaschist and gneiss (Mont Fort Unit, Middle Penninic) and in calcschist and marble (Aouilletta Unit, Combin Zone). Lac Fallère exhibits an elongated shape and is hosted in a WSW–ENE-trending depression, according to the slope direction. This lake also shows a semi-submerged WSW–ENE rocky ridge that longitudinally divides the lake. This evidence, in addition to the extremely fractured rocks, indicates a wide, deep-seated gravitational slope deformation (DSGSD), even if this area is not yet included within the regional landslide inventory of the Aosta Valley Region. The Lac Fallère area also shows reliefs involved in glacial erosion (roches moutonnée), an extensive cover of subglacial sediments, and many moraines essentially referred to as Lateglacial. The DSGSD evolution in a glacial environment produced, as observed in other areas, effects on the facies of Quaternary sediments and the formation of a lot of wide moraines. Glacial slope sectors and lateral moraines displaced by minor scarps and counterscarps, and glaciers using trenches forming several arched moraines, suggest an interplay between glacial and gravitational processes, which share part of their evolution history. Full article
(This article belongs to the Special Issue Geomorphological Mapping Research for Landslide)
Show Figures

Figure 1

20 pages, 5078 KiB  
Article
Testing the Reliability of Maximum Entropy Method for Mapping Gully Erosion Susceptibility in a Stream Catchment of Calabria Region (South Italy)
by Massimo Conforti and Fabio Ietto
Appl. Sci. 2024, 14(1), 240; https://doi.org/10.3390/app14010240 - 27 Dec 2023
Cited by 2 | Viewed by 1825
Abstract
Gully erosion poses severe problems for land degradation in several areas worldwide. This study aims to evaluate the accuracy and robustness of the maximum entropy (MaxEnt) method for assessing gully erosion susceptibility. We selected the catchment of the Mesima stream as the test [...] Read more.
Gully erosion poses severe problems for land degradation in several areas worldwide. This study aims to evaluate the accuracy and robustness of the maximum entropy (MaxEnt) method for assessing gully erosion susceptibility. We selected the catchment of the Mesima stream as the test site, which is situated in the southwest sector of the Calabria region (South Italy). An inventory map of gully erosion was realised and 12 predisposing factors, such as lithology, soil texture, soil bulk density, land use, drainage network, slope gradient, aspect, length–slope (LS), plan curvature, stream power index (SPI), topographic position index (TPI), and topographic wetness index (TWI), were selected to implement the dataset in the MaxEnt method. The accuracy and uncertainty of the method were tested by 10-fold cross-validation based on accuracy, kappa coefficient, and receiver operating characteristic curve (ROC) and related area under curve (AUC). The dataset was randomly divided into 10 equal-sized groups (folds). Nine folds (90% of the selected dataset) were used to train the model. Instead, the remaining fold (10% of the dataset) was used for testing the model. This process was repeated 10 times (equal to the number of the folds) and each fold was used only once as the validation data. The average of 10 repeated processes was performed to generate the susceptibility map. In addition, this procedure allowed the reliability of the susceptibility map to be assessed, in terms of variables, importance and role of predisposing factors selected, prediction ability, and accuracy in the assessed probabilities for each pixel of the map. In addition to exploiting the 10-fold cross-validation, the mean value and standard deviation for the probability estimates of each pixel were computed and reported in the susceptibility and uncertainty map. The results showed that the MaxEnt method has high values of accuracy (>0.90), of the kappa coefficient (>0.80), and AUC (>0.92). Furthermore, the achieved findings showed that the capacity of the method used for mapping gully erosion susceptibility is quite robust when the training and testing sets are changed through the 10-fold cross-validation technique. Full article
(This article belongs to the Special Issue Natural Hazards and Geomorphology)
Show Figures

Figure 1

17 pages, 20111 KiB  
Article
Simulation of the Impacts of Sea-Level Rise on Coastal Ecosystems in Benin Using a Combined Approach of Machine Learning and the Sea Level Affecting Marshes Model
by Sèna Donalde Dolorès Marguerite Deguenon, Castro Gbêmêmali Hounmenou, Richard Adade, Oscar Teka, Ismaila Imorou Toko, Denis Worlanyo Aheto and Brice Sinsin
Sustainability 2023, 15(22), 16001; https://doi.org/10.3390/su152216001 - 16 Nov 2023
Cited by 4 | Viewed by 2412
Abstract
Sea-level rise in Benin coastal zones leads to risks of erosion and flooding, which have significant consequences on the socio-economic life of the local population. In this paper, erosion, flood risk, and greenhouse gas sequestration resulting from sea-level rise in the coastal zone [...] Read more.
Sea-level rise in Benin coastal zones leads to risks of erosion and flooding, which have significant consequences on the socio-economic life of the local population. In this paper, erosion, flood risk, and greenhouse gas sequestration resulting from sea-level rise in the coastal zone of the Benin coast were assessed with the Sea Level Affecting Marshes Model (SLAMM) using ArcGIS Pro 3.1 tools. The input features used were the Digital Elevation Map (DEM), the National Wetland Inventory (NWI) categories, and the slope of each cell. National Wetland Inventory (NWI) categories were then created using Support Vector Machines (SVMs), a supervised machine learning technique. The research simulated the effects of a 1.468 m sea-level rise in the study area from 2021 to 2090, considering wetland types, marsh accretion, wave erosion, and surface elevation changes. The largest land cover increases were observed in Estuarine Open Water and Open Ocean, expanding by approximately 106.2 hectares across different sea-level rise scenarios (RCP 8.5_Upper Limit). These gains were counterbalanced by losses of approximately 106.2 hectares in Inland Open Water, Ocean Beaches, Mangroves, Regularly Flooded Marsh, Swamp, Undeveloped, and Developed Dryland. Notably, Estuarine Open Water (97.7 hectares) and Open Ocean (8.5 hectares) experienced the most significant expansion, indicating submergence and saltwater intrusion by 2090 due to sea-level rise. The largest reductions occurred in less tidally influenced categories like Inland Open Water (−81.4 hectares), Ocean Beach (−7.9 hectares), Swamp (−5.1 hectares), Regularly Flooded Marsh (−4.6 hectares), and Undeveloped Dryland (−2.9 hectares). As the sea-level rises by 1.468 m, these categories are expected to be notably diminished, with Estuarine Open Water and Open Ocean becoming dominant. Erosion and flooding in the coastal zone are projected to have severe adverse impacts, including a gradual decline in greenhouse gas sequestration capacity. The outputs of this research will aid coastal management organizations in evaluating the consequences of sea-level rise and identifying areas with high mitigation requirements. Full article
(This article belongs to the Special Issue Coastal Hazards and Safety)
Show Figures

Figure 1

4 pages, 230 KiB  
Proceeding Paper
Oral Health in Nursing Home Residents—Preliminary Results of an Exploratory Cross-Sectional Pilot Study
by Joana Pombo Lopes, Diogo Sousa-Catita, Paulo Mascarenhas, Jorge Fonseca and José Grillo Evangelista
Med. Sci. Forum 2023, 22(1), 8; https://doi.org/10.3390/msf2023022008 - 9 Aug 2023
Viewed by 1090
Abstract
This study was conducted to assess the oral status of nursing home residents diagnosed with dementia in the Lisbon region, Portugal. In this cross-sectional observational pilot study, the oral and dental status were evaluated by determining the Decayed-Missing-Filled-Tooth (DMFT) index, frequency of oral [...] Read more.
This study was conducted to assess the oral status of nursing home residents diagnosed with dementia in the Lisbon region, Portugal. In this cross-sectional observational pilot study, the oral and dental status were evaluated by determining the Decayed-Missing-Filled-Tooth (DMFT) index, frequency of oral hygiene, presence of erosion lesions or mucosal lesions, presence of dentures, and Shorted Xerostomia Inventory (SXI-5). This study aims to be a starting point for a broad analysis of this population and a further determination of potential associations between oral status and anamnestic factors as well as dementia data. Full article
Back to TopTop