Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = ephemeral wetland

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 13795 KiB  
Article
The Nucleation and Degradation of Pothole Wetlands by Human-Driven Activities and Climate During the Quaternary in a Semi-Arid Region (Southern Iberian Peninsula)
by A. Jiménez-Bonilla, I. Expósito, F. Gázquez, J. L. Yanes and M. Rodríguez-Rodríguez
Geographies 2025, 5(3), 27; https://doi.org/10.3390/geographies5030027 - 24 Jun 2025
Viewed by 304
Abstract
In this study, we selected a series of pothole wetlands to investigate their nucleation, evolution, and recent anthropogenic degradation in the Alcores Depression (AD), southern Iberian Peninsula, where over 100 closed watersheds containing shallow, ephemeral water bodies up to 2 hm2 have [...] Read more.
In this study, we selected a series of pothole wetlands to investigate their nucleation, evolution, and recent anthropogenic degradation in the Alcores Depression (AD), southern Iberian Peninsula, where over 100 closed watersheds containing shallow, ephemeral water bodies up to 2 hm2 have been identified. We surveyed the regional geological framework, utilized digital elevation models (DEMs), orthophotos, and aerial images since 1956. Moreover, we analyzed precipitation and temperature data in Seville from 1900 to 2024, collected hydrometeorological data since 1990 and modelled the water level evolution from 2002 to 2025 in a representative pothole in the area. Our observations indicate a flooded surface reduction by more than 90% from the 1950s to 2025. Climatic data reveal an increase in annual mean temperatures since 1960 and a sharp decline in annual precipitation since 2000. The AD’s inception due to tectonic isolation during the Quaternary favoured the formation of pothole wetlands in the floodplain. The reduction in the hydroperiod and wetland degradation was primarily due to agricultural expansion since 1950, which followed an increase in groundwater extraction and altered the original topography. Recently, decreased precipitation has exponentially accelerated the degradation and even the complete disappearance of many potholes. This study underscores the fragility of small wetlands in the Mediterranean basin and the critical role of human management in their preservation. Restoring these ecosystems could be a highly effective nature-based solution, especially in semi-arid climates like southern Spain. These prairie potholes are crucial for enhancing groundwater recharge, which is vital for maintaining water availability in regions with limited precipitation. By facilitating rainwater infiltration into the aquifer, recharge potholes increase groundwater levels. Additionally, they capture and store run-off during heavy rainfall, reducing the risk of flooding and soil erosion. Beyond their hydrological functions, these wetlands provide habitats that support biodiversity and promote ecological resilience, reinforcing the need for their protection and recovery. Full article
Show Figures

Figure 1

25 pages, 2843 KiB  
Article
Leveraging Phenology to Assess Seasonal Variations of Plant Communities for Mapping Dynamic Ecosystems
by Thilina D. Surasinghe, Kunwar K. Singh and Lindsey S. Smart
Remote Sens. 2025, 17(10), 1778; https://doi.org/10.3390/rs17101778 - 20 May 2025
Cited by 1 | Viewed by 624
Abstract
Seasonally dynamic plant communities present challenges for remote mapping, but estimating phenology can help identify periods of peak spectral distinction. While phenology is widely used in environmental and agricultural mapping, its broader ecological applications remain underexplored. Using a temperate wetland complex as a [...] Read more.
Seasonally dynamic plant communities present challenges for remote mapping, but estimating phenology can help identify periods of peak spectral distinction. While phenology is widely used in environmental and agricultural mapping, its broader ecological applications remain underexplored. Using a temperate wetland complex as a case study, we leveraged NDVI time series from Sentinel imagery to refine a wetland classification scheme by identifying periods of maximum plant community distinction. We estimated plant phenology with ground-reference points and mapped the study area using Random Forest (RF) with both Sentinel and PlanetScope imagery. Most plant communities showed distinct phenological variations between April–June (growing season) and September–October (transitional season). Merging phenologically similar communities improved classification accuracy, with April and September imagery yielding better results than the peak summer months. Combining both seasons achieved the highest classification accuracy (~77%), with key RF predictors including digital elevation, and near-infrared and tasseled cap indices. Despite its higher spatial resolution, PlanetScope underperformed compared to Sentinel, as spectral similarities between plant communities limited classification accuracy. While Sentinel provides valuable data, higher spectral resolution is needed for distinguishing similar plant communities. Integrating phenology into mapping frameworks can improve the detection of rare and ephemeral vegetation, aiding conservation efforts. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Graphical abstract

29 pages, 10523 KiB  
Article
Simulated Effects of Future Water Availability and Protected Species Habitat in a Perennial Wetland, Santa Barbara County, California
by Geoffrey Cromwell, Daniel P. Culling, Matthew J. Young and Joshua D. Larsen
Water 2025, 17(8), 1238; https://doi.org/10.3390/w17081238 - 21 Apr 2025
Viewed by 629
Abstract
This study evaluates the potential water availability in Barka Slough and the effects of changing hydrological conditions on the aquatic habitat of five protected species. Barka Slough is a historically perennial wetland at the downstream western end of the San Antonio Creek Valley [...] Read more.
This study evaluates the potential water availability in Barka Slough and the effects of changing hydrological conditions on the aquatic habitat of five protected species. Barka Slough is a historically perennial wetland at the downstream western end of the San Antonio Creek Valley watershed (SACVW). A previously published hydrologic model of the SACVW for 1948–2018 was extended to include 2019–2021 and then modified to simulate the future years of 2022–2051. Two models simulating the future years of 2022–2051 were constructed, each with different climate inputs: (1) a repeated historical climate and (2) a 2070-centered Drier Extreme Warming climate (2070 DEW). The model with the 2070 DEW climate had warmer temperatures and an increase in average annual precipitation driven by larger, albeit more infrequent, precipitation events than the model with the historical climate. Simulated groundwater pumpage resulted in cumulative groundwater storage depletion and groundwater-level decline in Barka Slough in both future models. The simulations indicate that Barka Slough may transition from a perennial to an ephemeral wetland. Streamflow, stream disconnection, and depth to groundwater are key habitat metrics for federally listed species in Barka Slough. Future seasonal conditions for each metric are more likely to affect federally listed species’ habitats under 2070 DEW climatic conditions. Future seasonal streamflow volume may negatively impact unarmored threespine stickleback (Gasterosteus aculeatus williamsoni) and tidewater goby (Eucyclogobis newberryi) habitats. Future seasonal stream disconnection may negatively impact the unarmored threespine stickleback habitat. Future groundwater-level decline may negatively impact Gambel’s watercress (Nasturtium gambelii) and La Graciosa thistle (Cirsium scariosum var. loncholepis) habitats and could influence the ability to use Barka Slough as a restoration or reintroduction site for these species. Results from this study can be used to inform water management decisions to sustain future groundwater availability in the SACVW. Full article
Show Figures

Figure 1

43 pages, 16915 KiB  
Article
The Natural Vegetation of Residual Wetlands in the Hinterland of Western Sicily (Italy)
by Lorenzo Gianguzzi, Orazio Caldarella and Saverio Sciandrello
Land 2024, 13(12), 2009; https://doi.org/10.3390/land13122009 - 26 Nov 2024
Viewed by 1392
Abstract
An overview of the wetland vegetation of the hinterland of western Sicily, between the hills located south of the Palermo Mts. and the Sicani Mts., is presented herein. This study was conducted according to Braun-Blanquet’s phytosociological method, through a survey carried out mainly [...] Read more.
An overview of the wetland vegetation of the hinterland of western Sicily, between the hills located south of the Palermo Mts. and the Sicani Mts., is presented herein. This study was conducted according to Braun-Blanquet’s phytosociological method, through a survey carried out mainly within six important biotopes: (1) Gorgo Lungo (“Bosco Ficuzza”; municipality of Godrano); (2) Gorgo Marosa (on the southern side of Rocca Busambra; municipality of Godrano); (3) Gorgo di Piano Scala (on the northern side of Mt. Cardellia; municipality of Corleone); (4) and (5) Gorgo Carcaci and Gorgo Carcaciotto (both on the south-eastern slope of Mt. Carcaci; municipality of Castronovo di Sicilia); and (6) Gorgo S. Andrea (municipality of Castronovo di Sicilia). A vegetation analysis was carried out on the basis of 107 field relevés, together with other data taken from scientific literature. A total of 28 plant communities were identified, between hydrophytics of the classes Lemnetea minoris (3 associations) and Potamogetonetea pectinati (6 associations), helophytics of the Phragmito-Magnocaricetea class (14 associations and 1 community), ephemeral of the Isöeto-Nanojuncetea class (2 communities) and perennial herbaceous vegetation of the Molinio-Arrhenatheretea class (1 association and 1 community). A new syntaxon is also described (Callitricho obtusangulae-Glycerietum notatae ass. nova), as an endemic association of the hinterland of western Sicily, referred to as the Alopecuro-Glycerion spicatae alliance. For all surveyed communities, new insights into syntaxonomy and diagnostic taxa are provided, as well as for the floristic composition, synecology, syndynamism and synchorology of the aquatic vegetation of western Sicily. Full article
(This article belongs to the Section Land – Observation and Monitoring)
Show Figures

Figure 1

17 pages, 13935 KiB  
Technical Note
Technological Advances to Rescue Temporary and Ephemeral Wetlands: Reducing Their Vulnerability, Making Them Visible
by Raquel Jiménez-Melero, Patricio Bohorquez, Inmaculada González-Planet, Francisco José Pérez-Latorre and Gema Parra
Remote Sens. 2023, 15(14), 3553; https://doi.org/10.3390/rs15143553 - 15 Jul 2023
Cited by 2 | Viewed by 1912
Abstract
Mediterranean temporary ponds are a priority habitat according to the Natura 2000 network of the European Union, and complete inventories of these ecosystems are therefore needed. Their small size, short hydroperiod, or severe disturbance make these ponds undetectable by most remote sensing systems. [...] Read more.
Mediterranean temporary ponds are a priority habitat according to the Natura 2000 network of the European Union, and complete inventories of these ecosystems are therefore needed. Their small size, short hydroperiod, or severe disturbance make these ponds undetectable by most remote sensing systems. Here we show, for the first time, that the distributed hydrologic model IBER+ detects ephemeral and even extinct wetlands by fully exploiting the available digital elevation model and resolving many microtopographic features at drainage basin scales of about 1000 km2. This paper aims to implement a methodology for siting flood-prone areas that can potentially host a temporary wetland, validating the results with historical orthophotos and existing wetlands inventories. Our model succeeds in dryland endorheic catchments of the Upper Guadalquivir Basin: it has detected 89% of the previously catalogued wetlands and found four new unknown wetlands. In addition, we have found that 24% of the detected wetlands have disappeared because of global change. Subsequently, environmental managers could use the proposed methodology to locate wetlands quickly and cheaply. Finding wetlands would help monitor their conservation and restore them if needed. Full article
(This article belongs to the Special Issue Advances in Remote Sensing of the Inland and Coastal Water Zones II)
Show Figures

Figure 1

17 pages, 2944 KiB  
Article
Assessing Transmission Losses through Ephemeral Streams: A Methodological Approach Based on the Infiltration of Treated Effluents Released into Streams
by Ivan Portoghese, Silvia Brigida, Rita Masciale and Giuseppe Passarella
Water 2022, 14(22), 3758; https://doi.org/10.3390/w14223758 - 18 Nov 2022
Cited by 3 | Viewed by 2847
Abstract
Climate change and anthropogenic pressures are the main drivers of the quantitative and qualitative depletion of water bodies, worldwide. Nowadays, in many urban areas, discharging effluents from wastewater treatment plants (WWTPs) into surface water bodies is a management solution to face the problem [...] Read more.
Climate change and anthropogenic pressures are the main drivers of the quantitative and qualitative depletion of water bodies, worldwide. Nowadays, in many urban areas, discharging effluents from wastewater treatment plants (WWTPs) into surface water bodies is a management solution to face the problem of water scarcity and sustain environmental flows. Although this practice can cause some concerns in public opinion about possible ecological side-effects and impairment of quality on receiving streams, it is an important contribution to the environmental baseflow of ephemeral streams, but also to groundwater recharge, especially during dry seasons, and in semi-arid and arid regions. This latter occurs through losing reaches along the streambed, though many factors may affect the infiltration rate, such as spatial distribution of streambed sediments and bedrock or the presence of channel lining. Moving from such premises, this study focuses on the Canale Reale River, an effluent-fed stream located nearby the city of Brindisi on the south-eastern side of the Apulia Region, in Italy. The Canale Reale flows through the Torre Guaceto protected wetland, located along the Adriatic coast. It collects effluents from four WWTPs with wastewater contributing for about 16.5% of the annual volume of channel drainage (i.e., 3.82 Mm3 out of 23.02 Mm3 along its 50 km long course). Within the framework of a complex geological setting, the Canale Reale River crosses different lithologies, which implies different streambed infiltration conditions. Using the Reach Length Water Balance method (RLWB), the transmission losses between the watercourse and the underlying aquifers were investigated. Particularly, the method allowed for the estimation of a spatially-average value of the riverbed’s infiltration rate applicable to the whole river course as well as the minimum, average, and maximum potential transmission losses (TLP) from the river to the underlying groundwater systems. Combining the estimated TLP values and the Flow Duration Curve (FDC) allowed for the inferring of the Transmission Loss Duration Curves (TLDC). Finally, the water volume infiltrating during an average hydrological year was estimated to be 6.25 Mm3, 61% of which was due to treated wastewater discharge. The results obtained confirm that the practice of increasing the river flow rates with WWTP effluents reduces the dry riverbed periods, with potential improvements to the river’s ecological sustainability and relevant enhancement of groundwater recharge. Full article
Show Figures

Figure 1

7 pages, 4340 KiB  
Interesting Images
Circular Bedforms Due to Pit Foraging of Greater Flamingo Phoenicopterus roseus in a Back-Barrier Intertidal Habitat
by Paolo Salvador, Annelore Bezzi, Davide Martinucci, Stefano Sponza and Giorgio Fontolan
Diversity 2022, 14(10), 788; https://doi.org/10.3390/d14100788 - 23 Sep 2022
Cited by 6 | Viewed by 2723
Abstract
The Greater Flamingo Phoenicopterus roseus is known as an ecosystem engineer, rearranging sediment in peculiar bedforms as a consequence of its filter-feeding behaviour. In recent decades, the populations of the Greater Flamingo have notably increased, and now the species is one of the [...] Read more.
The Greater Flamingo Phoenicopterus roseus is known as an ecosystem engineer, rearranging sediment in peculiar bedforms as a consequence of its filter-feeding behaviour. In recent decades, the populations of the Greater Flamingo have notably increased, and now the species is one of the most abundant waterbirds in Mediterranean wetlands. Owing to its range expansion, it inhabits and exploits new and suitable foraging sites detectable by foraging structures left on the sediment. There are few images of the foraging morphologies in the literature, possibly due to their ephemeral nature and difficulty in detecting them. In this manuscript, we present a very detailed UAV (Unmanned Aerial Vehicle) image of an aggregate of pit foraging structures of Greater Flamingo discovered on a back-barrier washover fan in the Marano and Grado Lagoon (Northern Adriatic, Italy). Full article
(This article belongs to the Special Issue Biodiversity in Mediterranean Sea Ecosystems)
Show Figures

Figure 1

17 pages, 5284 KiB  
Article
Snowmelt-Driven Seasonal Infiltration and Flow in the Upper Critical Zone, Niwot Ridge (Colorado), USA
by David P. Dethier, Noah Williams and Jordan F. Fields
Water 2022, 14(15), 2317; https://doi.org/10.3390/w14152317 - 26 Jul 2022
Cited by 5 | Viewed by 2662
Abstract
The hydrology of alpine and subalpine areas in the Colorado Front Range (USA) is evolving, driven by warming and by the alteration of precipitation patterns, the timing of snowmelt, and other components of the hydrologic budget. Field measurements of soil hydraulic conductivity and [...] Read more.
The hydrology of alpine and subalpine areas in the Colorado Front Range (USA) is evolving, driven by warming and by the alteration of precipitation patterns, the timing of snowmelt, and other components of the hydrologic budget. Field measurements of soil hydraulic conductivity and moisture along 30-m transects (n = 13) of representative soils developed in surficial deposits and falling head slug tests of shallow groundwater in till demonstrate that hydraulic conductivity in the soil is comparable to hydraulic conductivity values in the shallow aquifer. Soil hydraulic conductivity values were variable (medians ranged from 5.6 × 10−7 to 4.96 × 10−5 m s−1) and increased in alpine areas underlain by periglacial deposits. Hydraulic conductivities measured by a modified Hvorslev technique in test wells ranged from 4.86 × 10−7 to 1.77 × 10−4 m s−1 in subalpine till. The results suggest a gradient from higher hydraulic conductivity in alpine zones, where short travel paths through periglacial deposits support ephemeral streams and wetlands, to lower hydraulic conductivity in the till-mantled subalpine zone. In drier downstream areas, streambed infiltration contributes substantially to near-channel groundwater. As summer temperatures and evapotranspiration (ET) increase and snowmelt occur earlier, alpine soils are likely to become more vulnerable to drought, and groundwater levels in the critical zone may lower, affecting the connectivity between late-melting snow, meltwater streams, and the areas they affect downstream. Full article
(This article belongs to the Special Issue Vulnerability of Mountainous Water Resources and Hydrological Regimes)
Show Figures

Figure 1

12 pages, 1797 KiB  
Communication
The Feasibility of Monitoring Great Plains Playa Inundation with the Sentinel 2A/B Satellites for Ecological and Hydrological Applications
by Hannah L. Tripp, Erik T. Crosman, James B. Johnson, William J. Rogers and Nathan L. Howell
Water 2022, 14(15), 2314; https://doi.org/10.3390/w14152314 - 26 Jul 2022
Cited by 5 | Viewed by 2996
Abstract
Playas are ecologically and hydrologically important ephemeral wetlands found in arid and semi-arid regions of the world. Urbanization, changes in agricultural land use and irrigation practices, and climate change all threaten playas. While variations in playa inundation on the Great Plains of North [...] Read more.
Playas are ecologically and hydrologically important ephemeral wetlands found in arid and semi-arid regions of the world. Urbanization, changes in agricultural land use and irrigation practices, and climate change all threaten playas. While variations in playa inundation on the Great Plains of North America have been previously analyzed by satellite using annual and decadal time scales, no study to our knowledge has monitored the Great Plains playa inundation area using sub-monthly time scales. Thousands of playas smaller than ~50 m in diameter, which were not previously identified by the Landsat satellite platform, can now be captured by higher resolution satellite data. In this preliminary study, we demonstrate monitoring spatial and temporal changes in the playa water inundation area on sub-monthly times scales between September 2018 and February 2019 over a region in West Texas, USA, using 10 m spatial resolution imagery from the Sentinel-2A/B satellites. We also demonstrate the feasibility and potential benefits of using the Sentinel-2A/B satellite retrievals, in combination with precipitation and evaporation data, to monitor playas for environmental, ecological, groundwater recharge, and hydrological applications. Full article
Show Figures

Figure 1

14 pages, 1381 KiB  
Article
Projected Climate and Hydroregime Variability Constrain Ephemeral Wetland-Dependent Amphibian Populations in Simulations of Southern Toads
by Jill A. Awkerman and Cathryn H. Greenberg
Ecologies 2022, 3(2), 235-248; https://doi.org/10.3390/ecologies3020018 - 17 Jun 2022
Cited by 4 | Viewed by 2562
Abstract
Amphibian populations are threatened globally by stressors, including diminishing availability of suitable wetland breeding sites, altered hydroregimes driven by changing weather patterns, and exposure to contaminants. Ecological risk assessment should encompass spatial and temporal scales that capture influential ecological processes and demographic responses. [...] Read more.
Amphibian populations are threatened globally by stressors, including diminishing availability of suitable wetland breeding sites, altered hydroregimes driven by changing weather patterns, and exposure to contaminants. Ecological risk assessment should encompass spatial and temporal scales that capture influential ecological processes and demographic responses. Following the PopGUIDE framework of population model development for risk assessment, we used matrix population models, in conjunction with existing hydroregime predictions, under a climate change scenario to evaluate the effects of environmental stochasticity and aquatic pesticide exposure on amphibians that are dependent on ephemeral wetlands. Using southern toads (Anaxyrus terrestris) as an example, we simulated population dynamics with breeding success dependent on hydroregime suitability. Years were defined as optimal, marginal, or insufficient for successful toad recruitment, based on the duration of their potential breeding season and rate of larval development to metamorphosis. We simulated both probabilistic and chronologically specific population projections, including variable annual fecundity, based on hydroregime suitability and reduced larval survival from carbaryl exposure. In our simulations, populations were more negatively impacted by prolonged drought, and consequently multiple sequential years of reproductive failure, than by aquatic pesticide exposure. These results highlight the necessity of reliable climate projections to accurately represent the effects of altered hydroregimes on amphibian populations. Risk assessment approaches could be improved with flexible modifications that allow inclusion of various extrinsic stressors and identification of demographic and ecological vulnerabilities when precise data are lacking. Full article
Show Figures

Figure 1

19 pages, 5143 KiB  
Article
The Evolution of an Ancient Coastal Lake (Lerna, Peloponnese, Greece)
by Efterpi Koskeridou, Danae Thivaiou, Christos Psarras, Evangelia Rentoumi, Niki Evelpidou, Giannis Saitis, Alexandros Petropoulos, Chryssanthi Ioakim, George Katopodis, Konstantinos Papaspyropoulos and Spyros Plessas
Quaternary 2022, 5(2), 22; https://doi.org/10.3390/quat5020022 - 8 Apr 2022
Cited by 4 | Viewed by 6394
Abstract
Degradation of coastal environments is an issue that many areas in Europe are facing. In the present work, an ancient coastal lake wetland is investigated, the so-called Lake Lerna in NE Peloponnese, Greece. The area hosted early agricultural populations of modern Greece that [...] Read more.
Degradation of coastal environments is an issue that many areas in Europe are facing. In the present work, an ancient coastal lake wetland is investigated, the so-called Lake Lerna in NE Peloponnese, Greece. The area hosted early agricultural populations of modern Greece that started modifying their environment as early as the early–middle Neolithic. Two drill cores in the area of the ancient lake were analysed to establish the sedimentological succession and the depositional environments using sub-fossil assemblages (molluscs and ostracods). Three lithological and faunal units were recovered, the latter being confirmed by the statistical ordination method (non-metric multidimensional scaling). The usage of sub-fossil mollusc species for the first time in the region enriched the dataset and contributed significantly to the delimitation of the faunas. These consist of environments characterised by various levels of humidity (from stagnant waters to freshwater lake) and salinity, with ephemeral intrusions of salt water to the lake, documented by mollusc and ostracod populations. We conclude that the lake and its included fauna and flora were mostly affected by climatic fluctuations rather than human intervention in the area. Full article
(This article belongs to the Special Issue Advances in Geoarchaeology and Cultural Heritage)
Show Figures

Figure 1

19 pages, 7571 KiB  
Article
Recruitment Patterns and Potential Climate Change Impacts on Three Florida Hylids with Different Life Histories
by Sky T. Button, Cathryn H. Greenberg and James D. Austin
Diversity 2022, 14(2), 129; https://doi.org/10.3390/d14020129 - 10 Feb 2022
Cited by 2 | Viewed by 3170
Abstract
Altered weather patterns associated with climate change are likely to adversely affect amphibian recruitment, especially for species dependent on ephemeral, geographically isolated wetlands for breeding. Future changes in temperature and rainfall patterns could affect hydroregimes (periodicity, depth, duration, and timing of water in [...] Read more.
Altered weather patterns associated with climate change are likely to adversely affect amphibian recruitment, especially for species dependent on ephemeral, geographically isolated wetlands for breeding. Future changes in temperature and rainfall patterns could affect hydroregimes (periodicity, depth, duration, and timing of water in wetlands) or adult breeding effort. We used 24 years of continuous amphibian trapping, weather, and hydroregime data to identify breeding-to-metamorphosis periods (BMPs) and environmental factors affecting annual recruitment by three hylid species at eight isolated ephemeral limesink ponds in Florida longleaf-wiregrass sandhills. We used standardized climate metrics (Bioclim variables) to predict future precipitation, temperature and hydroregime variables, then used them to predict future recruitment in 2050 and 2070 under two emissions scenarios. We hypothesized that Hyla gratiosa would be more sensitive to short-term pond drying than H. femoralis or H. squirella due to its lower abundance and more specific habitat requirements. Hyla gratiosa recruitment was not explained by adult breeding effort and was more dependent on higher water levels during BMPs than for H. femoralis or H. squirella, independent of rainfall. In contrast, H. femoralis and H. squirella recruitment depended heavily on rainfall independent of pond depth and was positively associated with adult breeding effort. Models predicted moderate decreases in H. gratiosa and H. squirella recruitment by 2050 but projections were highly uncertain for all three species by 2070. Our findings highlight the importance of maintaining wetlands with diverse hydroregimes to accommodate species with different BMPs and hydroregime requirements. Proactive monitoring and conservation measures such as headstarting and creating artificial ponds may be necessary for these and other amphibian species that may suffer reduced recruitment under future climate change. Full article
(This article belongs to the Special Issue Amphibian Ecology in Geographically Isolated Wetlands)
Show Figures

Figure 1

30 pages, 24816 KiB  
Article
Ecology and Genetics of Cyperus fuscus in Central Europe—A Model for Ephemeral Wetland Plant Research and Conservation
by Pavel Kúr, Soňa Píšová, Karin Tremetsberger, Pavel Dřevojan, Zygmunt Kącki, Jörg Böckelmann, Karl-Georg Bernhardt, Zdenka Hroudová, Attila Mesterházy and Kateřina Šumberová
Water 2021, 13(9), 1277; https://doi.org/10.3390/w13091277 - 30 Apr 2021
Cited by 6 | Viewed by 3618
Abstract
The ecology and species diversity of ephemeral wetland vegetation have been fairly well studied, but the biology of its characteristic species has rarely been investigated holistically. Here we combine previous results on the genetic diversity of a suitable model species (the diploid Cyperus [...] Read more.
The ecology and species diversity of ephemeral wetland vegetation have been fairly well studied, but the biology of its characteristic species has rarely been investigated holistically. Here we combine previous results on the genetic diversity of a suitable model species (the diploid Cyperus fuscus) with new data on its historical and recent occurrence, its ecological and climatic niche, and the associated vegetation. Analysis of phytosociological relevés from Central Europe revealed a broad ecological niche of C. fuscus with an optimum in the Isoëto-Nanojuncetea class, extending to several other vegetation types. Overall species composition in the relevés highlight C. fuscus as a potential indicator of habitat conditions suitable for a range of other threatened taxa. Analysis of historical records of C. fuscus from the Czech Republic showed an increasing trend in the number of localities since the 1990s. It seems that recent climate warming allows the thermophilous C. fuscus to expand its range into colder regions. Isoëto-Nanojuncetea and Bidentetea species are well represented in the soil seed bank in both riverine and anthropogenic habitats of C. fuscus. Vegetation diversity has a weak negative effect and anthropogenic (compared to riverine) habitats have a strong negative effect on genetic diversity in this species. Full article
(This article belongs to the Special Issue Hydrology-Shaped Plant Communities: Diversity and Ecological Function)
Show Figures

Figure 1

15 pages, 1427 KiB  
Article
Diversity Patterns Associated with Varying Dispersal Capabilities as a Function of Spatial and Local Environmental Variables in Small Wetlands in Forested Ecosystems
by Brett M. Tornwall, Amber L. Pitt, Bryan L. Brown, Joanna Hawley-Howard and Robert F. Baldwin
Forests 2020, 11(11), 1146; https://doi.org/10.3390/f11111146 - 29 Oct 2020
Cited by 6 | Viewed by 2943
Abstract
The diversity of species on a landscape is a function of the relative contribution of diversity at local sites and species turnover between sites. Diversity partitioning refers to the relative contributions of alpha (local) and beta (species turnover) diversity to gamma (regional/landscape) diversity [...] Read more.
The diversity of species on a landscape is a function of the relative contribution of diversity at local sites and species turnover between sites. Diversity partitioning refers to the relative contributions of alpha (local) and beta (species turnover) diversity to gamma (regional/landscape) diversity and can be influenced by the relationship between dispersal capability as well as spatial and local environmental variables. Ecological theory predicts that variation in the distribution of organisms that are strong dispersers will be less influenced by spatial properties such as topography and connectivity of a region and more associated with the local environment. In contrast, the distribution of organisms with limited dispersal capabilities is often dictated by their limited dispersal capabilities. Small and ephemeral wetlands are centers of biodiversity in forested ecosystems. We sampled 41 small and ephemeral wetlands in forested ecosystems six times over a two-year period to determine if three different taxonomic groups differ in patterns of biodiversity on the landscape and/or demonstrate contrasting relationships with local environmental and spatial variables. We focused on aquatic macroinvertebrates (aerial active dispersers consisting predominantly of the class Insecta), amphibians (terrestrial active dispersers), and zooplankton (passive dispersers). We hypothesized that increasing active dispersal capabilities would lead to decreased beta diversity and more influence of local environmental variables on community structure with less influence of spatial variables. Our results revealed that amphibians had very high beta diversity and low alpha diversity when compared to the other two groups. Additionally, aquatic macroinvertebrate community variation was best explained by local environmental variables, whereas amphibian community variation was best explained by spatial variables. Zooplankton did not display any significant relationships to the spatial or local environmental variables that we measured. Our results suggest that amphibians may be particularly vulnerable to losses of wetland habitat in forested ecosystems as they have high beta diversity. Consequently, the loss of individual small wetlands potentially results in local extirpations of amphibian species in forested ecosystems. Full article
(This article belongs to the Special Issue Modeling of Species Distribution and Biodiversity in Forests)
Show Figures

Figure 1

20 pages, 3769 KiB  
Article
Climate-Dependent Groundwater Discharge on Semi-Arid Inland Ephemeral Wetlands: Lessons from Holocene Sediments of Lagunas Reales in Central Spain
by Rosa Mediavilla, Juan I. Santisteban, Ignacio López-Cilla, Luis Galán de Frutos and África de la Hera-Portillo
Water 2020, 12(7), 1911; https://doi.org/10.3390/w12071911 - 4 Jul 2020
Cited by 14 | Viewed by 3850
Abstract
Wetlands are environments whose water balance is highly sensitive to climate change and human action. This sensitivity has allowed us to explore the relationships between surface water and groundwater in the long term as their sediments record all these changes and go beyond [...] Read more.
Wetlands are environments whose water balance is highly sensitive to climate change and human action. This sensitivity has allowed us to explore the relationships between surface water and groundwater in the long term as their sediments record all these changes and go beyond the instrumental/observational period. The Lagunas Reales, in central Spain, is a semi-arid inland wetland endangered by both climate and human activity. The reconstruction of the hydroclimate and water levels from sedimentary facies, as well as the changes in the position of the surface water and groundwater via the record of their geochemical fingerprint in the sediments, has allowed us to establish a conceptual model for the response of the hydrological system (surface water and groundwater) to climate. Arid periods are characterized by low levels of the deeper saline groundwater and by a greater influence of the surface freshwater. A positive water balance during wet periods allows the discharge of the deeper saline groundwater into the wetland, causing an increase in salinity. These results contrast with the classical model where salinity increases were related to greater evaporation rates and this opens up a new way of understanding the evolution of the hydrology of wetlands and their resilience to natural and anthropogenic changes. Full article
Show Figures

Figure 1

Back to TopTop