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Abstract: Climate change and anthropogenic pressures are the main drivers of the quantitative and
qualitative depletion of water bodies, worldwide. Nowadays, in many urban areas, discharging
effluents from wastewater treatment plants (WWTPs) into surface water bodies is a management
solution to face the problem of water scarcity and sustain environmental flows. Although this practice
can cause some concerns in public opinion about possible ecological side-effects and impairment
of quality on receiving streams, it is an important contribution to the environmental baseflow of
ephemeral streams, but also to groundwater recharge, especially during dry seasons, and in semi-arid
and arid regions. This latter occurs through losing reaches along the streambed, though many factors
may affect the infiltration rate, such as spatial distribution of streambed sediments and bedrock
or the presence of channel lining. Moving from such premises, this study focuses on the Canale
Reale River, an effluent-fed stream located nearby the city of Brindisi on the south-eastern side of
the Apulia Region, in Italy. The Canale Reale flows through the Torre Guaceto protected wetland,
located along the Adriatic coast. It collects effluents from four WWTPs with wastewater contributing
for about 16.5% of the annual volume of channel drainage (i.e., 3.82 Mm3 out of 23.02 Mm3 along its
50 km long course). Within the framework of a complex geological setting, the Canale Reale River
crosses different lithologies, which implies different streambed infiltration conditions. Using the
Reach Length Water Balance method (RLWB), the transmission losses between the watercourse and
the underlying aquifers were investigated. Particularly, the method allowed for the estimation of
a spatially-average value of the riverbed’s infiltration rate applicable to the whole river course as
well as the minimum, average, and maximum potential transmission losses (TLP) from the river to
the underlying groundwater systems. Combining the estimated TLP values and the Flow Duration
Curve (FDC) allowed for the inferring of the Transmission Loss Duration Curves (TLDC). Finally,
the water volume infiltrating during an average hydrological year was estimated to be 6.25 Mm3,
61% of which was due to treated wastewater discharge. The results obtained confirm that the
practice of increasing the river flow rates with WWTP effluents reduces the dry riverbed periods,
with potential improvements to the river’s ecological sustainability and relevant enhancement of
groundwater recharge.

Keywords: surface-groundwater interactions; effluent-fed river; Reach Length Water Balance method

1. Introduction

In the global context of climate change and the growing population, water resources
are threatened by overexploitation, especially in Mediterranean arid and semi-arid regions
leading to negative environmental impacts [1,2]. In these regions, to compensate for surface
water (SW) scarcity, the population largely relies on groundwater resources, especially
for drinking purposes and irrigation. Nevertheless, changing climate conditions bringing
more intense rainfall, prolonged dry periods, and higher evapotranspiration rates, are
expected to reduce the natural recharge of the aquifer [3,4] which instead generally occurs
only during high flow periods along ephemeral streams [5–8].
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In such a context, the necessity of safeguarding water resources in both quantitative
and qualitative terms is an urgent issue. This has driven communities to adopt smart
and environmental-friendly solutions, such as high-performance wastewater treatment
plants, especially in urban and industrialized districts [9]. In particular, the reuse of treated
wastewater is one of the foreseen options, though it has been a challenging matter since
the beginning of the century [10–12], with the continuous advancement of water treatment
technologies to avoid ecological and sanitary impairments of recipient waterbodies [13–15].

Nowadays, discharging treated wastewater in the hydrographic networks through
losing streams is frequently considered a useful water management practice, especially in
coastal semi-arid and arid regions, to enhance groundwater recharge and to fight seawater
intrusion [16,17]. Moreover, climate change scenarios depict increasing drought periods
associated with an increasing groundwater shortage and a change of river flow regimes
from perennial to intermittent conditions in arid and semiarid areas [18,19]. In such
environments, treated wastewater allows for supporting ecosystem survival, restoring the
baseflow of ephemeral watercourses, and supplying potable water in some cases [20–25].
Properly treated effluents, which nowadays represent an alternative source of freshwater,
are likely to become crucial for guaranteeing a vital equilibrium in the hydrological cycle.
All these actions move towards the integrated and sustainable management of both SW
and groundwater (GW) bodies.

Consequently, interactions between SW and GW bodies need to be conceptualized
and understood from a multidisciplinary perspective. Although these systems have been
often considered as two separated physical systems, in the last decades, research has
emphasized the necessity of considering them as parts of a whole complex system where
discharge-recharge fluxes occurring at their interface (hyporheic zone) also drive chemical
and biological processes relevant to the stream ecosystem [26–29].

In general, many factors can affect the amount of transmission losses along a water-
course. In addition to topographic and climate patterns, even the streambed morphology
and lithology, the related vertical permeability, the depth to the groundwater table, and
the quality of the flowing water are binding factors of such infiltration phenomena [30–33].
This implies different infiltration or loss conditions that allow for the identification of
gaining and losing reaches along the same river [34].

From a perspective of sustainable water management in dryland areas, the comprehen-
sion of these interactions becomes more complicated when considering ephemeral streams,
strongly depending on precipitation events characterized by flow variations in both space
and time [35,36] and generally characterized by ungauged basins.

Further complexity in the hydrological characterization of non-perennial streams [37]
comes from the fact that they are located in ungauged basins in the majority of cases
worldwide, with a significant lack of in situ hydrological data, such as precipitation,
streamflow, and evaporation time series [38,39]. Taking into account all the factors affecting
recharge processes in ephemeral streams, methods capable of estimating transmission losses
from ephemeral losing streams are useful as they can provide some proxy for measuring
unconfined GW recharge from hydraulically connected SW.

Not all the methods proposed in the scientific literature for estimating transmission
losses in perennial streams can be applied to ephemeral streams [40–42]. Nevertheless,
many efforts have been taken to understand the dynamics of these streams, typical of arid
areas, and develop more methods suitable for estimating channel infiltration [43–45], even
in ungauged catchments [46,47].

Among such methods, this work refers to the Reach Length Water Balance (RLWB) [44].
Assuming SW and GW are hydraulically connected, the RLWB, based on the mass con-
servation principle, allows for approximating the flow rate exchanged along a river reach
bounded by two cross-sections as the difference between the discharge measurements at
the two sections.

This paper proposes a novel methodology that contributes to the comprehension of
hydrological processes in dryland environments through the characterization of streamflow
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transmission losses in ephemeral rivers. In doing this the authors used the wastewater
discharge effluents with known hydraulic features to undertake empirical riverbed infiltra-
tion tests, extrapolate transmission losses all through the channel bed, and consequently
evaluate the overall water balance. Generally speaking, such a technical enhancement has
been proved being an effective contribution to the in-channel Managed Aquifer Recharge
(MAR) practice in arid and semi-arid regions [48].

The proposed approach has been applied and tested along two stretches of the Canale
Reale River, an effluent-fed, ephemeral watercourse in the Apulia region (Southern Italy),
to estimate the transmission loss of treated wastewater, coming from three wastewater
treatment plants (WWTPs).

Table 1 reports a list of the abbreviations and definitions used in the paper.

Table 1. List of abbreviation used in the paper reported alphabetically.

Abbrev. Definition Abbrev. Definition

BC Avg. wetted width of the whole channel LC Length of the whole channel
Bw Avg. wetted width of cross section Lw Wetted length of the channel
Ca Town of Carovigno MAR Managed Aquifer Recharge
CM Town of Ceglie Messapica Qww Daily discharge rates
CoG Calcarenite of Gravina RLWB Reach Length Water Balance method
Ew Evaporation rate SW Surface Water

FDC Flow Duration Curve TLDC Transmission Loss Duration Curves
FF Town of Francavilla Fontana TLP Potential transmission losses

GW Groundwater TMDs Terraced Marine Deposits
KRB Averaged hydraulic conductivity WFD Water Framework Directive
La Town of Latiano WWTP Wastewater Treatment Plant

The paper is organized starting with Section 2 dedicated to an overview of the study
area and its geological setting, also presenting the knowledge base of the interaction
between surface water and groundwater. A sub-section is dedicated to the adopted
methodology based on the RLWB method, which include details on the data retrieval
and computational steps. The application of the proposed methodology is summarized in
Section 3 followed by the results section (Section 4) and conclusions (Section 5).

2. Materials and Methods
2.1. Study Area

The study area is located in the south-eastern part of the Apulia region (Southern
Italy), in a morphologically flat area known as Brindisi Plain (Figure 1) and characterized
by a typical dry sub-humid, Mediterranean climate [49].

The local hydrography is mainly represented by a few ephemeral SW bodies, often
regulated within artificial channels that generally cross the plain almost perpendicularly to the
Adriatic coast and feed some coastal wetlands characterized by typical Mediterranean shrubs.

Owing to the flat morphology of the area and to the relatively low permeability
of the sediments that diffusely outcrop near the coast, since the beginning of the 18th
century, many reclamation operations have been carried out to drain the marsh areas as
an antimalarial measure. This made possible the development of very diversified and
intensive agriculture from inland towards the Adriatic Sea, consisting of olives, grapes,
and vegetable crops.

Due to the extension of its catchment basin (approximately 210 km2) and its length
(about 50 km), the Canale Reale River represents the most significant watercourse in
southern Apulia. It originates from springs nearby Villa Castelli municipality and crosses
the territories of different towns, collecting the treated effluents from WWTPs of the
municipalities of Francavilla Fontana (FF), Ceglie Messapica (CM), Latiano (La), and partly
from Carovigno (Ca) (Figure 1), with a total discharge of 18.3 × 103 m3/d. Wastewater
discharge practice has been allowed for decades, with increasing discharge rates, so that
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the Canale Reale River can be considered a wastewater-effluent-fed stream. Due to these
anthropogenic disturbances, it is classified as a heavily modified river with a temporary
flow regime of ephemeral-intermittent type, according to the Water Framework Directive
(WFD) of the European Union [50].
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Figure 1. The geographical setting of the study area and distribution of the effluent discharge points
along the Canale Reale River.

Nevertheless, the high value of the river ecosystem and naturalistic traits tracing back
to its ancient perennial character cannot be denied, also for the presence of the Natural
State Reserve of Torre Guaceto at the river mouth, a coastal salty marsh extended for
10 km2 with 3.50 × 105 m3 water volume belonging to the list of Ramsar wetlands of
international importance.

Recently, an environmental management plan, focusing on the Canale Reale and its
catchment basin, has been undertaken by local authorities, to identify a series of integrated
actions for the restoration of the watercourse through the adoption of the River Contract
approach. These actions comply with the requirements of the WFD, which recognizes the
river basin as the main physical and socio-economic domain for implementing systemic
policies for the requalification and sustainable management of SW and GW resources.
Within the River Contract, establishing an effective hydrological monitoring network is the
most urgent action to be implemented mainly considering that qualitative and quantitative
information on this watercourse is scarce or even missing both in space and in time.
Only periodic monitoring of some physicochemical and biological parameters has been
carried out by the Regional Environmental Agency at the closure section of the Canale
Reale River, revealing a poor ecological and chemical state, in the last decade. A recent
attempt of assessing the hydrodynamic features of the Canale Reale River was conducted
by Passarella et al. [51] using an affordable and reliable measurement technique, based on
beamforming applied on streamflow video sensing.

The presence of dry channel stretches has been observed all along the warm sea-
sons, especially in the downstream half of the river course, and this feature is typical
of losing streams and deep groundwater tables, thus deserving specific attention in the
hydrogeological characterization.
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2.2. Geological and Hydrogeological Setting

The study area falls within an important transition zone, known as ‘Soglia Messapica’
(Messapian Threshold), between two structural domains: the Murgia Plateau and the
Salento peninsula. The Messapian Threshold is a tectonically disturbed area that has
undergone multiple geodynamic and tectonic events involving the carbonate basement.
Hence, it results as displaced in a series of blocks bounded by normal sub-vertical faults,
predominantly oriented E-W and NNW-SSE [52]. Particularly, the tectonic setup strongly
affects the path of the Canale Reale River, which rotates from the W-E direction in the first
part of its path to S-N in the middle and final part, thus following the main direction of the
pre-existing buried faults system [53].

An exhaustive description of the geological setup concerning the study area can be
found in Ciaranfi et al. [54]. Following this study, the stratigraphic succession can be
schematized, from bottom to top, as follows:

− Limestone of Altamura (Cretaceous), forming the carbonate basement, made up of
calcareous and calcareous–dolomitic rocks, widely outcropping in the western part of
the study area;

− Calcarenite of Gravina (upper Pliocene–lower Pleistocene), consisting of calcarenite
sediments having a variable cementation degree, outcropping in the central part of
the study area, with a thickness not exceeding 20–30 m;

− Subapennine clays (lower Pleistocene) made of clay and sandy clay;
− Terraced Marine Deposits (middle-upper Pleistocene) characterized by considerable

variations of facies but generally made up of yellow sands and a base level of marly
clays, and outcropping in the eastern part of the study area with a thickness not
exceeding 10–20 m;

− Alluvial, marshes, and coastal deposits (Holocene) with a small thickness and limited
extension [55] (Figure 2).
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catchment basin.

The above-described stratigraphic and structural setting reflects the presence of
two distinct aquifer structures, the deep aquifer hosted in the Cretaceous carbonate rocks
succession and the shallow local porous aquifer, corresponding to sand-calcarenite levels
of Terraced Marine Deposits [56].



Water 2022, 14, 3758 6 of 17

The shallow aquifer, still intensively used for local irrigation needs, is only recharged
by rainwater. When maximum recharge conditions are reached, excess water is drained
into the rivers, canals, and topographically depressed areas. It is moderately or not at all
affected by seawater intrusion while severe nitrate contamination is highlighted [57].

The deep carbonate aquifer is characterized by a marked anisotropy that strongly
controls the groundwater circulation conditions. The structural setup, combined with the
presence of karst systems at different stages of evolution, results in an extreme spatial
variation in hydraulic conductivity and other hydrogeological parameters.

Due to this feature, and the presence of Subapennine clays locally covering the Meso-
zoic bedrock, groundwater flows both under confined and unconfined conditions and
emerges, particularly, along the wetland, area of Torre Guaceto through submarine and
subaerial springs along the coast [58]. The deep aquifer is mainly recharged by rainfalls
that infiltrate the innermost part of the Murgia Plateau. Groundwater floats on intruded
seawater, and flows towards both the Adriatic coastline and the north-west sector of the
Salento, through the Soglia Messapica, where a gradual increase in aquifer permeability
occurs [59,60].

The increasing amount of water-demanding crops in this area over the last 50 years has
determined a significant anthropogenic impact on deep groundwater resources in either
quantitative or qualitative terms. Indeed, localized phenomena of saline contamination
both along the coastal aquifer and into the inner part of the Brindisi plain have been
recognized [57]. Although the shallow and deep aquifers are physically separated by the
impermeable formation named Subapennine clays, the temperature distribution within the
deeper one suggests that a hydraulic connection exists between them. This is likely due
to the over 3000 irrigation wells, improperly drilled along the Brindisi plain, but also to
significant structural discontinuities involving the impermeable layer [57,61].

2.3. SW-GW Interaction

The geology and the structural setting of the study area allow supposing the hydraulic
connection between the Canale Reale River and both the shallow and deep aquifers, de-
pending on the lithology crossed by the river in its different stretches (Figure 2). Indeed,
the Canale Reale Riverbed almost lies on the western edge of the Terraced Marine Deposits
(TMDs) crossing both these latter deposits and the Calcarenite of Gravina (CoG) along its
course. Therefore, different types of interaction between SW and GW can be identified
according to the different hydrogeological roles played by the two aforementioned forma-
tions. Figure 3 shows a schematic cross-section of the Canale Reale River, which illustrates
the different interactions between SW and GW. Particularly, when the Canale Reale crosses
the CoG, which is not an aquifer formation, it behaves as a losing disconnected stream
where the water infiltrates into the thick vadose zone, finally feeding the deep carbonate
aquifer (left bank in Figure 3). On the contrary, the TMDs host a shallow aquifer due to
the presence of a basal clay layer. Therefore, when the Canale Reale River crosses them,
it can alternatively play the role of gaining or losing stream, depending on the seasonal
fluctuations of the water table (right bank in Figure 3).
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Figure 3. Schematic cross-section of Canale Reale River showing the different types of interaction
between SW and GW: on the left side is the case of a losing stream, on the right one is the case of a
gaining stream that can turn into a losing stream, and vice versa, according to water table fluctuations.

According to the literature, the hydraulic conductivity of the TMDs ranges from
10−5 m/s to 10−8 m/s and partially overlaps the CoG range, which in turn varies from
10−4 m/s to 10−6 m/s [57,62–64]. The largest variability towards the lower values of the
TMDs hydraulic conductivity is related to the variable clay content. At the same time, the
presence of karst forms in the CoG can locally increase its hydraulic conductivity values.

2.4. Methodology

The approach adopted in this study is based on the RLWB method in which differential
discharge measurements between an upstream and a downstream cross-section along a
surface watercourse are used to empirically quantify the streambed infiltration [65,66].

The streamflow differencing method has been generally used for estimating transmis-
sion losses in perennial streams, characterized by a stable flow condition that easily allows
for measuring the difference between upstream and downstream flow [44]. On the contrary,
ephemeral streams are characterized by non-stable flow conditions, and loss rate estimation
is determined by measuring the flow rate between the upstream and downstream stations
across the entire flow event [67]. In our case study, the Canale Reale River is classified as an
ephemeral river characterized by a seasonal flow regime, in which the presence of a stable
low flow condition in the summer season is guaranteed by treated wastewater discharged
at four different locations along the channel length (Figure 1).

Therefore, the proposed methodology is based on the use of WWTPs discharge to
characterize the riverbed infiltration during the dry season, when the natural river flow is
negligible. This methodology has been applied according to the following steps:

1. Preliminary steps

− Retrieval of the daily discharge rates from the existing WWTPs, namely Qww
(
m3/s

)
,

and the location of the discharge points, and a survey of the geometry of the cross-
sections along the river;

− Detection of wetted channel portions downstream of the discharge points using
high-resolution aerial images during the dry season to identify the average
wetted width of channel cross-section Bw (m) and the wetted length of the
channel Lw (m);

2. Computational steps

− Based on Darcy’s law, the infiltration rate at the local scale can be estimated by
multiplying the saturated hydraulic conductivity with the hydraulic gradient
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which describes the driving forces (i.e., gravity and capillary suction) that cause
flow from the wetted channel to groundwater:

q = K ×
(

dh
dz

)
= K × i (1)

where q is the specific infiltration rate of water through a unit horizontal surface
of the channel (m/s), K is the saturated hydraulic conductivity (m/s) in the
vertical direction z, dh/dz is the hydraulic gradient (m/m), which is expressed
with i as a short-hand notation.

For those sites with thick unsaturated zones, where the effects of groundwater mound-
ing will generally be small, the infiltration rate can be approximated by the Green-Ampt
equation [68] where the gradient will not typically be reduced by infiltration from the
channel and will be approximately equal to 1.0 (reported in the literature as unit gradient
approximation).

− Under deep groundwater table conditions, the evaluation of spatially averaged hy-
draulic conductivity KRB (m/s) of a dry riverbed stretch receiving some wastewa-
ter effluent with known characteristics can be derived from the water balance (i.e.,
RLWB method):

KRB =
Qww

Lw × Bw
− Ew (2)

assuming wastewater discharge and evaporation rate Ew (m/s) from the water surface
to be the only flow components within the channel stretch which is classified as wet
based on the inspection of the aerial images and field survey during the dry season.

− Extension of the riverbed hydraulic conductivity to the whole channel length (LC)

and evaluation of the riverbed potential transmission loss TLP
(
m3/s

)
:

TLP = KRB × LC × BC (3)

where BC is the average width of the whole considered channel.

3. Postprocessing step

Finally, the estimated riverbed potential transmission loss has been suitably used as
a component of a water balance to integrate a rainfall-runoff model application recently
developed over the same study area [69]. Indeed, as for most similar cases, this model
application neglected the contribution of the runoff re-infiltration along the losing riverbed
stretch, which is a common condition during the dry season.

3. Case Study

In the scientific literature, the RLWB method applications to ephemeral watercourses
usually refer to concurrent measurements of the streamflow during flow events. In the
case at hand, an adaptation of the standard RLWB method has been proposed. Given
the negligible natural baseflow, the streamflow measurements have been replaced by
the known average daily discharge of treated wastewater released at three consecutive
outlets along an approximately 20 km river stretch corresponding to the central part of the
considered water course from the most upstream outlet point to the last downstream wet
cross-section.

Based on the above assumption, considering the summer month of July 2021, the
average daily discharge rates at the above-mentioned outlet points range from 0.02

(
m3/s

)
to 0.051

(
m3/s

)
(Table 1).

At the same time, supported by Google Earth images and high-resolution dry period
orthophotos provided by the Apulia Region web-GIS, it was possible to distinguish wet and
dry reaches within the riverbed along the considered 20 km river stretch. Figure 4 shows
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magnified orthophotos of three river portions characterized by different flow characteristics
and channel vegetation.
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Figure 4. Orthophoto frames of three different channel portions: (a) flowing water filling the entire
cross-section of the riverbed nearby the effluent outlet; (b) flourishing riparian vegetation indicating
a wet riverbed; (c) transition from a wet to a dry streambed condition suggested by a colour change
from vivid green to light brown.

In particular, Figure 4a,b refers to wet river conditions evidenced by water within the
riverbed or rich riparian vegetation. On the contrary, Figure 4c shows the transition from a
wet to a dry condition marked by different riverbed colours. Thus, the visual survey of the
Canale Reale River during summertime has allowed us to verify that:

(i) the riverbed is virtually dry from the upstream spring (S) until the first effluent
discharge location of the treatment plant of FF;

(ii) a first wet stretch is visible from the discharge location of FF downstream for about
10.9 km (stretch #1 in Figure 5). Given the short distance between the FF and CM discharge
points, in the following computational steps, they have been treated as a unique location,
positioned in FF and delivering a total effluent discharge equal to the sum of the two;
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(iii) a second dry stretch, about 4.4 km long, follows stretch #1, down to the La
discharge location (stretch #2 in Figure 5);

(iv) a new wet stretch of 7.2 km, fed by the La effluent is then visible (stretch #3 in
Figure 5).
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(v) the riverbed turns into dry conditions from the ending section of stretch #3 until
the Ca effluent discharge point, located a few hundred meters upstream from the river
outlet. Given the short distance of such a discharge point from the river outlet and the
concrete sealing of the channel bottom, the released flow quickly runs to the sea making
the potential transmission losses almost negligible.

Based on the physical system defined above, the proposed methodology allowed for
the estimation of a range of potential transmission loss values to be assigned to the whole
Canale Reale River bed.

Finally, the knowledge of the riverbed potential transmission losses has been exploited
for improving the hydrological characterization and the assessment of the water balance
components in the study area, throughout a given mean water year.

In particular, the average Flow Duration Curves (FDCs), obtained by a daily rain-fall-
runoff model application for the period 2005–2021 [69], have been combined with the above
estimated potential transmission losses. This final step enabled us to make some inferences
about the significance of the WWTP outflows’ contribution to the scarce natural river
discharge as well as about the river’s potential contribution to the groundwater recharge.

The next section reports a detailed description of the results of these methodological steps.

4. Results and Discussion

Coherently with the computational steps of the proposed methodology, and neglecting
the evaporation loss in Equation (2), two values of KRB have been first calculated, one per
river wet stretch. Table 2 reports the values of KRB besides the position and flow rates of the
four WTTPs’ discharges into the Canale Reale River, as well as the values of the parameters
used in Equation (2).

Table 2. Relevant distances of wastewater treatment plants (WWTPs) discharge points from the
river outlet, flow rates, and channel features used for the estimation of average riverbed hydraulic
conductivity. FF = Francavilla Fontana; CM = Ceglie Messapica; La = Latiano; Ca = Carovigno.
Lw = length of the downstream wet stretch; Bw = mean width of the downstream wet stretch.
(*) Given the short distance between the FF and CM effluent discharge location, they have been
treated as a unique point, positioned in FF, with a total effluent discharge equal to the sum of the two.

WTTP
Distance from

the River
Outlet

Average Qww (July) Average Qww (July) Lw Bw KRB (Equation (2))

(km) (m3/d) (m3/s) (m) (m) (m3/s)

FF (*) 42.5 4326 0.050
10,900

2.5
3.72 × 10−6

CM (*) 40.3 4439 0.051 2.5

La 26.5 1737 0.020 7180 2.5 1.12 × 10−6

Ca 1.3 7795 0.090 1300 2.5 -

The estimated KRB values are in agreement with the range of values proposed in the
literature (see Section 2.3). Particularly, the higher value obtained for stretch #1 is consistent
considering that this latter river portion predominantly crosses the CoG formation. Even
being of the same order of magnitude, a slightly lower value of KRB has been estimated for
stretch #3, where the river equally crosses both the TMD and CoG formations.

Moving to the next computational step, the maximum, average, and minimum TLP
values have been estimated as spatially averaged KRB along the whole river, based on
Equation (3).

Minimum and maximum values have been simply calculated by assuming the KRB
values of the stretches #1 (KRB1) and #3 (KRB3) for the whole river length (i.e., 42.5 km),
respectively.
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Conversely, the average TLP value has been calculated by weighting KRB1 and KRB3 over
to the respective river stretch length. Table 3 reports the resulting TLP values ranging from
1.19 × 10−1 m3/s to 3.95 × 10−1 m3/s while the average TLP value is 2.23 × 10−1 m3/s.

Table 3. Estimated minimum, average and maximum values of the potential transmission losses
(TLP) along the Canale Reale River.

KRB River Sector Length TLP

(m/s) (m) (m3/s)

minimum KRB3 = 1.12 × 10−6 42,500 1.19 × 10−1

average
KRB3 = 1.12 × 10−6 16,000

2.23 × 10−1
KRB1 = 3.72 × 10−6 26,500

maximum KRB1 = 3.72 × 10−6 42,500 3.95 × 10−1

The range of estimated TLP values can be seen as the uncertainty related to the
initial assumptions of the proposed method. Considering the average TLP and the related
uncertainty in the water balance estimation should provide a range of possible infiltrating
water volumes.

Such a task has been carried out by overlapping the estimated TLP to the FDCs of the
Canale Reale River, obtained by rainfall-runoff modelling [69] (Figure 6). This allowed for
assessing a sort of Transmission Loss Duration Curves (TLDC) indicating the infiltration
during an average hydrological year. In particular, Figure 6 shows two river flow scenarios:
scenario #1, which considers only the natural flow due to the rainfall-runoff processes
(Figure 6a), and scenario #2, where the discharge from the WWTPs has been added to the
natural flow (Figure 6b). This allowed us to approximately establish how much and for
how long the infiltration actually takes place during an average hydrological year along
the whole river course in both scenarios.

The two scenarios differently perform during an average year in terms of both river
flow duration and transmission losses. In particular, the FDC curves of scenario #1 (blue
line in Figure 6a) indicate that the river is wet between 120 and 225 days per year, depending
on the different TLP values. On the contrary, the same curve of scenario #2 (Figure 6b)
evidences a wet riverbed for a period from 150 to the whole year, with streamflow never
lower than 0.121 m3/s. In other words, such results prove the WWTPs treated discharges
guarantee a wet riverbed during the whole year, strongly supporting the water-dependent
habitat along the river banks.

Figure 6 also shows the estimated TLDCs. These curves describe the average (orange
line), maximum (yellow), and minimum (grey) estimated channel transmission loss due to
the different TLP values, as reported in Table 2. The two plots in Figure 6 reveal that as long
as the TLDCs lie below the corresponding FDCs, the river flow rate guarantees a constant
transmission loss equal to the TLP value. However, in such a condition, part of the flow
rate continues to run into the riverbed. As soon as the TLDC crosses the FDC, the river bed
becomes dry, since the flow rate fully infiltrates with a decreasing rate of less than TLP.

The timing of such a circumstance change based on the considered scenario and TLP
value. So, considering the maximum estimated TLP value in scenario #1, the river flow rate
guarantees at the same time a transmission loss equal to TLP and a residual discharge at
the river mouth for about 120 days. Otherwise, considering the minimum TLP value in
scenario #2, the transmission loss, even being relatively small, is guaranteed during the
whole year, together with a residual flow rate at the river mouth.
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Figure 6. Flow (blue line) and transmission loss duration curves (yellow, orange and grey) of the
Canale Reale River. (a) scenario #1: Q = simulated rainfall-runoff, (b) scenario #2: Q = daily discharge
from the four WWTPs outlets summed to the simulated rainfall-runoff.

A yearly-based assessment of the river water balance has been finally carried out
for both the proposed scenarios. The total water volume drained by the Canale Reale
River resulted equal to 19.20 Mm3/yr and 23.02 Mm3/yr for scenarios #1 and #2, respec-
tively. Consequently, by difference, the related contribution of the WWTPs’ discharge is
3.82 Mm3/yr. Similarly, the yearly total infiltrated volumes and the related fractions due to
the natural flow rate and the WWTPs’ discharge, have been estimated for each of the three
TLP values (Table 4).
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Table 4. Estimated mean annual volumes of riverbed transmission losses for minimum, average,
and maximum TLP values. Fractions attributable to natural flow (i.e., rainfall-runoff) and WWTP
discharge, respectively.

Transmission Losses
(
Mm3/yr

)
Minimum TLP Average TLP Maximum TLP

Scenario #1 #2 #1 #2 #1 #2

Total annual volume 2.76 3.75 4.46 6.25 6.58 8.97

WWTP’s contribution 0.00 3.75 0.00 3.82 0.00 3.82

Natural contribution 2.76 0.00 4.46 2.44 6.58 5.16

In particular, the first row of Table 3 shows the total volumes of transmission losses
through the channel. As expected, these values point out that the infiltrated flow rates
for scenario #2 are always larger than those corresponding in scenario #1. Furthermore,
moving from the minimum to the maximum TLP value, the gap between these values
increases from 1.00 Mm3/yr to about 2.5 Mm3/yr. Practically, this result confirms that
the increasing river flow rates due to WWTP discharge potentially improve, not only the
river’s ecological sustainability by reducing the dry riverbed periods, but it also contributes
to enhanced groundwater recharge.

5. Conclusions

Streamflow transmission losses through ephemeral streams are believed to be a major
source of groundwater recharge mainly in arid areas. Although this phenomenon results
in a flow rate reduction at the river mouth, it can produce doubtless advantages for the
underground reservoir. Several studies proved that the discharge of treated effluents into
surface watercourses contributes to satisfactorily preserving the environmental baseflow
in the river while guaranteeing a good groundwater recharge rate through losing stream
infiltration. Determining how to quantify the SW-GW balance the RLWB method, based
on measured time-series of flow rates at two river cross-sections, is often referred to in the
literature. Unfortunately, ephemeral water streams often lack gauging sections and the
only available information often consists of sporadic and erratic on-site measures.

In this paper, an original approach to evaluate the transmission loss from surface water
has been proposed based on an adaptation of the RLWB method and aimed at overcoming
the lack of structured river flow monitoring in ephemeral watercourses. The proposed
method has been applied and tested on the Canale Reale River case study, an ungauged,
ephemeral watercourse, located in south-eastern Italy. The method application, moving
from a visual survey of the summer season’s airborne images of the river when the flow rate
is only due to treated wastewater effluents discharged at different river locations, allowed
for identifying wet and dry stretches along its course.

Assuming that the entire treated effluent flow rate filtrates through the wet stretch
riverbed allowed for the estimation of a range of vertical hydraulic conductivities along
the river and then the related potential transmission losses values. The Canale Reale
River resulted then characterized by a vertical hydraulic conductivity ranging from about
1.12 × 10−6 m/s to 3.72 × 10−6 m/s, and a potential transmission loss from about
1.19 × 10−1 m3/s to 3.95 × 10−1 m3/s.

Combining the TLP with the flow duration curves of the Canale Reale River, some
transmission loss duration curves have been assessed describing the temporal regime of
the streamflow transmission losses. Two scenarios have been considered for flow duration
curves: the first considers only a natural flow rate within the river, whilst the second
refers to the more favourable case of natural flow integrated by the WTTPs’ discharge into
the riverbed.

Finally, the method allowed for the estimation of the average annual volumes of
riverbed transmission losses per scenario, equal to 4.46 Mm3/yr and 6.25 Mm3/yr, respec-
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tively, and the contribution of both natural flow rates within the river and treated effluents
discharged into it.

In conclusion, the proposed method performs well in characterizing the “losing stream”
conditions in ephemeral, ungauged watercourses allowing for estimating the transmission
losses and the related timing during an average hydrologic year.

Further development of this study will address quantitative and qualitative issues
related to:

(i) using WWTP’s treated effluents for improving the environmental status of ephemeral
surface watercourses;

(ii) refining the proposed methodology to improve the assessment of the net ground-
water recharge;

(iii) evaluating the suitable use of WTTP’s treated effluents as an “in-channel MAR”
tool for groundwater replenishment and seawater intrusion contrast;

(iv) improving the method reliability by introducing uncertainty analysis.
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