Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (222)

Search Parameters:
Keywords = enzyme-mimicking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 10170 KB  
Review
Bio-Inspired Photocatalytic Nitrogen Fixation: From Nitrogenase Mimicry to Advanced Artificial Systems
by Wenpin Xia, Kaiyang Zhang, Jiewen Hou, Huaiyu Fu, Mingming Gao, Hui-Zi Huang, Liwei Chen, Suqin Han, Yen Leng Pak, Hongyu Mou, Xing Gao and Zhenbin Guo
Nanomaterials 2025, 15(19), 1485; https://doi.org/10.3390/nano15191485 - 29 Sep 2025
Viewed by 519
Abstract
Photocatalytic nitrogen fixation under ambient conditions offers a sustainable alternative to the energy-intensive Haber–Bosch process, yet remains limited by the inertness of N≡N bonds and sluggish multi-electron/proton transfer kinetics. Nature’s nitrogenase enzymes, featuring the FeMo cofactor and ATP-driven electron cascades, inspire a new [...] Read more.
Photocatalytic nitrogen fixation under ambient conditions offers a sustainable alternative to the energy-intensive Haber–Bosch process, yet remains limited by the inertness of N≡N bonds and sluggish multi-electron/proton transfer kinetics. Nature’s nitrogenase enzymes, featuring the FeMo cofactor and ATP-driven electron cascades, inspire a new generation of artificial systems capable of mimicking their catalytic precision and selectivity. This review systematically summarizes recent advances in bio-inspired photocatalytic nitrogen reduction, focusing on six key strategies derived from enzymatic mechanisms: Fe–Mo–S active site reconstruction, hierarchical electron relay pathways, ATP-mimicking energy modules, defect-induced microenvironments, interfacial charge modulation, and spatial confinement engineering. While notable progress has been made in enhancing activity and selectivity, challenges remain in dynamic regulation, mechanistic elucidation, and system-level integration. Future efforts should prioritize operando characterization, adaptive interface design, and device-compatible catalyst platforms. By abstracting nature’s catalytic logic into synthetic architectures, biomimetic photocatalysis holds great promise for scalable, green ammonia production aligned with global decarbonization goals. Full article
Show Figures

Graphical abstract

42 pages, 5242 KB  
Review
The Mechanisms of Lead Toxicity in Living Organisms
by Anastasiia Generalova, Slavena Davidova and Galina Satchanska
J. Xenobiot. 2025, 15(5), 146; https://doi.org/10.3390/jox15050146 - 11 Sep 2025
Viewed by 1557
Abstract
Lead (Pb) is a non-essential, toxic heavy metal with no known biological function that has caused widespread environmental contamination throughout human history. Pb toxicity represents one of the most persistent environmental health challenges, with no safe exposure threshold identified. The metal demonstrates remarkable [...] Read more.
Lead (Pb) is a non-essential, toxic heavy metal with no known biological function that has caused widespread environmental contamination throughout human history. Pb toxicity represents one of the most persistent environmental health challenges, with no safe exposure threshold identified. The metal demonstrates remarkable persistence in biological systems, with approximately 90% of it stored in bone tissue for decades, mimicking calcium due to its similar ionic properties. Contemporary contamination primarily stems from mining activities, battery manufacturing, electronic waste recycling, and deteriorating infrastructure. Pb enters organisms through multiple pathways and causes severe health impacts across all biological systems, with particularly devastating neurodevelopmental and bone effects in children and cardiovascular and reproductive consequences in adults. On a molecular level, Pb disrupts cellular processes through ion mimicry, replacing essential metals in enzymes and proteins and leading to mitochondrial dysfunction, oxidative stress, DNA damage, and epigenetic modifications. This review examines the sources of Pb pollution and its toxicological impacts on bacteria, fungi, plants, animals, and humans. It explores the molecular mechanisms underlying these effects, including neuroinflammation, genotoxicity, and cell death pathways. The paper considers current approaches for Pb removal from contaminated environments and therapeutic interventions for Pb poisoning. Full article
Show Figures

Graphical abstract

19 pages, 3732 KB  
Article
Development, Functional Characterization, and Matrix Effectors Dynamics in 3D Spheroids of Triple-Negative Breast Cancer Cells
by Nikolaos E. Koletsis, Sylvia Mangani, Marco Franchi, Zoi Piperigkou and Nikos K. Karamanos
Cells 2025, 14(17), 1351; https://doi.org/10.3390/cells14171351 - 30 Aug 2025
Viewed by 2246
Abstract
Breast cancer (BC) remains a leading cause of cancer-related mortality in women. Extracellular matrix (ECM) remodeling is a critical modulator of tumor invasion and metastasis. Three-dimensional (3D) cell culture models have been proposed as advanced systems better mimicking the tumor microenvironment (TME), potentially [...] Read more.
Breast cancer (BC) remains a leading cause of cancer-related mortality in women. Extracellular matrix (ECM) remodeling is a critical modulator of tumor invasion and metastasis. Three-dimensional (3D) cell culture models have been proposed as advanced systems better mimicking the tumor microenvironment (TME), potentially offering enhanced insights into underlying mechanisms compared to conventional two-dimensional (2D) cultures. This study highlights how BC cells develop metastatic potential and tumor progression independently from ECM contact using advanced 3D spheroid culture models compared to traditional 2D cultures in triple-negative breast cancer (TNBC) cell lines. Spheroids were formed using ultra-low adhesion plates, and their morphological and functional properties were assessed via phase-contrast and scanning electron microscopy (SEM), along with functional assays. Both cell lines formed compact spheroids exhibiting mesenchymal-to-epithelial transition (MET) characteristics. Functional assays showed enhanced cell migration and dissemination of spheroid-derived cancer cells. Gene expression profiling revealed increased expression of ECM remodeling enzymes, cell surface receptors, and adhesion molecules in 3D cultures compared to 2D. MicroRNA analysis highlighted distinct regulatory patterns specifically associated with metastasis and epithelial-to-mesenchymal transition (EMT). These findings demonstrate that 3D spheroid models effectively recapitulate the complexity of TNBC, providing valuable insights into ECM dynamics, epigenetic regulation, and metastatic behavior and potentially guiding improved therapeutic strategies. Full article
(This article belongs to the Special Issue Role of Extracellular Matrix in Cancer and Disease)
Show Figures

Graphical abstract

21 pages, 928 KB  
Proceeding Paper
Advances in Enzyme-Based Biosensors: Emerging Trends and Applications
by Kerolina Sonowal, Partha Protim Borthakur and Kalyani Pathak
Eng. Proc. 2025, 106(1), 5; https://doi.org/10.3390/engproc2025106005 - 29 Aug 2025
Viewed by 2649
Abstract
Enzyme-based biosensors have emerged as a transformative technology, leveraging the specificity and catalytic efficiency of enzymes across various domains, including medical diagnostics, environmental monitoring, food safety, and industrial processes. These biosensors integrate biological recognition elements with advanced transduction mechanisms to provide highly sensitive, [...] Read more.
Enzyme-based biosensors have emerged as a transformative technology, leveraging the specificity and catalytic efficiency of enzymes across various domains, including medical diagnostics, environmental monitoring, food safety, and industrial processes. These biosensors integrate biological recognition elements with advanced transduction mechanisms to provide highly sensitive, selective, and portable solutions for real-time analysis. This review explores the key components, detection mechanisms, applications, and future trends in enzyme-based biosensors. Artificial enzymes, such as nanozymes, play a crucial role in enhancing enzyme-based biosensors by mimicking natural enzyme activity while offering improved stability, cost-effectiveness, and scalability. Their integration can significantly boost sensor performance by increasing the catalytic efficiency and durability. Additionally, lab-on-a-chip and microfluidic devices enable the miniaturization of biosensors, allowing for the development of compact, portable devices that require minimal sample volumes for complex diagnostic tests. The functionality of enzyme-based biosensors is built on three essential components: enzymes as biocatalysts, transducers, and immobilization techniques. Enzymes serve as the biological recognition elements, catalyzing specific reactions with target molecules to produce detectable signals. Transducers, including electrochemical, optical, thermal, and mass-sensitive types, convert these biochemical reactions into measurable outputs. Effective immobilization strategies, such as physical adsorption, covalent bonding, and entrapment, enhance the enzyme stability and reusability, enabling consistent performance. In medical diagnostics, they are widely used for glucose monitoring, cholesterol detection, and biomarker identification. Environmental monitoring benefits from these biosensors by detecting pollutants like pesticides, heavy metals, and nerve agents. The food industry employs them for quality control and contamination monitoring. Their advantages include high sensitivity, rapid response times, cost-effectiveness, and adaptability to field applications. Enzyme-based biosensors face challenges such as enzyme instability, interference from biological matrices, and limited operational lifespans. Addressing these issues involves innovations like the use of synthetic enzymes, advanced immobilization techniques, and the integration of nanomaterials, such as graphene and carbon nanotubes. These advancements enhance the enzyme stability, improve sensitivity, and reduce detection limits, making the technology more robust and scalable. Full article
Show Figures

Figure 1

22 pages, 2821 KB  
Review
Beyond Green: The Therapeutic Potential of Chlorophyll and Its Derivatives in Diabetes Control
by Giovanni Sartore, Giuseppe Zagotto and Eugenio Ragazzi
Nutrients 2025, 17(16), 2653; https://doi.org/10.3390/nu17162653 - 15 Aug 2025
Viewed by 3582
Abstract
Chlorophyll, the green pigment essential for photosynthesis, abundantly found in green vegetables and algae, has attracted growing scientific interest for its potential therapeutic effects, particularly in diabetes management. Recent research highlighted that chlorophyll and its derivatives may beneficially influence glucose metabolism and oxidative [...] Read more.
Chlorophyll, the green pigment essential for photosynthesis, abundantly found in green vegetables and algae, has attracted growing scientific interest for its potential therapeutic effects, particularly in diabetes management. Recent research highlighted that chlorophyll and its derivatives may beneficially influence glucose metabolism and oxidative stress, key factors in diabetes. This review examines current knowledge on how chlorophyll compounds could aid diabetes control. Chlorophyll and its derivatives appear to support glucose regulation primarily through actions in the gastrointestinal tract. They modulate gut microbiota, improve glucose tolerance, reduce inflammation, and alleviate obesity-related markers. While chlorophyll itself does not directly inhibit digestive enzymes like α-glucosidase, its derivatives such as pheophorbide a, pheophytin a, and pyropheophytin a may slow carbohydrate digestion, acting as α-amylase and α-glucosidase inhibitors, reducing postprandial glucose spikes. Additionally, chlorophyll enhances resistant starch content, further controlling glucose absorption. Beyond digestion, chlorophyll derivatives show promise in inhibiting glycation processes, improving insulin sensitivity through nuclear receptor modulation, and lowering oxidative stress. However, some compounds pose risks due to photosensitizing effects and toxicity, warranting careful consideration. Chlorophyllin, a stable semi-synthetic derivative, also shows potential in improving glucose and lipid metabolism. Notably, pheophorbide a demonstrates insulin-mimetic activity by stimulating glucose uptake via glucose transporters, offering a novel therapeutic avenue. Overall, the antioxidant, anti-inflammatory, and insulin-mimicking properties of chlorophyll derivatives suggest a multifaceted approach to diabetes management. While promising, these findings require further clinical validation to establish effective therapeutic applications. Full article
(This article belongs to the Special Issue Diet and Nutrition: Metabolic Diseases (2nd Edition))
Show Figures

Graphical abstract

16 pages, 4197 KB  
Review
Conformational Dynamics and Structural Transitions of Arginine Kinase: Implications for Catalysis and Allergen Control
by Sung-Min Kang
Life 2025, 15(8), 1248; https://doi.org/10.3390/life15081248 - 6 Aug 2025
Viewed by 702
Abstract
Arginine kinase is a key phosphagen kinase in invertebrates that facilitates rapid ATP regeneration by reversibly transferring phosphate groups between phosphoarginine and ADP. Structural studies have shown that the enzyme adopts distinct conformations in its ligand-free and ligand-bound states, known as the “open” [...] Read more.
Arginine kinase is a key phosphagen kinase in invertebrates that facilitates rapid ATP regeneration by reversibly transferring phosphate groups between phosphoarginine and ADP. Structural studies have shown that the enzyme adopts distinct conformations in its ligand-free and ligand-bound states, known as the “open” and “closed” forms, respectively. These conformational changes are crucial for catalytic activity, enabling precise positioning of active-site residues and loop closure during phosphoryl transfer. Transition-state analog complexes have provided additional insights by mimicking intermediate states of catalysis, supporting the functional relevance of the open/closed structural model. Furthermore, studies across multiple species reveal how monomeric and dimeric forms of arginine kinase contribute to its allosteric regulation and substrate specificity. Beyond its metabolic role, arginine kinase is also recognized as a major allergen in crustaceans. Its structural uniqueness and absence in vertebrates make it a promising candidate for selective drug targeting. By integrating crystallographic data with functional context, this review highlights conserved features and species-specific variations of arginine kinase that may inform the design of inhibitors. Such molecules have the potential to serve both as antiparasitic agents and as novel therapeutics to manage crustacean-related allergic responses in humans. Full article
(This article belongs to the Section Proteins and Proteomics)
Show Figures

Figure 1

16 pages, 2230 KB  
Article
Three-Dimensional-Printed Biomimetic Scaffolds for Investigating Osteoblast-Like Cell Interactions in Simulated Microgravity: An In Vitro Platform for Bone Tissue Engineering Research
by Eleonora Zenobi, Giulia Gramigna, Elisa Scatena, Luca Panizza, Carlotta Achille, Raffaella Pecci, Annalisa Convertino, Costantino Del Gaudio, Antonella Lisi and Mario Ledda
J. Funct. Biomater. 2025, 16(8), 271; https://doi.org/10.3390/jfb16080271 - 24 Jul 2025
Viewed by 1126
Abstract
Three-dimensional cell culture systems are relevant in vitro models for studying cellular behavior. In this regard, this present study investigates the interaction between human osteoblast-like cells and 3D-printed scaffolds mimicking physiological and osteoporotic bone structures under simulated microgravity conditions. The objective is to [...] Read more.
Three-dimensional cell culture systems are relevant in vitro models for studying cellular behavior. In this regard, this present study investigates the interaction between human osteoblast-like cells and 3D-printed scaffolds mimicking physiological and osteoporotic bone structures under simulated microgravity conditions. The objective is to assess the effects of scaffold architecture and dynamic culture conditions on cell adhesion, proliferation, and metabolic activity, with implications for osteoporosis research. Polylactic acid scaffolds with physiological (P) and osteoporotic-like (O) trabecular architectures were 3D-printed by means of fused deposition modeling technology. Morphometric characterization was performed using micro-computed tomography. Human osteoblast-like SAOS-2 and U2OS cells were cultured on the scaffolds under static and dynamic simulated microgravity conditions using a rotary cell culture system (RCCS). Scaffold biocompatibility, cell viability, adhesion, and metabolic activity were evaluated through Bromodeoxyuridine incorporation assays, a water-soluble tetrazolium salt assay, and an enzyme-linked immunosorbent assay of tumor necrosis factor-α secretion. Both scaffold models supported osteoblast-like cell adhesion and growth, with an approximately threefold increase in colonization observed on the high-porosity O scaffolds under dynamic conditions. The dynamic environment facilitated increased surface interaction, amplifying the effects of scaffold architecture on cell behavior. Overall, sustained cell growth and metabolic activity, together with the absence of detectable inflammatory responses, confirmed the biocompatibility of the system. Scaffold microstructure and dynamic culture conditions significantly influence osteoblast-like cell behavior. The combination of 3D-printed scaffolds and a RCCS bioreactor provides a promising platform for studying bone remodeling in osteoporosis and microgravity-induced bone loss. These findings may contribute to the development of advanced in vitro models for biomedical research and potential countermeasures for bone degeneration. Full article
(This article belongs to the Special Issue Functional Biomaterial for Bone Regeneration)
Show Figures

Graphical abstract

32 pages, 10334 KB  
Review
Advances in Nanozyme Catalysis for Food Safety Detection: A Comprehensive Review on Progress and Challenges
by Renqing Yang, Zeyan Liu, Haili Chen, Xinai Zhang, Qing Sun, Hany S. El-Mesery, Wenjie Lu, Xiaoli Dai and Rongjin Xu
Foods 2025, 14(15), 2580; https://doi.org/10.3390/foods14152580 - 23 Jul 2025
Cited by 1 | Viewed by 1282
Abstract
The prosperity of enzyme-mimicking catalysis has promoted the development of nanozymes with diversified activities, mainly including catalase-like, oxidase-like, peroxidase-like, and superoxide dismutase-like characteristics. Thus far, the reported nanozymes can be roughly divided into five categories, comprising noble metals, metal oxides, carbon-based nanostructures, metal–organic [...] Read more.
The prosperity of enzyme-mimicking catalysis has promoted the development of nanozymes with diversified activities, mainly including catalase-like, oxidase-like, peroxidase-like, and superoxide dismutase-like characteristics. Thus far, the reported nanozymes can be roughly divided into five categories, comprising noble metals, metal oxides, carbon-based nanostructures, metal–organic frameworks, and covalent organic frameworks. This review systematically summarizes the research progress of nanozymes for improving catalytic activity toward sensing applications in food safety monitoring. Specifically, we highlight the unique advantages of nanozymes in enhancing the performance of colorimetric, fluorescence, and electrochemical sensors, which are crucial for detecting various food contaminants. Moreover, this review addresses the challenges faced in food safety detection, such as the need for high sensitivity, selectivity, and stability under complex food matrices. Nanozymes offer promising solutions by providing robust catalytic activity, adjustable enzyme-like properties, and excellent stability, even in harsh environments. However, practical implementation challenges remain, including the need for a deeper understanding of nanozyme catalytic mechanisms, improving substrate selectivity, and ensuring long-term stability and large-scale production. By focusing on these aspects, this review aims to provide a comprehensive overview of the current state of nanozyme-based sensors for food safety detection and to inspire future research directions. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Graphical abstract

14 pages, 4866 KB  
Article
Effect of Ohmic Heating Pretreatment on Enzyme Production by Solid-State Fermentation of Brewer’s Spent Grain
by Bruna F. Silva, Luís Machado, Ana M. Fernandes, Ricardo N. Pereira and Isabel Belo
Fermentation 2025, 11(8), 421; https://doi.org/10.3390/fermentation11080421 - 22 Jul 2025
Viewed by 888
Abstract
Solid-state fermentation (SSF) involves the growth of microorganisms on solid substrates, mimicking natural environments of many species. Due to sustainability concerns, transforming agro-industrial by-products into value-added products through SSF has been increasingly studied. Brewer’s spent grain (BSG), the main by-product of beer production, [...] Read more.
Solid-state fermentation (SSF) involves the growth of microorganisms on solid substrates, mimicking natural environments of many species. Due to sustainability concerns, transforming agro-industrial by-products into value-added products through SSF has been increasingly studied. Brewer’s spent grain (BSG), the main by-product of beer production, mostly consists of barley grain husks, making BSG a great support for microorganism cultivation. Although autoclaving remains the standard sterilization and pretreatment method of substrates, electric field technologies and their attendant ohmic heating (OH) have great potential as an alternative technology. In the present work, pretreatment of BSG by OH was explored in SSF with Aspergillus niger to produce commercially valuable enzymes. OH favored the solubilization of phenolic compounds, total protein, and reducing sugars significantly higher than autoclaving. SSF of treated BSG led to the production of lignocellulosic enzymes, with xylanases being the most active, reaching 540 U/g, a 1.5-fold increase in activity compared to autoclaved BSG. Protease activity was also improved 1.6-fold by OH, resulting in 49 U/g. Our findings suggest that OH treatment is an effective alternative to autoclaving and that its integration with SSF is a sustainable strategy to enhance by-product valorization through enzyme production with many industrial applications, according to circular economy guidelines. Full article
Show Figures

Figure 1

27 pages, 2382 KB  
Review
Advances of Nanozyme-Driven Multimodal Sensing Strategies in Point-of-Care Testing
by Ziyi Chang, Qingjie Fu, Mengke Wang and Demin Duan
Biosensors 2025, 15(6), 375; https://doi.org/10.3390/bios15060375 - 10 Jun 2025
Cited by 4 | Viewed by 2196
Abstract
Point-of-care testing (POCT) has garnered widespread attention due to its rapid, convenient, and efficient detection capabilities, particularly playing an increasingly pivotal role in medical diagnostics and significantly improving the efficiency and quality of healthcare services. Nanozymes, as novel enzyme-mimicking materials, have emerged as [...] Read more.
Point-of-care testing (POCT) has garnered widespread attention due to its rapid, convenient, and efficient detection capabilities, particularly playing an increasingly pivotal role in medical diagnostics and significantly improving the efficiency and quality of healthcare services. Nanozymes, as novel enzyme-mimicking materials, have emerged as a research hotspot owing to their superior catalytic performance, low cost, and robust stability. This review provides a systematic overview of the fundamental characteristics and classifications of nanozymes, along with various sensing strategies employed in POCT applications, colorimetric, electrochemical, fluorescent, chemiluminescent, and surface-enhanced Raman scattering (SERS)-based approaches. Furthermore, this review highlights innovative designs that enhance the sensitivity and accuracy of POCT across multiple domains, such as biomarker detection, environmental monitoring, and food safety analysis, thereby offering novel perspectives for the practical implementation of nanozymes in point-of-care diagnostics. Finally, this review analyzes current challenges in nanozyme-based POCT systems, including limitations in optimizing catalytic activity, ensuring nanozyme homogeneity, and achieving large-scale production, while proposing future development trajectories. Full article
(This article belongs to the Special Issue Advances in Nanozyme-Based Biosensors)
Show Figures

Figure 1

15 pages, 2262 KB  
Article
Superoxide Scavenging by Capers and Kaempferol, Measured by Hydrodynamic Voltammetry, Shows Kaempferol Synergistic Action with Vitamin C; Density Functional Theory (DFT) Results Support Experimental Kaempferol Catalytic Behavior Similar to Superoxide Dismutases (SODs)
by Miriam Rossi, Stuart Belli, Paloma Velez, Alessio Caruso, Camilla Morresi, Tiziana Bacchetti and Francesco Caruso
Molecules 2025, 30(11), 2346; https://doi.org/10.3390/molecules30112346 - 27 May 2025
Viewed by 747
Abstract
In this work, we measured the antioxidant capacity of capers (Capparis spinosa L.) and an important component, kaempferol, as scavengers of the superoxide radical anion using hydrodynamic voltammetry with a rotating ring disk electrode (RRDE). Comparing our electrochemical results to other natural [...] Read more.
In this work, we measured the antioxidant capacity of capers (Capparis spinosa L.) and an important component, kaempferol, as scavengers of the superoxide radical anion using hydrodynamic voltammetry with a rotating ring disk electrode (RRDE). Comparing our electrochemical results to other natural products studied using this method, this work demonstrates that kaempferol is a stronger antioxidant than vitamin C, whereas caper extract has weaker antioxidant capability than olive oil. We also investigated the synergistic scavenging relationship between vitamin C and kaempferol and found it to be potent, as all the available superoxide radicals were consumed in the presence of both compounds. Such a dramatic RRDE result was observed for the first time in our laboratory. We then utilized computational Density Functional Theory (DFT) methods to establish a viable mechanism, reminiscent of that exhibited by superoxide dismutase (SOD) enzymes, for the scavenging behavior of kaempferol. In the enzymatic reaction, two molecules of the superoxide radical anion with the assistance of two protons are disproportioned into one molecule of hydrogen peroxide and one oxygen molecule. Our DFT results show kaempferol mimicking superoxide dismutase (SOD) action when one kaempferol molecule reacts with two superoxide radicals and two protons (which can be provided by ascorbic acid); i.e., kaempferol acts as a catalyst that is restored after a cycle of superoxide scavenging. This mechanism is consistent with our experimental RRDE results. Full article
Show Figures

Graphical abstract

17 pages, 2402 KB  
Article
Effects of Different Vegetation Types on Soil Quality in Golden Huacha (Camellia petelotii) National Nature Reserve
by Yong Jiang, Sheng Xu, Weiwei Gu, Siqi Wu, Jian Qiu, Wenxu Zhu and Nanyan Liao
Forests 2025, 16(5), 865; https://doi.org/10.3390/f16050865 - 21 May 2025
Viewed by 494
Abstract
Natural and planted forests differentially regulate soil quality through vegetation–soil interactions. The effects of four types of planting covers on soil nutrients, enzyme activities, and microbial communities in the Guangxi Camellia nitidissima National Nature Reserve were studied, revealing the multi-dimensional influences of natural [...] Read more.
Natural and planted forests differentially regulate soil quality through vegetation–soil interactions. The effects of four types of planting covers on soil nutrients, enzyme activities, and microbial communities in the Guangxi Camellia nitidissima National Nature Reserve were studied, revealing the multi-dimensional influences of natural (broadleaf, shrubland) and planted forests (bamboo, pine) on soil quality. Surface soils (0–10 cm depth) were characterized for physicochemical properties (pH, TC, TN, NO3-N, AP), enzyme activities (α-amylase, urease, phosphatase, β-glucosidase), and microbial composition (using 16S rRNA and ITS region sequencing). Mantel tests and PLS–PM modeling were employed to investigate interactions among vegetation, soil variables, and microbes. Natural forests exhibited higher pH, nitrate nitrogen, and enzymatic activities (urease, phosphatase, β-glucosidase) alongside enhanced carbon–nitrogen accumulation and reduced acidification. Planted forests showed elevated available phosphorus and nutrient supply but lower organic matter retention. Microbial communities displayed higher similarity within natural forests, with fungal composition strongly linked to total carbon/nitrogen (p < 0.05). Vegetation type positively influenced bacterial diversity but negatively affected fungal communities. Natural forests maintained critical soil–microbe–plant interactions supporting ecosystem resilience through carbon–nitrogen cycling, while planted forests fostered divergent microbial functionality despite short-term nutrient benefits. These findings underscore natural forests’ unique role in preserving ecological stability and reveal fundamental limitations of artificial systems in mimicking microbially-mediated biogeochemical processes. Conservation policy should prioritize the protection of natural forests while simultaneously integrating microbial community management with vegetation restoration efforts to enhance long-term ecosystem functionality and nutrient cycling efficiency. Full article
Show Figures

Figure 1

16 pages, 2704 KB  
Article
Unveiling the Reaction Pathway of Oxidative Aldehyde Deformylation by a MOF-Based Cytochrome P450 Mimic
by Zehua Luo, Wentian Zhou, Junying Chen and Yingwei Li
Catalysts 2025, 15(5), 436; https://doi.org/10.3390/catal15050436 - 29 Apr 2025
Viewed by 1111
Abstract
Understanding the reaction pathway of aldehyde deformylation catalyzed by natural enzymes has shown significance in developing synthetic methodologies and new catalysts in organic, biochemical, and medicinal chemistry. However, unlike other well-rationalized chemical processes catalyzed by cytochrome P450 (Cyt P450) superfamilies, the detailed mechanism [...] Read more.
Understanding the reaction pathway of aldehyde deformylation catalyzed by natural enzymes has shown significance in developing synthetic methodologies and new catalysts in organic, biochemical, and medicinal chemistry. However, unlike other well-rationalized chemical processes catalyzed by cytochrome P450 (Cyt P450) superfamilies, the detailed mechanism of the P450-catalyzed aldehyde deformylation is still controversial. Challenges lie in establishing synthetic models to decipher the reaction pathways, which normally are homogeneous systems for precisely mimicking the structure of the active sites in P450s. Herein, we report a heterogeneous Cyt P450 aromatase mimic based on a porphyrinic metal–organic framework (MOF) PCN-224. Through post-metalation of iron(II) triflate with the porphyrin unit, a five-coordinated FeII(Porp) compound could be afforded and isolated inside the resulting PCN-224(Fe) to mimic the heme active site in P450. This MOF-based P450 mimic could efficiently catalyze the oxidative deformylation of aldehydes to the corresponding ketones under room temperature using O2 as the sole oxidant and triethylamine as the electron source, analogous to the NADPH reductase. The catalyst could be completely recovered after the catalytic reaction without undergoing structural decomposition or compromising its reactivity, representing it as one of the most valid mimics of P450 aromatase from both the structural and functional aspects. A mechanistic study reveals a strong correlation between the catalytic activity and the Cα-H bond dissociation energy of the aldehyde substrates, which, in conjunction with various trapping experiments, confirms an unconventional mechanism initiated by hydrogen atom abstraction. Full article
(This article belongs to the Special Issue Recent Advances in Metal-Organic Framework Catalysts)
Show Figures

Figure 1

24 pages, 1654 KB  
Article
Clinical Study Support by Long-Term Stability Studies of Alpha1-Proteinase Inhibitor and Urea in Relevant Biological Matrices
by Andrea Engelmaier, Martin Zimmermann, Harald A. Butterweck and Alfred Weber
Pharmaceuticals 2025, 18(4), 572; https://doi.org/10.3390/ph18040572 - 14 Apr 2025
Cited by 1 | Viewed by 662
Abstract
Background/Objectives: According to recent guidelines, including the guideline on bioanalytical method validation issued by the European Medicine Agency, the stability of clinical analytes should be known. We summarize human α1-proteinase inhibitor (A1PI) and urea stability data in relevant matrices, as [...] Read more.
Background/Objectives: According to recent guidelines, including the guideline on bioanalytical method validation issued by the European Medicine Agency, the stability of clinical analytes should be known. We summarize human α1-proteinase inhibitor (A1PI) and urea stability data in relevant matrices, as these analytes are usually measured in clinical A1PI studies. Methods: Stability samples with appropriate A1PI concentrations were prepared in a citrated human reference plasma pool and a matrix mimicking bronchoalveolar lavage (BAL) solution. These samples were kept at −20 °C and −60 °C for up to 24 months. A1PI protein was measured with a nephelometric method and an enzyme-linked immunosorbent assay using paired commercially available polyclonal antibodies. A1PI elastase inhibitory activity was determined with an elastase complex formation immunosorbent assay that combines A1PI complex formation with a solid phase-immobilized elastase and immunological detection of the formed A1PI-elastase complex and urea in samples kept at −20 °C only with an enzymatic assay. Results: Overall, the stability criterion (100 ± 20%) was met for the analytes A1PI protein and A1PI activity at both temperatures during storage of BAL-mimicking and plasma samples for 15 and 24 months, respectively; urea was stable in both matrices at −20 °C for 18 months. Plasma samples showed smaller drops in concentration over storage time than BAL-mimicking samples. As expected, the reduction of A1PI elastase inhibitory activity was more pronounced than that of A1PI protein. Interestingly, the analyte concentration did not significantly influence the results in either of the sample matrices. Conclusions: The data confirmed the appropriate stability of the three analytes in the matrices of citrated plasma and BAL-mimicking samples for at least up to 15 months. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

17 pages, 6630 KB  
Article
The Effect of Ensiling on the Starch Digestibility Rate of Rehydrated Grain Silages in Pigs Depends on the Hardness of the Maize Hybrid
by Kristina Kljak, Darko Grbeša and Marija Duvnjak
Agriculture 2025, 15(7), 783; https://doi.org/10.3390/agriculture15070783 - 4 Apr 2025
Cited by 1 | Viewed by 753
Abstract
The aim of the present study was to determine the in vitro starch digestibility kinetics of rehydrated maize grain silages in pigs and to investigate the relationship between the in vitro starch digestibility rate and the physical properties of the mature grain. Grains [...] Read more.
The aim of the present study was to determine the in vitro starch digestibility kinetics of rehydrated maize grain silages in pigs and to investigate the relationship between the in vitro starch digestibility rate and the physical properties of the mature grain. Grains of seven commercial maize hybrids were harvested at physiological maturity, rehydrated, and ensiled with a commercial inoculant during different ensiling periods (0, 21, and 95 days) in five replicates using a completely randomized design. The starch digestibility rate was determined using first-order kinetics following an in vitro digestibility procedure mimicking the stomach and small intestine of pigs. The tested hybrids differed in their physical properties (test weight, kernel size, and density and hardness), digestion coefficients, and starch digestibility rate (p < 0.05). The starch digestibility rate increased with an increasing ensiling period, with average values of 0.588, 1.013, and 1.179 1/h for 0, 21, and 95 days of ensiling period, respectively. However, the effect of ensiling was more pronounced in hybrids with higher grain hardness, reaching a rate of 1.272 1/h in hybrids with higher grain hardness compared to 1.110 1/h in hybrids with lower grain hardness. In conclusion, ensiling results in higher availability of starch to digestive enzymes, and the duration of ensiling and hardness of the maize hybrid should be considered when formulating the pig diet. Full article
(This article belongs to the Special Issue Assessment of Nutritional Value of Animal Feed Resources)
Show Figures

Figure 1

Back to TopTop