Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (269)

Search Parameters:
Keywords = epidermis cell development

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 490 KiB  
Review
The Development of Horns in Bovidae and the Genetic Mechanisms Underpinning This Process
by Xiaoli Xu, Wenwen Yan, Jiazhong Guo, Dinghui Dai, Li Li and Hongping Zhang
Biology 2025, 14(8), 1027; https://doi.org/10.3390/biology14081027 - 11 Aug 2025
Viewed by 273
Abstract
Horns in Bovidae, including bovines, sheep, and goats, are evolutionarily conserved cranial structures derived from cranial neural crest cells and composed of a bony core, dermis, epidermis, and keratinous sheath. Their development follows a shared trajectory across species, progressing through placode, fleshy, and [...] Read more.
Horns in Bovidae, including bovines, sheep, and goats, are evolutionarily conserved cranial structures derived from cranial neural crest cells and composed of a bony core, dermis, epidermis, and keratinous sheath. Their development follows a shared trajectory across species, progressing through placode, fleshy, and mature stages. Genetic regulators such as RXFP2, FOXL2, HOXD1, and TWIST1 have been identified as pivotal determinants controlling horn morphogenesis, sexual dimorphism, and the polled phenotype. This review synthesizes current advances in the evolutionary origins, morphological progression, and genetic regulation of horn formation in bovines, sheep, and goats to provide a comprehensive understanding of horn formation and variation. These findings lay the groundwork for future efforts to manipulate horn traits through genetic selection or genome editing, with implications for animal welfare and breeding. Full article
Show Figures

Figure 1

18 pages, 2974 KiB  
Article
Histological and Transcriptomic Insights into Rugose Surface Formation in Pepper (Capsicum annuum L.) Fruit
by Yiqi Xie, Haizhou Zhang, Chengshuang Li, Qing Cheng, Liang Sun and Huolin Shen
Plants 2025, 14(15), 2451; https://doi.org/10.3390/plants14152451 - 7 Aug 2025
Viewed by 290
Abstract
The rugose surface trait in pepper (Capsicum annuum L.), marked by ridges and depressions on the fruit epidermis, is linked to improved fruit texture. To investigate its regulatory basis, histological, textural, and transcriptomic differences, contrasting genotypes were analyzed. Histological analysis revealed that [...] Read more.
The rugose surface trait in pepper (Capsicum annuum L.), marked by ridges and depressions on the fruit epidermis, is linked to improved fruit texture. To investigate its regulatory basis, histological, textural, and transcriptomic differences, contrasting genotypes were analyzed. Histological analysis revealed that disorganized epidermal cell layers contribute to rugosity, with morphological differences emerging around 10 days post-anthesis (DPA). A computer-aided design (CAD)-based rugosity index (RI) was developed and showed strong correlation with sensory rugosity scores (R2 = 0.659, p < 0.001). Texture analysis demonstrated that increasing surface rugosity was associated with reduced rupture force and hardness, as well as elevated pectinase activity. Comparative transcriptome profiling identified 10 differentially expressed genes (DEGs) related to microtubule dynamics (e.g., CA03g18310 and CA09g13510) and phytohormone signaling (e.g., CA03g35180 and CA08g12070), which exhibited distinct spatial and temporal expression patterns. These findings suggest that coordinated cytoskeletal remodeling and hormonal regulation drive epidermal disorganization, leading to surface rugosity and altered fruit texture. The study provides novel insights into the molecular basis of fruit surface morphology and identifies promising targets for breeding high-quality pepper cultivars. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Graphical abstract

17 pages, 6016 KiB  
Article
Role of Kindlin-2 in Cutaneous Squamous Carcinoma Cell Migration and Proliferation: Implications for Tumour Progression
by Anamika Dutta, Michele Calder and Lina Dagnino
Int. J. Mol. Sci. 2025, 26(15), 7426; https://doi.org/10.3390/ijms26157426 - 1 Aug 2025
Viewed by 171
Abstract
The Kindlin family of scaffold proteins plays key roles in integrin-mediated processes. Kindlin-1 and -2, encoded by the FERMT1 and FERMT2 genes, respectively, are expressed in the epidermis. Kindlin-1 plays protective roles against the development of cutaneous squamous cell carcinomas (cSCCs) in epidermal [...] Read more.
The Kindlin family of scaffold proteins plays key roles in integrin-mediated processes. Kindlin-1 and -2, encoded by the FERMT1 and FERMT2 genes, respectively, are expressed in the epidermis. Kindlin-1 plays protective roles against the development of cutaneous squamous cell carcinomas (cSCCs) in epidermal keratinocytes. However, the role of Kindlin-2 in transformed epidermal keratinocytes has remained virtually unexplored. In this study, we used siRNA approaches to generate Kindlin-2-depleted cells in three isogenic transformed keratinocyte lines. PM1, MET1, and MET4 cells model, respectively, a precancerous lesion, a primary cSCC, and a metastatic lesion of the latter. MET1 cells express both Kindlin-1 and -2. However, Kindlin-1 was not detectable in PM1 and MET4 cells. FERMT2 silencing in PM1 and MET4, but not in MET1 cells, reduced proliferation and the ability to adhere to culture surfaces and spreading. Furthermore, Kindlin-2-depleted PM1 and MET4, but not MET1 cells, exhibited decreased numbers of focal adhesions, as well as an altered F-actin and microtubule cytoskeletal organization. Significantly, FERMT2 silencing reduced the directional migration in all three cell types. These findings are consistent with the concept that, in the absence of other Kindlin orthologues, Kindlin-2 plays a prominent role in the modulation of the proliferation, spreading, focal adhesion assembly, and motility of transformed keratinocytes, as exemplified by PM1 and MET4 cells. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

22 pages, 2224 KiB  
Article
Development and Evaluation of an Anti-Inflammatory Emulsion: Skin Penetration, Physicochemical Properties, and Fibroblast Viability Assessment
by Jolita Stabrauskiene, Agnė Mazurkevičiūtė, Daiva Majiene, Rima Balanaskiene and Jurga Bernatoniene
Pharmaceutics 2025, 17(7), 933; https://doi.org/10.3390/pharmaceutics17070933 - 19 Jul 2025
Viewed by 559
Abstract
Background/Objectives. Chronic inflammatory skin disorders, such as atopic dermatitis and psoriasis, require safe and effective topical treatments. This study aimed to develop and evaluate a novel anti-inflammatory emulsion enriched with menthol, capsaicin, amino acids (glycine, arginine, histidine), and boswellic acid. Methods. Three formulations [...] Read more.
Background/Objectives. Chronic inflammatory skin disorders, such as atopic dermatitis and psoriasis, require safe and effective topical treatments. This study aimed to develop and evaluate a novel anti-inflammatory emulsion enriched with menthol, capsaicin, amino acids (glycine, arginine, histidine), and boswellic acid. Methods. Three formulations were prepared: a control (E1), a partial (E2), and a comprehensive formulation (E3). Physicochemical analyses included texture profiling, rheological behavior, pH stability, moisture content, and particle size distribution. Results. E3 demonstrated superior colloidal stability, optimal pH (5.75–6.25), and homogenous droplet size (<1 µm), indicating favorable dermal delivery potential. Ex vivo permeation studies revealed effective skin penetration of menthol and amino acids, with boswellic acid remaining primarily in the epidermis, suggesting localized action. Under oxidative stress conditions, E3 significantly improved fibroblast viability, indicating synergistic cytoprotective effects of combined active ingredients. While individual compounds showed limited or dose-dependent efficacy, their combination restored cell viability to near-control levels. Conclusions. These findings support the potential of this multi-component emulsion as a promising candidate for the topical management of inflammatory skin conditions. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

15 pages, 2532 KiB  
Article
Bioengineering a Human Dermal Equivalent Using Induced Pluripotent Stem Cell-Derived Fibroblasts to Support the Formation of a Full-Thickness Skin Construct
by Lucy Smith, David Bunton, Michael Finch and Stefan Przyborski
Cells 2025, 14(14), 1044; https://doi.org/10.3390/cells14141044 - 8 Jul 2025
Viewed by 595
Abstract
In vitro tissue models offer a flexible complementary study system for use alongside in vivo human tissue samples. Achieving accurate in vitro models relies on combining appropriate scaffolds, growth factors and cell populations to recreate human tissue complexity. Balancing a consistent cell supply [...] Read more.
In vitro tissue models offer a flexible complementary study system for use alongside in vivo human tissue samples. Achieving accurate in vitro models relies on combining appropriate scaffolds, growth factors and cell populations to recreate human tissue complexity. Balancing a consistent cell supply with the creation of healthy tissue models can be challenging; established cell lines are often cancerous, with altered cellular function compared to healthy populations, and primary cells require repeated isolation, with associated batch-to-batch variation. Pluripotent stem cell-derived populations offer a consistent supply, as well as the ability to model disease phenotypes through cell reprogramming using patient-derived cells. In this study, we have used an induced pluripotent stem cell-derived fibroblast population to develop a dermal equivalent model. These cells form a consistent tissue construct with a structure and composition similar to primary fibroblast controls, which are able to support an overlying epidermis. The resultant full-thickness skin model demonstrates the expression of various key skin-related markers, correctly localised within the organised epidermis, notably improving on previous models of a similar nature. Providing proof of concept using an established in vitro protocol, this study paves the way for future work developing consistent, customised, full-thickness human skin equivalents using iPSC-derived populations. Full article
Show Figures

Figure 1

15 pages, 6195 KiB  
Article
Physiological and Transcriptomic Insights into Lead Uptake and Tolerance in Moso Bamboo (Phyllostachys edulis) Highlight Its Strong Lead Tolerance Capacity
by Fan Yang, Rong Xu, Chenyang Zhu, Haibao Ji, Ji Feng Shao and Kangkang Huang
Forests 2025, 16(6), 1007; https://doi.org/10.3390/f16061007 - 15 Jun 2025
Viewed by 560
Abstract
Lead (Pb) contamination in Moso bamboo forests poses a challenge in terms of sustainable development and raises concerns about the safety of bamboo shoots for consumption. However, the physiological impacts of Pb stress on Moso bamboo growth and the molecular mechanisms governing its [...] Read more.
Lead (Pb) contamination in Moso bamboo forests poses a challenge in terms of sustainable development and raises concerns about the safety of bamboo shoots for consumption. However, the physiological impacts of Pb stress on Moso bamboo growth and the molecular mechanisms governing its adaptive responses remain poorly understood. This study comprehensively investigated the physiological and transcriptomic responses of Moso bamboo to Pb stress. The results showed that low concentrations (1–10 µM) of Pb stress had minimal adverse effects on biomass accumulation and the photochemical quantum yield of PSII in Moso bamboo. However, at a high Pb concentration (50 µM), the growth of roots was significantly inhibited, while Pb accumulation in the roots and shoots reached 15,611 mg·kg−1 and 759 mg·kg−1, respectively. The uptake of Pb was increased as the external Pb concentration increased, but the xylem loading of Pb reached saturation at 57.79 µM after six-hour exposure. Pb was mainly localized in the epidermis and pericycle cells in the roots, where the thickening of cell walls in these cells was found after Pb treatment. Transcriptomic profiling identified 1485 differentially expressed genes (DEGs), with significant alterations in genes associated with metal cation transporters and cell wall synthesis. These findings collectively indicate that Moso bamboo is a Pb-tolerant plant, characterized by a high accumulation capacity and efficient xylem loading. The tolerance mechanism likely involves the transcriptional regulation of genes related to heavy metal transport and cell wall biosynthesis. Full article
Show Figures

Figure 1

14 pages, 3324 KiB  
Article
Anti-Aging Efficacy of Fructosazine and Deoxyfructosazine: A Comprehensive In Vitro and In Vivo Analysis
by Ao Yang, Chunyan Ma, Qiling Song, Wenhui Li, Shixuan Lv, Xiuhan Guo, Shisheng Wang, Zhigang Gao, Shuai Wang, Qingwei Meng and Yueqing Li
Molecules 2025, 30(11), 2263; https://doi.org/10.3390/molecules30112263 - 22 May 2025
Viewed by 717
Abstract
As the proportion of the elderly population increases, there is an urgent need for anti-aging technologies. Since the skin is the most visibly aging organ in the human body, it is crucial to develop active ingredients to slow down skin aging. Currently, identified [...] Read more.
As the proportion of the elderly population increases, there is an urgent need for anti-aging technologies. Since the skin is the most visibly aging organ in the human body, it is crucial to develop active ingredients to slow down skin aging. Currently, identified anti-aging active substances include antioxidants, retinoids, peptides, growth factors, and compounds derived from biofermentation. However, they have limitations such as poor stability, low transdermal permeability, skin irritation, high effective concentrations, slow onset of efficacy, single-action mechanisms, and high production costs. These limitations highlight the necessity of developing new anti-aging technologies that are multifunctional and cause low irritation. This study aimed to investigate the anti-aging effects and mechanisms of fructosazine (FZ) and deoxyfructosazine (DOF) on the skin as well as their potential applications in skincare. The methods included ELISA tests to assess the viability of human dermal fibroblast (NHDF) cells and related factors, and monitoring in Sprague-Dawley (SD) rats. The results showed that FZ promoted cell viability. Both FZ and DOF enhanced the secretion of type I collagen (Col I) and hyaluronic acid (HA), inhibited matrix metalloproteinase-1 (MMP-1), boosted catalase (CAT), and reduced malondialdehyde (MDA), reactive oxygen species (ROS), and β-galactosidase. They also nourished the epidermis and increased fiber content. In conclusion, FZ and DOF can stimulate the production of anti-aging substances, exhibit antioxidant activity, and have potential in skincare. Full article
(This article belongs to the Special Issue Functional Molecules as Novel Cosmetic Ingredients)
Show Figures

Graphical abstract

17 pages, 7483 KiB  
Article
Myeloid PGGT1B Deficiency Promotes Psoriasiform Dermatitis by Promoting the Secretion of Inflammatory Factors
by Shanshan Yu, Fangyuan Long, Xuecui Wei, Heng Gu and Zhimin Hao
Int. J. Mol. Sci. 2025, 26(10), 4901; https://doi.org/10.3390/ijms26104901 - 20 May 2025
Viewed by 506
Abstract
Psoriasis pathogenesis involves dysregulated immune responses, yet the role of protein prenylation (particularly PGGT1B-mediated geranylgeranylation) in macrophage-driven inflammation remains poorly understood. This study aims to explore the role and molecular mechanism of protein geranylgeranyltransferase type I subunit beta (PGGT1B) in the development of [...] Read more.
Psoriasis pathogenesis involves dysregulated immune responses, yet the role of protein prenylation (particularly PGGT1B-mediated geranylgeranylation) in macrophage-driven inflammation remains poorly understood. This study aims to explore the role and molecular mechanism of protein geranylgeranyltransferase type I subunit beta (PGGT1B) in the development of psoriasis. Myeloid cell-specific PGGT1B gene knockout mice were generated, and a mouse psoriasis model was established with imiquimod to study the role and mechanism of PGGT1B gene downregulation-induced macrophage activation in the pathogenesis of psoriasis. Bone marrow-derived macrophages (BMDMs) from wild-type and PGGT1B knockout mice were cultured and stimulated with resiquimod (R848) to simulate the immune microenvironment of psoriasis. In addition, the differentially expressed genes induced by PGGT1B knockout were analyzed using RNA-seq, and bioinformatics analysis was carried out to study the possible biological process of PGGT1B regulation. Finally, PMA-THP-1 was co-cultured with HaCaT cells to study the effect of PGGT1B deletion in macrophages on the proliferation and differentiation of keratinocytes. Bone marrow PGGT1B deficiency aggravated the psoriasis-like lesions induced by imiquimod in mice. In BMDMs with PGGT1B deficiency, the NF-κB signaling pathway was over-activated by R848, and the expressions of proinflammatory cytokines IL-1β, IL-6, and TNF-α were significantly increased. Activation of cell division cycle 42 (CDC42) may mediate the activation of the NF-κB pathway in PGGT1B-deficient BMDMs. PGGT1B deletion can promote the proliferation and inhibit the differentiation of HaCaT cells. Reduced PGGT1B levels can increase the expression of CDC42, which further activates NLRP3 inflammation in macrophages through NF-κB signaling, further aggravating the inflammatory state of psoriasis. Psoriasis-like lesions induced by IMQ are aggravated when PGGT1B expression is reduced in mouse bone marrow cells. A possible mechanism for this is that PGGT1B-deficient macrophages migrate to the epidermis more easily during psoriasis, which leads to the activation of Cdc42, NF-κB signaling, and NLRP3 inflammatory corpuscles. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

21 pages, 4819 KiB  
Article
The Simulation of Stomatal Aperture Size on the Upper and Lower Epidermis of Gynura formosana Kitam Leaves Based on Cellular Automata
by Xinlong Shi, Yanbo Song, Xiaojing Shi, Penghui Li, Yun Wang, Liyan Jia and Zhenyu Liu
Agriculture 2025, 15(8), 878; https://doi.org/10.3390/agriculture15080878 - 17 Apr 2025
Viewed by 538
Abstract
Stomata are essential structures in plants for gas exchange, and their opening and closing are influenced by complex external environmental factors. Using Gynura formosana Kitam as the research object, the regulation of stomatal aperture is crucial for ensuring healthy growth. By simulating and [...] Read more.
Stomata are essential structures in plants for gas exchange, and their opening and closing are influenced by complex external environmental factors. Using Gynura formosana Kitam as the research object, the regulation of stomatal aperture is crucial for ensuring healthy growth. By simulating and predicting the variation in stomatal aperture, it is possible to determine whether the stomatal response is adapted to environmental conditions. Furthermore, predicting environmental factors such as light intensity and electric fields can help adjust stomatal apertures to enhance Gynura formosana Kitam’s adaptability to different conditions. To explore the impact of external factors like light and electric fields on stomatal aperture, this study employs a cellular automaton model, selecting a 24 h period to observe the stomatal variation law. By incorporating the multi-faceted influences of the external environment on the stomatal apertures of both the upper and lower epidermis of Gynura formosana Kitam leaves, a simulation model of stomatal opening and closing based on metacellular automata is proposed. Based on the physiological characteristics and opening and closing laws of stomata, the rule changes of stomatal opening and closing under different environmental conditions were defined, and the stomatal development area was divided into several two-dimensional and three-dimensional cellular spatial structures. The grid of cells in the structure with stomatal “open” and “closed” states was regarded as an intelligent agent. For different environments under the law of change and simulation of the law of change for simulation research, the simulation results and the actual results match, and the law is consistent. In order to ensure the accuracy of the simulation model, 100 training fits were carried out and the results were statistically analyzed, and the average error was kept within 0.05. This model effectively predicts the variations in stomatal apertures on the upper and lower epidermis of Gynura formosana Kitam leaves, providing a theoretical basis for implementing precise control and improving the economic benefits of Gynura formosana Kitam cultivation. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

16 pages, 5239 KiB  
Article
Hyperhydricity-Induced Physiological Changes and Catechin Accumulation in Blueberry Hybrids (Vaccinium corymbosum × V. angustifolium)
by Rajesh Barua, Sayani Kundu, Abir U. Igamberdiev and Samir C. Debnath
Horticulturae 2025, 11(4), 418; https://doi.org/10.3390/horticulturae11040418 - 14 Apr 2025
Viewed by 594
Abstract
Hyperhydricity is a significant challenge in the tissue culture of blueberry plantlets, affecting their propagation, survival and quality, which results in economic losses for industrial blueberry micropropagation. The in vitro liquid propagation of two half-highbush blueberry hybrids, HB1 and HB2, [...] Read more.
Hyperhydricity is a significant challenge in the tissue culture of blueberry plantlets, affecting their propagation, survival and quality, which results in economic losses for industrial blueberry micropropagation. The in vitro liquid propagation of two half-highbush blueberry hybrids, HB1 and HB2, showed that a Growtek stationary bioreactor culture system containing a liquid medium exhibited a higher hyperhydricity percentage than a Sigma glass culture system with a semi-solid medium. The percentage of hyperhydricity (75.21 ± 1.89%) and water content (72%) of HB2 was more than that of HB1. A scanning electron microscopy study revealed that hyperhydric plantlets from both genotypes developed slowly, had closed stomata, and displayed enlarged intercellular spaces between the palisade and spongy parenchyma layers. Disrupted vascular bundles, underdeveloped sieve elements and a weak connection between phloem and xylem tissue were also observed in hyperhydric plantlets. An analysis of mesophyll and stem tissues highlighted a compressed adaxial epidermis, which led to compact palisade parenchyma, with irregularly shaped mesophyll cells. Hyperhydric plants showed strong nuclear magnetic resonance (NMR) signals in the aliphatic, aromatic, and sugar regions, specifically at peaks of 2.0, 2.5, 4.0, 4.5, 6.0, and 6.7 ppm. These signals were attributed to the presence of catechin (C15H14O6), a flavonoid compound, suggesting its significant role or accumulation in these plants under hyperhydric conditions. Despite the negative effects of hyperhydricity on commercial propagation, hyperhydric plants were found to contain higher levels of valuable untargeted metabolites, such as β-P-arbutin, chlorogenic acid, quercetin-3-O-glucoside, epicatechin, 2-O-caffeoyl arbutin, various fatty acids, β-glucose, linolenic acid, and acetyl than both in vitro and ex vitro conditions. The enrichment of bioactive compounds in blueberry enhances its antioxidant properties, nutritional profile, and potential health benefits, making them significant for plant defense mechanisms and stress adaptation. Full article
(This article belongs to the Special Issue Emerging Insights into Horticultural Crop Ecophysiology)
Show Figures

Figure 1

13 pages, 794 KiB  
Review
HIV-Associated Dermatological Alterations: Barrier Dysfunction, Immune Impairment, and Microbiome Changes
by Muhammad Anshory, Handono Kalim, Jan L. Nouwen and Hok Bing Thio
Int. J. Mol. Sci. 2025, 26(7), 3199; https://doi.org/10.3390/ijms26073199 - 30 Mar 2025
Viewed by 1061
Abstract
Human Immunodeficiency Virus (HIV) significantly impacts skin structure, immune responses, and the microbiome, contributing to diverse dermatological conditions. The epidermis, a key physical and immunological barrier, undergoes structural changes such as hyperplasia and inflammatory infiltrates. Skin adnexal structures like hair follicles also play [...] Read more.
Human Immunodeficiency Virus (HIV) significantly impacts skin structure, immune responses, and the microbiome, contributing to diverse dermatological conditions. The epidermis, a key physical and immunological barrier, undergoes structural changes such as hyperplasia and inflammatory infiltrates. Skin adnexal structures like hair follicles also play a role in immune modulation but are affected by HIV-related disruptions. Innate and adaptive immune systems are compromised due to CD4+ T-cell depletion, cytokine imbalances, and altered immune regulation, leading to conditions such as hypersensitivity and inflammatory dermatoses. The skin microbiome in HIV patients shows distinct shifts, including reduced Cutibacterium species and increased opportunistic microbes, independent of CD4+ levels. Age, sex, and environmental stressors exacerbate these changes, with women exhibiting stronger immune responses but higher risks of autoimmune diseases and aging men experiencing accelerated immunosenescence. Understanding these interconnected alterations is essential for developing targeted therapies to manage skin complications and improve the overall health of HIV patients. Full article
(This article belongs to the Special Issue Viral Infections and Immune Responses)
Show Figures

Figure 1

22 pages, 3134 KiB  
Article
Cell Wall–Based Machine Learning Models to Predict Plant Growth Using Onion Epidermis
by Celia Khoulali, Juan Manuel Pastor, Javier Galeano, Kris Vissenberg and Eva Miedes
Int. J. Mol. Sci. 2025, 26(7), 2946; https://doi.org/10.3390/ijms26072946 - 24 Mar 2025
Viewed by 1070
Abstract
The plant cell wall (CW) is a physical barrier that plays a dual role in plant physiology, providing structural support for growth and development. Understanding the dynamics of CW growth is crucial for optimizing crop yields. In this study, we employed onion ( [...] Read more.
The plant cell wall (CW) is a physical barrier that plays a dual role in plant physiology, providing structural support for growth and development. Understanding the dynamics of CW growth is crucial for optimizing crop yields. In this study, we employed onion (Allium cepa L.) epidermis as a model system, leveraging its layered organization to investigate growth stages. Microscopic analysis revealed proportional variations in cell size in different epidermal layers, offering insights into growth dynamics and CW structural adaptations. Fourier transform infrared spectroscopy (FTIR) identified 11 distinct spectral intervals associated with CW components, highlighting structural modifications that influence wall elasticity and rigidity. Biochemical assays across developmental layers demonstrated variations in cellulose, soluble sugars, and antioxidant content, reflecting biochemical shifts during growth. The differential expression of ten cell wall enzyme (CWE) genes, analyzed via RT-qPCR, revealed significant correlations between gene expression patterns and CW composition changes across developmental layers. Notably, the gene expression levels of the pectin methylesterase and fucosidase enzymes were associated with the contents in cellulose, soluble sugar, and antioxidants. To complement these findings, machine learning models, including Support Vector Machines (SVM), k-Nearest Neighbors (kNN), and Neural Networks, were employed to integrate FTIR data, biochemical parameters, and CWE gene expression profiles. Our models achieved high accuracy in predicting growth stages. This underscores the intricate interplay among CW composition, CW enzymatic activity, and growth dynamics, providing a predictive framework with applications in enhancing crop productivity and sustainability. Full article
Show Figures

Figure 1

18 pages, 9776 KiB  
Article
Papillary and Callous Scales in the Integument of Agamid Lizards (Agamidae, Sauria) as a Phenomenon of Extraordinary Development of the Corneous Layers
by Tatjana N. Dujsebayeva, Natalia B. Ananjeva, Nasrullah Rastegar-Pouyani, Awadh M. Al-Johany and Daniel A. Melnikov
Animals 2025, 15(5), 743; https://doi.org/10.3390/ani15050743 - 5 Mar 2025
Viewed by 960
Abstract
Scaled integument of six species of the genus Acanthocercus and Laudakia nupta, family Agamidae was studied using light and scanning electron microscopy. Gross observation revealed the presence of two types of modified scales in the males. The enlarged scales covered with an [...] Read more.
Scaled integument of six species of the genus Acanthocercus and Laudakia nupta, family Agamidae was studied using light and scanning electron microscopy. Gross observation revealed the presence of two types of modified scales in the males. The enlarged scales covered with an extremely thick β-corneous layer were detected in the dorsal and ventral surfaces of the tail base and on the palmar and plantar limb surfaces of all species. After detachment of the β-layer, the surface of such scales was covered with high papillae (“papillary scales”). The callous scales were found in the precloacal region of Acanthocercus species and in both precloacal and mid-ventral regions of L. nupta. Modified scales were found in some females and subadut specimens, and absent in juveniles. A prominent papillary layer characterized the dermis of both scale types. It was assumed that well-developed dermal papillae in such scales expended the total surface area of stratum germinativum and created a pool of proliferated cells in the interpapillary loops to increase the production of differentiating keratinocytes. These processes were undoubtedly associated with the formation of a thick and resistant corneous layer that distinguished both types of scales. Functional role, a taxonomic value, and analogies with normal and pathological epidermis in birds and mammals are discussed. Full article
(This article belongs to the Section Herpetology)
Show Figures

Figure 1

16 pages, 6755 KiB  
Article
In Vitro Functional and Structural Evaluation of Low-Complexity Artificial Human Epidermis for 3D Tissue Engineering
by Dorottya Kocsis, Dániel Sztankovics, Liza Józsa, Afrodité Németh, Tamás Garay, Márton Bese Naszlady, Miléna Lengyel, Miklós Vecsernyés, István Antal, Anna Sebestyén and Franciska Erdő
Bioengineering 2025, 12(3), 230; https://doi.org/10.3390/bioengineering12030230 - 24 Feb 2025
Viewed by 1190
Abstract
In recent times, with the need for a reduction, refinement, and replacement of in vivo animal testing, there has been an increasing demand for the use of relevant in vitro human cell systems in drug development. There is also a great demand for [...] Read more.
In recent times, with the need for a reduction, refinement, and replacement of in vivo animal testing, there has been an increasing demand for the use of relevant in vitro human cell systems in drug development. There is also a great demand for the replacement of skin tissue in various wounds and burns. Furthermore, human skin cell-based in vitro systems can be used to investigate the side effects (toxicity and irritation) and tissue penetration of topical preparations. In this study, exploratory experiments were performed to produce artificial epidermis using two hydrogel scaffolds, alginate and GelMA C. The amount of keratinocytes added to the matrix (10–50–100 × 106/mL) and the duration of tissue maturation (fresh, 1–3–4 weeks) were optimized in an extensive study. The behavior and structure of the two hydrogels were functionally and morphologically assessed. The permeability order for caffeine in the tested barriers was the following: alginate > GelMA C > cellulose acetate membrane > rat skin. It was concluded that GelMA C matrix provides a more favorable environment for cell survival and tissue differentiation (as demonstrated by histology and immunohistochemistry) than alginate. The 3-week incubation and 50 × 106/mL cell number proved to be the most beneficial in the given system. This study provides data for the first time on the multifactorial optimization of two potential skin substitutes for tissue manufacturing. In order to use these results in tissue engineering, the fabricated artificial epidermis preparations must also be optimized for biocompatibility and from physical and mechanical point of views. Full article
(This article belongs to the Section Regenerative Engineering)
Show Figures

Figure 1

18 pages, 3566 KiB  
Article
Bulge-Derived Epithelial Cells Isolated from Human Hair Follicles Using Enzymatic Digestion or Explants Result in Comparable Tissue-Engineered Skin
by Bettina Cattier, Rina Guignard, Israël Martel, Christian Martel, Carolyne Simard-Bisson, Danielle Larouche, Béatrice Guiraud, Sandrine Bessou-Touya and Lucie Germain
Int. J. Mol. Sci. 2025, 26(5), 1852; https://doi.org/10.3390/ijms26051852 - 21 Feb 2025
Viewed by 1486
Abstract
Hair follicle stem cells, located in the bulge region of the outer root sheath, are multipotent epithelial stem cells capable of differentiating into epidermal, sebaceous gland, and hair shaft cells. Efficient culturing of these cells is crucial for advancements in dermatology, regenerative medicine, [...] Read more.
Hair follicle stem cells, located in the bulge region of the outer root sheath, are multipotent epithelial stem cells capable of differentiating into epidermal, sebaceous gland, and hair shaft cells. Efficient culturing of these cells is crucial for advancements in dermatology, regenerative medicine, and skin model development. This investigation aimed to develop a protocol for isolating enriched bulge-derived epithelial cells from scalp specimens to produce tissue-engineered substitutes. The epithelium, including hair follicles, was separated from the dermis using thermolysin, followed by microdissection of the bulge region. Epithelial stem cells were isolated using enzymatic dissociation to create a single-cell suspension and compared with the direct explant culture and a benchmark method which isolates cells from the epidermis and pilosebaceous units. After 8 days of culture, the enzymatic digestion of microdissected bulges yielded 5.3 times more epithelial cells compared to explant cultures and proliferated faster than the benchmark method. Cells cultured from all methods exhibited comparable morphology and growth rates. The fully stratified epidermis of tissue-engineered skin was similar, indicating comparable differentiation potential. This enzymatic digestion method improved early-stage cell recovery and expansion while maintaining keratinocyte functionality, offering an efficient hair bulge cell-extraction technique for tissue engineering and regenerative medicine applications. Full article
(This article belongs to the Collection Feature Paper Collection in Biochemistry)
Show Figures

Figure 1

Back to TopTop