Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = epigeic groups

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7833 KiB  
Article
Two-Year Post-Fire Abundance of Arthropod Groups Across Different Types of Forest in Temperate Central Europe
by Václav Zumr, Oto Nakládal and Jiří Remeš
Fire 2025, 8(8), 305; https://doi.org/10.3390/fire8080305 - 2 Aug 2025
Viewed by 232
Abstract
Forest fires are commonly regarded as negative for ecosystems; however, they also represent a major ecological force shaping the biodiversity of invertebrates and many other organisms. The aim of this study was to better understand how multiple groups of invertebrates respond to wildfire [...] Read more.
Forest fires are commonly regarded as negative for ecosystems; however, they also represent a major ecological force shaping the biodiversity of invertebrates and many other organisms. The aim of this study was to better understand how multiple groups of invertebrates respond to wildfire across different forest types in Central Europe. The research was conducted following a large forest fire (ca. 1200 ha) that occurred in 2022. Data were collected over two years (2023 and 2024), from April to September. The research was conducted in coniferous forests and included six pairwise study types: burnt and unburnt dead spruce (bark beetle affected), burnt and unburnt clear-cuts, and burnt and unburnt healthy stands. In total, 96 traps were deployed each year. Across both years, 220,348 invertebrates were recorded (1.Y: 128,323; 2.Y: 92,025), representing 24 taxonomic groups. A general negative trend in abundance following forest fire was observed in the groups Acari, Auchenorhyncha, Blattodea, Dermaptera, Formicidae, Chilopoda, Isopoda, Opiliones, and Pseudoscorionida. Groups showing a neutral response included Araneae, Coleoptera, Collembola, Diplopoda, Heteroptera, Psocoptera, Raphidioptera, Thysanoptera, and Trichoptera. Positive responses, indicated by an increase in abundance, were recorded in Hymenoptera, Orthoptera, Lepidoptera, and Diptera. However, considerable differences among management types (clear-cut, dead spruce, and healthy) were evident, as their distinct characteristics largely influenced invertebrate abundance in both unburnt and burnt variants of the types across all groups studied. Forest fire primarily creates favorable conditions for heliophilous, open-landscape, and floricolous invertebrate groups, while less mobile epigeic groups are strongly negatively affected. In the second year post-fire, the total invertebrate abundance in burnt sites decreased to 59% of the first year’s levels. Conclusion: Forest fire generates a highly heterogeneous landscape from a regional perspective, creating unique ecological niches that persist more than two years after fire. For many invertebrates, successional return toward pre-fire conditions is delayed or incomplete. Full article
Show Figures

Figure 1

17 pages, 2432 KiB  
Article
Fertilization Effects of Solid Digestate Treatments on Earthworm Community Parameters and Selected Soil Attributes
by Anna Mazur-Pączka, Kevin R. Butt, Marcin Jaromin, Edmund Hajduk, Mariola Garczyńska, Joanna Kostecka and Grzegorz Pączka
Agriculture 2025, 15(14), 1511; https://doi.org/10.3390/agriculture15141511 - 13 Jul 2025
Viewed by 806
Abstract
An increasing number of soils, including those in EU countries, are affected by organic matter deficiency and the deterioration of nutrients, and using mineral fertilizers is often associated with negative environmental impacts. One of the basic recommendations for sustainable agriculture is to increase [...] Read more.
An increasing number of soils, including those in EU countries, are affected by organic matter deficiency and the deterioration of nutrients, and using mineral fertilizers is often associated with negative environmental impacts. One of the basic recommendations for sustainable agriculture is to increase the proportion of organic fertilizers in crop production and preserve soil biodiversity. An increasingly common organic fertilizer is biogas plant digestate, the physical and chemical properties of which depend primarily on the waste material used in biogas production. However, the fertilizer value of this additive and its effects on the soil environment, including beneficial organisms, remain insufficiently studied. Soil macrofauna, particularly earthworms, play a crucial role in soil ecosystems, because they significantly impact the presence of plant nutrients, actively participate in forming soil structures, and strongly influence organic matter dynamics. The present study was undertaken to determine the effects of fertilizing a silt loam soil with the solid fraction of digestate in monoculture crop production on earthworm community characteristics and the resulting changes in selected soil physicochemical properties. The research was conducted at a single site, so the original soil characteristics across the experimental plots were identical. Plots were treated annually (for 3 years; 2021–2023) with different levels of digestate: DG100 (100% of the recommended rate; 30 t ha−1), DG75 (75% of the recommended rate; 22.5 t ha−1), DG50 (15 t ha−1), DG25 (7.5 t ha−1), and CL (a control plot without fertilizer). An electrical method was used to extract earthworms. Those found at the study site belonged to seven species representing three ecological groups: Dendrodrilus rubidus (Sav.), Lumbricus rubellus (Hoff.), and Dendrobaena octaedra (Sav.) (epigeics); Aporrectodea caliginosa (Sav.), Aporrectodea rosea (Sav.), and Octolasion lacteum (Örley) (endogeics); and Lumbricus terrestris (L.) (anecics). Significant differences in the abundance and biomass of earthworms were found between the higher level treatments (DG100, DG75, and DG50), and the lowest level of fertilization and the control plot (DG25 and CL). The DG25 and CL plots showed an average of 24.7% lower earthworm abundance and 22.8% lower biomass than the other plots. There were no significant differences in the earthworm metrics between the plots within each of the two groups (DG100, DG75, and DG50; and DG25 and CL). The most significant influence on the average abundance and average biomass of Lumbricidae was probably exerted by soil moisture and the annual dosage of digestate. A significant increase in the abundance and biomass of Lumbricidae was shown at plots DG100, DG75, and DG50 in the three successive years of the experiment. The different fertilizer treatments were found to have different effects on selected soil parameters. No significant differences were found among the values of the analyzed soil traits within each plot in the successive years of the study. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

12 pages, 4009 KiB  
Article
The Impact of Restoration on Epigeic Arthropods in the Important European Forest Biotopes of the Danube Delta
by Kornélia Petrovičová, Stanislav David and Vladimír Langraf
Forests 2024, 15(8), 1347; https://doi.org/10.3390/f15081347 - 2 Aug 2024
Cited by 1 | Viewed by 927
Abstract
The floodplain forests of the Danube Delta are among the important European biotopes and are protected in Slovakia under Natura 2000. In order to preserve these biotopes, their restoration is underway, which also restores the original fauna. These biotopes are sensitive to environmental [...] Read more.
The floodplain forests of the Danube Delta are among the important European biotopes and are protected in Slovakia under Natura 2000. In order to preserve these biotopes, their restoration is underway, which also restores the original fauna. These biotopes are sensitive to environmental and ecological changes, which is also reflected in the spatial distribution of epigeic arthropods. Between the years 2020 and 2023, we investigated the impact of floodplain restoration on the population structure of epigeic arthropods in eight study areas (two control study areas and six study areas with ongoing biotope restoration). We placed five pitfall traps in a transect for each biotope. In total, we recorded 66,771 individuals belonging to 15 arthropod taxa. We found differences in the taxonomic structures between forest stands with management and forest stands without management (larger number of taxa) using spatial modelling. We also confirmed interannual changes in the taxa composition of epigeic arthropods and their abundance. Over the years of restoration, the number of individual epigeic arthropods decreased. In the years following revitalization, when succession took place, it subsequently increased. Overall, the restoration management of floodplain forests had a positive effect on epigeic arthropods, as well as on their number of individuals, which is important for the preservation of these important habitats in Europe. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

14 pages, 5303 KiB  
Article
Seasonal Dynamics of Epigeic Arthropods under the Conditions of Ecological Management of the Triticum aestivum Crop
by Vladimír Langraf and Kornélia Petrovičová
Agriculture 2024, 14(3), 482; https://doi.org/10.3390/agriculture14030482 - 16 Mar 2024
Cited by 2 | Viewed by 1442
Abstract
The policy of the European Union on land management promotes sustainable agriculture with an emphasis on the protection of biodiversity and the environment. Organic agriculture is the most appropriate alternative to ensure this common goal. The aim of this study was to determine [...] Read more.
The policy of the European Union on land management promotes sustainable agriculture with an emphasis on the protection of biodiversity and the environment. Organic agriculture is the most appropriate alternative to ensure this common goal. The aim of this study was to determine the influence of factors such as pH, moisture, nitrogen potassium, phosphorus and grass herbaceous vegetation on the spatial structure of epigeic arthropods during the spring and summer seasons under organic farming conditions. Research took place between 2020 and 2022, and we recorded 14,988 individuals belonging to 16 taxa using pitfall traps. Between the years 2020 and 2022, we confirmed a decrease in the number of individuals and taxa of epigeic arthropods from the grass herbaceous vegetation to the interior of the field during the summer seasons. This decline was not confirmed in the spring seasons. Phosphorus, potassium, nitrogen, moisture and pH factors also had a significant influence on the spatial structure of epigeic arthropods. Our results show that the higher number of individuals and taxa at the grass herbaceous vegetation occurred only during the summer period. This fact contributes to an increase in biomass and, consequently, the yield of crops. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

19 pages, 5120 KiB  
Article
Trophic Structure of the Soil-Dwelling Arthropod Communities at the Border of the Forest and the Steppe in the South of Western Siberia: Isotopic Data
by Ilya I. Lyubechanskii, Alexei N. Bespalov, Alexei V. Tiunov, Galina N. Azarkina, Roman Yu. Dudko, Lyudmila V. Salisch and Vyacheslav G. Mordkovich
Diversity 2023, 15(3), 445; https://doi.org/10.3390/d15030445 - 17 Mar 2023
Viewed by 2212
Abstract
Epigeic generalist predators play a crucial role in terrestrial ecosystems, connecting aboveground and belowground food webs. Using stable isotope compositions (δ13C and δ15N values), we assessed the trophic niches of the two main groups of generalist predators (ground beetles [...] Read more.
Epigeic generalist predators play a crucial role in terrestrial ecosystems, connecting aboveground and belowground food webs. Using stable isotope compositions (δ13C and δ15N values), we assessed the trophic niches of the two main groups of generalist predators (ground beetles (Coleoptera, Carabidae) and spiders (Arachnida: Aranei)), as well as their potential prey (phytophagous and saprophagous insects), plants, and soils in the forest, steppe, and transitional ecosystems located in the forest–steppe of southwestern Siberia. We hypothesized that (1) the trophic niche of carabids is wider than that of spiders, because some ground beetles are omnivorous, and (2) the contribution of invertebrates from the detrital food web (saprophages) to the diet of generalist predators is higher in the “detrital” forest ecosystem than in the steppe, which should be reflected in increased δ13C and δ15N values of the predators in the forest. In total, 16 species of carabid and 17 species of spider were analyzed. The δ15N values of ground beetles suggested a wide range of trophic niches corresponding to two or three trophic levels. Omnivorous carabids of the genera Amara and Harpalus had the minimum δ15N values. The carbon isotope compositions of the ground beetles suggests that most predatory species were predominantly involved in grazing food chains. Spiders had on average increased δ15N values compared to ground beetles, and a relatively narrow range of δ15N values. The isotopic niche occupied by spiders hardly overlapped with the isotopic niche of carabids, which may indicate a significant difference in the range of consumed resources. Thus, our data suggest a significant difference in the trophic niches of the key generalist predators, ground beetles and spiders, which was observed both in the forest and the steppe habitats. Spiders appear to be more closely associated with detrital food webs than ground beetles. Contrary to our expectations, we did not find higher δ13C and δ15N values in ground-dwelling generalist predators in the forest compared to the steppe ecosystem. Full article
(This article belongs to the Special Issue Soil Invertebrate Diversity, Ecology and Zoogeographic Structure)
Show Figures

Figure 1

16 pages, 4123 KiB  
Article
The Effect of Artificial Field Margins on Epigeic Arthropod Functional Groups within Adjacent Arable Land of Northeast China
by Chuqiao Wang, Zhenxing Bian, Shuai Wang, Xiaochen Liu and Yufei Zhang
Land 2022, 11(11), 1910; https://doi.org/10.3390/land11111910 - 27 Oct 2022
Cited by 2 | Viewed by 2172
Abstract
Providing food security to meet the growing human demand while improving the biodiversity of arable land is a global challenge. Although semi-natural field margins are known to enhance biodiversity in arable land systems globally, the role that abundant artificial field margins play in [...] Read more.
Providing food security to meet the growing human demand while improving the biodiversity of arable land is a global challenge. Although semi-natural field margins are known to enhance biodiversity in arable land systems globally, the role that abundant artificial field margins play in maintaining epigeic arthropod diversity within arable land remains unclear. Here, we compared epigeic arthropods within adjacent arable land with an artificial field margin (paved and dirt roads) and a semi-natural field margin (ditch, woodland, or grassland), as well as vegetation community characteristics at a field scale for identifying the ecological effects of different field margin types. Our results indicated the following: (i) Compared with semi-natural field margins, there is less epigeic arthropod diversity and less stable ecological networks within adjacent arable land with artificial field margins, with more herbivores within adjacent arable land with artificial field margins and more natural enemies within adjacent arable land with semi-natural field margins. (ii) Arable land adjacent to a dirt road (DR) maintained more resilient ecological networks than that adjacent to a paved road (PR), and there are more flowering plants at DRs, which attracts natural enemies, whereas Orthoptera is more active at PRs with abundant weeds. (iii) The main factors affecting epigeic arthropod functional groups were the tree layer cover (TC), herb layer abundance (HA), and herb layer height (HH) of the artificial and semi-natural field margins. We concluded that increasing the number of flowering plants and removing noxious weeds can eliminate negative effects on epigeic arthropod functional groups within adjacent arable land with artificial field margins. Delineating a certain percentage of vegetation strips to be a buffer zone in artificial field margins or creating a suitable vegetation community in semi-natural field margins can maintain and protect natural enemies and strengthen the ecological network stability between functional groups. Full article
(This article belongs to the Special Issue Arable Land System Resilience and Sustainable Use-Ways and Methods)
Show Figures

Figure 1

12 pages, 1810 KiB  
Article
Earthworm Abundance Increased by Mob-Grazing Zero-Tilled Arable Land in South-East England
by Toni Trickett and Douglas James Warner
Earth 2022, 3(3), 895-906; https://doi.org/10.3390/earth3030052 - 18 Aug 2022
Cited by 5 | Viewed by 3532
Abstract
Regenerative agriculture is a potential alternative to conventional agricultural systems. It integrates the components of zero-tillage, permanent soil cover, diverse crop rotations and rotational or mob-grazing by ruminant livestock. Earthworms are beneficial soil macrofauna and function as indicators of soil health. A need [...] Read more.
Regenerative agriculture is a potential alternative to conventional agricultural systems. It integrates the components of zero-tillage, permanent soil cover, diverse crop rotations and rotational or mob-grazing by ruminant livestock. Earthworms are beneficial soil macrofauna and function as indicators of soil health. A need exists to identify how earthworm populations are affected when all four regenerative agriculture components are implemented simultaneously. This study investigates earthworm abundance in three split-plot treatments located on adjacent land within the same farm: (1) ungrazed permanent grassland, (2) a three-year grass-clover ley within an arable zero tillage system without grazing and (3) identical to treatment 2 but with mob-grazing. Earthworms were sampled using soil pits and classified into four functional groups: epigeic (surface dwellers), endogeic (sub-surface), anecic (deep soil) and juveniles. The total earthworm count, epigeic and juvenile functional groups were significantly (p ≤ 0.05) higher in treatment (3), the arable zero tillage system with mob-grazing. Mob-grazing increases the diversity of carbon sources available to earthworms and has a positive impact on earthworm abundance and functional group diversity within the arable rotation under evaluation. Full article
Show Figures

Figure 1

13 pages, 3327 KiB  
Article
The Composition and Seasonal Variation of Epigeic Arthropods in Different Types of Agricultural Crops and Their Ecotones
by Vladimír Langraf, Kornélia Petrovičová and Janka Schlarmannová
Agronomy 2021, 11(11), 2276; https://doi.org/10.3390/agronomy11112276 - 10 Nov 2021
Cited by 6 | Viewed by 2264
Abstract
Changes in the structures of epigeic arthropods reflect changes in the ecological status of their habitats. The aim of this research was to assess the influence of ecotones and environmental variables (pH soil, soil moisture, potassium, phosphorus, nitrogen) on the abundance of epigeic [...] Read more.
Changes in the structures of epigeic arthropods reflect changes in the ecological status of their habitats. The aim of this research was to assess the influence of ecotones and environmental variables (pH soil, soil moisture, potassium, phosphorus, nitrogen) on the abundance of epigeic arthropods. Between 2018 and 2020, an investigation of different types of crops (Brassica napus L., Pisum sativum L., Triticum aestivum L., T. spelta L., Zea mays L., grass mixture) recorded 31,315 individuals belonging to 14 taxonomic groups and their ecotones, using pitfall traps. The abundance of epigeic arthropods was affected by moisture, pH of soil, and levels of phosphorus, potassium and nitrogen. We observed a greater average number of individuals in the ecotones than in the fields in the months of September and October and in Triticum aestivum crops. During other months and for the remaining crops, we did not notice this difference. This contributed new information regarding the ecotone rule. Our results suggest that agricultural intensification affects epigeic arthropods in the crop Triticum aestivum, which is important for the production of biomass and also affects crop yields. Full article
Show Figures

Figure 1

12 pages, 755 KiB  
Article
Conservation Agriculture Practices Can Improve Earthworm Species Richness and Abundance in the Semi-Arid Climate of Eastern Cape, South Africa
by Sixolise Mcinga, Lindah Muzangwa, Kudzayi Janhi and Pearson Nyari Stephano Mnkeni
Agriculture 2020, 10(12), 576; https://doi.org/10.3390/agriculture10120576 - 24 Nov 2020
Cited by 15 | Viewed by 3855
Abstract
Earthworms play a pivotal role in the regulation of soil health. Studies that explore the effects of conservation agriculture (CA) principles on earthworms under the semi-arid climate of the central Eastern Cape (EC) of South Africa (SA) are limited. Therefore, this study investigated [...] Read more.
Earthworms play a pivotal role in the regulation of soil health. Studies that explore the effects of conservation agriculture (CA) principles on earthworms under the semi-arid climate of the central Eastern Cape (EC) of South Africa (SA) are limited. Therefore, this study investigated the effects of tillage, crop rotations, and residue management on earthworms’ abundance and species richness. The study design followed a split-split plot with three replicates. The main plot was allocated to tillage treatment, which had conventional tillage (CT) and no-tillage (no-till) as factors. Crop rotation treatment was allocated to a subplot, and had maize (Zea mays)–fallow–maize (MFM), maize–fallow–soybean (Glycine max) (MFS), maize–wheat (Triticum aestivum)–maize (MWM), and maize–wheat–soybean (MWS). Residue management was in the sub-subplot with residue retention and residue removal. The study was carried out over four cropping seasons: summer 2015–2016, winter 2016, spring 2016, and summer 2016–2017. The results showed that the genera Amynthas and Lumbricus, both belonging to the anecic group, and Dendrobaena, belonging to the epigeic group, were present. Earthworm species diversity and density were highest under no-till than under CT. Residue retention improved earthworm density regardless of tillage management. Rotations that had fallow periods recorded lower earthworm numbers as compared to continuous cropping systems where wheat was grown in winter. The study concluded that maize–wheat–soybean (MWS) rotation with residue retention results in the highest earthworm abundance and species richness. Full article
Show Figures

Figure 1

15 pages, 1921 KiB  
Article
Evaluation of the Farming Potential of Echinacea Angustifolia DC. Accessions Grown in Italy by Root-Marker Compound Content and Morphological Trait Analyses
by Nicola Aiello, Arianna Marengo, Fabrizio Scartezzini, Pietro Fusani, Barbara Sgorbini, Patrizia Rubiolo and Cecilia Cagliero
Plants 2020, 9(7), 873; https://doi.org/10.3390/plants9070873 - 9 Jul 2020
Cited by 3 | Viewed by 3304
Abstract
The Echinacea genus includes a number of species that are commercially employed for the preparation of herbal products. Echinacea angustifolia DC. is one of these and is widely used, mainly for its immunomodulating properties, as it contains a wide range of compounds that [...] Read more.
The Echinacea genus includes a number of species that are commercially employed for the preparation of herbal products. Echinacea angustifolia DC. is one of these and is widely used, mainly for its immunomodulating properties, as it contains a wide range of compounds that belong to different chemical classes. In particular, echinacoside, cynarin and lipophylic alkylamides are the main specialized metabolites of the roots and can be considered to be marker compounds. In this work, 65 E. angustifolia accessions have been compared in a field trial in Italy, with the aim of investigating the variability/stability of the weight and chemical composition of their roots in order to identify the accessions that are most promising for future genetic-improvement programs. The morphological characteristics of the aerial parts have also been investigated. Seventeen samples were discarded due to germination or plantlet-development issues. Seven of the remaining accessions were identified as being different Echinacea species after a combined phytochemical and morphological evaluation. The morphological traits of the epigeal part, the root weight and the chemical composition data of the 41 confirmed E. angustifolia accessions were submitted to multivariate statistical analysis and a moderately homogenous sample distribution, with low selected-marker variability, was observed. Good echinacoside content was detected in almost all roots (>0.5%). However, two groups of accessions stood out because of their interesting features: One group possessed small roots, but had a high concentration of marker compounds, while another had highly developed roots and a good amount of marker compounds. These accessions can therefore be exploited for future selection work. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Graphical abstract

Back to TopTop