Development, Functional Characterization, and Matrix Effectors Dynamics in 3D Spheroids of Triple-Negative Breast Cancer Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Cultures and Reagents
2.2. 3D Cell Cultures and Spheroids Development
2.3. Scanning Electron Microscopy
2.4. Spheroid Dissemination Assay
2.5. Wound Healing Assay
2.6. Spheroid Growth
2.7. RNA Extraction, cDNA Synthesis, and Real-Time qPCR
2.8. miRNA Screening
2.9. Bioinformatic Tools Describe
2.9.1. Kaplan–Meier Plotter
2.9.2. Human Protein Atlas
2.10. Statistical Analysis
3. Results
3.1. Morphology and Functional Characteristics
3.1.1. Spheroid Growth Rate
3.1.2. Spreading of Spheroids—Mimicking Initial Steps of Cancer Cell Dissemination
3.1.3. Wound Healing Capacity of Spheroid-Derived Cells
3.2. Evaluation of the Expression of Key Matrix Effectors in 3D Spheroids
3.3. Spheroids Modulate miRNAs—Driven Regulation and Matrix-Mediated Signaling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2D/3D | Two-/three-dimensional |
CAFs | Cancer-associated fibroblasts |
DBD | DNA-binding domain |
ECM | Extracellular matrix |
EGFR | Epidermal growth factor receptor |
ERs | Estrogen receptors |
ERα/ERβ | Estrogen receptor alpha/estrogen receptor beta |
EtOH | Ethanol |
FAK | Focal adhesion kinase |
HER2 | Human epidermal growth factor receptor 2 |
HMDS | Hexamethyldisilazane |
HPA | Human Protein Atlas |
IGF1R | Insulin-like growth factor receptor type 1 |
LOX | Lysyl oxidase |
MET | Mesenchymal-to-epithelial transition |
MMP | Matrix metalloproteinase |
MMP2 | Matrix metalloproteinase 2 |
MMP7 | Matrix metalloproteinase 7 |
MMP9 | Matrix metalloproteinase 9 |
PR | Progesterone receptor |
RFS | Relapse-free survival |
RT | Room temperature |
SD | Standard deviation |
SDC4 | Syndecan-4 |
SEM | Scanning electron microscopy |
TGF-β | Transforming growth factor beta |
TME | Tumor microenvironment |
TNBC | Triple-negative breast cancer |
uPA | Urokinase-type plasminogen activator |
VEGF | Vascular endothelial growth factor |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Nazari, S.S.; Doyle, A.D.; Yamada, K.M. Mechanisms of Basement Membrane Micro-Perforation during Cancer Cell Invasion into a 3D Collagen Gel. Gels 2022, 8, 567. [Google Scholar] [CrossRef]
- Deng, B.; Zhao, Z.; Kong, W.; Han, C.; Shen, X.; Zhou, C. Biological Role of Matrix Stiffness in Tumor Growth and Treatment. J. Transl. Med. 2022, 20, 540. [Google Scholar] [CrossRef]
- Winkler, J.; Abisoye-Ogunniyan, A.; Metcalf, K.J.; Werb, Z. Concepts of Extracellular Matrix Remodelling in Tumour Progression and Metastasis. Nat. Commun. 2020, 11, 5120. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, B.D.; Jovanović, B.; Chen, X.; Estrada, M.V.; Johnson, K.N.; Shyr, Y.; Moses, H.L.; Sanders, M.E.; Pietenpol, J.A. Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for Neoadjuvant Chemotherapy Selection. PLoS ONE 2016, 11, e0157368. [Google Scholar] [CrossRef]
- Breslin, S.; O’Driscoll, L. Three-Dimensional Cell Culture: The Missing Link in Drug Discovery. Drug Discov. Today 2013, 18, 240–249. [Google Scholar] [CrossRef]
- Wiseman, B.S.; Werb, Z. Stromal Effects on Mammary Gland Development and Breast Cancer. Science 2002, 296, 1046–1049. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Weaver, V.M.; Werb, Z. The Extracellular Matrix: A Dynamic Niche in Cancer Progression. J. Cell Biol. 2012, 196, 395–406. [Google Scholar] [CrossRef]
- Mavaddat, N.; Antoniou, A.C.; Easton, D.F.; Garcia-Closas, M. Genetic Susceptibility to Breast Cancer. Mol. Oncol. 2010, 4, 174–191. [Google Scholar] [CrossRef] [PubMed]
- Barros, R.P.A.; Machado, U.F.; Gustafsson, J.-Å. Estrogen Receptors: New Players in Diabetes Mellitus. Trends Mol. Med. 2006, 12, 425–431. [Google Scholar] [CrossRef]
- Mangani, S.; Piperigkou, Z.; Koletsis, N.E.; Ioannou, P.; Karamanos, N.K. Estrogen Receptors and Extracellular Matrix: The Critical Interplay in Cancer Development and Progression. FEBS J. 2025, 292, 1558–1572. [Google Scholar] [CrossRef]
- Austin, D.; Hamilton, N.; Elshimali, Y.; Pietras, R.; Wu, Y.; Vadgama, J. Estrogen Receptor-Beta Is a Potential Target for Triple Negative Breast Cancer Treatment. Oncotarget 2018, 9, 33912–33930. [Google Scholar] [CrossRef]
- Bardin, A.; Boulle, N.; Lazennec, G.; Vignon, F.; Pujol, P. Loss of ERβ Expression as a Common Step in Estrogen-Dependent Tumor Progression. Endocr. Relat. Cancer 2004, 11, 537–551. [Google Scholar] [CrossRef] [PubMed]
- Totaro, A.; Panciera, T.; Piccolo, S. YAP/TAZ Upstream Signals and Downstream Responses. Nat. Cell Biol. 2018, 20, 888–899. [Google Scholar] [CrossRef] [PubMed]
- Piperigkou, Z.; Koutsandreas, A.; Franchi, M.; Zolota, V.; Kletsas, D.; Passi, A.; Karamanos, N.K. ESR2 Drives Mesenchymal-to-Epithelial Transition in Triple-Negative Breast Cancer and Tumorigenesis In Vivo. Front. Oncol. 2022, 12, 917633. [Google Scholar] [CrossRef]
- Mahmood, N.; Mihalcioiu, C.; Rabbani, S.A. Multifaceted Role of the Urokinase-Type Plasminogen Activator (uPA) and Its Receptor (uPAR): Diagnostic, Prognostic, and Therapeutic Applications. Front. Oncol. 2018, 8, 24. [Google Scholar] [CrossRef]
- Theocharis, A.D.; Skandalis, S.S.; Gialeli, C.; Karamanos, N.K. Extracellular Matrix Structure. Adv. Drug Deliv. Rev. 2016, 97, 4–27. [Google Scholar] [CrossRef] [PubMed]
- Salinas-Vera, Y.M.; Valdés, J.; Pérez-Navarro, Y.; Mandujano-Lazaro, G.; Marchat, L.A.; Ramos-Payán, R.; Nuñez-Olvera, S.I.; Pérez-Plascencia, C.; López-Camarillo, C. Three-Dimensional 3D Culture Models in Gynecological and Breast Cancer Research. Front. Oncol. 2022, 12, 826113. [Google Scholar] [CrossRef]
- Abuwatfa, W.H.; Pitt, W.G.; Husseini, G.A. Scaffold-Based 3D Cell Culture Models in Cancer Research. J. Biomed. Sci. 2024, 31, 7. [Google Scholar] [CrossRef]
- Piperigkou, Z.; Franchi, M.; Riethmüller, C.; Götte, M.; Karamanos, N.K. miR-200b Restrains EMT and Aggressiveness and Regulates Matrix Composition Depending on ER Status and Signaling in Mammary Cancer. Matrix Biol. Plus 2020, 6–7, 100024. [Google Scholar] [CrossRef]
- Piperigkou, Z.; Franchi, M.; Götte, M.; Karamanos, N.K. Estrogen Receptor Beta as Epigenetic Mediator of miR-10b and miR-145 in Mammary Cancer. Matrix Biol. 2017, 64, 94–111. [Google Scholar] [CrossRef]
- Gastélum-López, M.D.L.Á.; Aguilar-Medina, M.; García Mata, C.; López-Gutiérrez, J.; Romero-Quintana, G.; Bermúdez, M.; Avendaño-Felix, M.; López-Camarillo, C.; Pérez-Plascencia, C.; Beltrán, A.S.; et al. Organotypic 3D Cell-Architecture Impacts the Expression Pattern of miRNAs–mRNAs Network in Breast Cancer SKBR3 Cells. ncRNA 2023, 9, 66. [Google Scholar] [CrossRef] [PubMed]
- Mangani, S.; Kremmydas, S.; Karamanos, N.K. Mimicking the Complexity of Solid Tumors: How Spheroids Could Advance Cancer Preclinical Transformative Approaches. Cancers 2025, 17, 1161. [Google Scholar] [CrossRef]
- Győrffy, B. Integrated Analysis of Public Datasets for the Discovery and Validation of Survival-Associated Genes in Solid Tumors. Innovation 2024, 5, 100625. [Google Scholar] [CrossRef]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Tissue-Based Map of the Human Proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Salinas-Vera, Y.M.; Valdés, J.; Hidalgo-Miranda, A.; Cisneros-Villanueva, M.; Marchat, L.A.; Nuñez-Olvera, S.I.; Ramos-Payán, R.; Pérez-Plasencia, C.; Arriaga-Pizano, L.A.; Prieto-Chávez, J.L.; et al. Three-Dimensional Organotypic Cultures Reshape the microRNAs Transcriptional Program in Breast Cancer Cells. Cancers 2022, 14, 2490. [Google Scholar] [CrossRef]
- Conner, S.J.; Guarin, J.R.; Le, T.T.; Fatherree, J.P.; Kelley, C.; Payne, S.L.; Parker, S.R.; Bloomer, H.; Zhang, C.; Salhany, K.; et al. Cell Morphology Best Predicts Tumorigenicity and Metastasis in Vivo across Multiple TNBC Cell Lines of Different Metastatic Potential. Breast Cancer Res. 2024, 26, 43. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.J. Matrix Metalloproteinases as Therapeutic Targets in Breast Cancer. Front. Oncol. 2022, 12, 1108695. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.-X.; Chen, S.; Huang, L.; Shao, Z.-M. Predictive and Prognostic Value of Matrix Metalloproteinase (MMP)—9 in Neoadjuvant Chemotherapy for Triple-Negative Breast Cancer Patients. BMC Cancer 2018, 18, 909. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, X. The Role of Estrogen Receptor Beta in Breast Cancer. Biomark. Res. 2020, 8, 39. [Google Scholar] [CrossRef]
- Ahmadi-Hadad, A.; De Queiroz, P.C.C.; Schettini, F.; Giuliano, M. Reawakening the Master Switches in Triple-Negative Breast Cancer: A Strategic Blueprint for Confronting Metastasis and Chemoresistance via microRNA-200/205: A Systematic Review. Crit. Rev. Oncol./Hematol. 2024, 204, 104516. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Li, S.; Zhu, S.; Yi, M.; Luo, S.; Wu, K. MiRNA-Mediated EMT and CSCs in Cancer Chemoresistance. Exp. Hematol. Oncol. 2021, 10, 12. [Google Scholar] [CrossRef] [PubMed]
Gene | Primer Sequence (5′→3′) | |
---|---|---|
SDC4 | F | AGGACGAAGGCAGCTACTCCT |
R | TTTGGTGGGCTTCTGGTAGG | |
EGFR | F | ATGCTCTACAACCCCACCAC |
R | GCCCTTCGCACTTCTTACAC | |
IGF1R | F | ACGAGTGGAGAAATCTGCGG |
R | ATGTGGAGGTAGCCCTCGAT | |
MMP2 | F | CGTCTGTCCCAGGATGACATC |
R | ATGTCAGGAGAGGCCCCATA | |
MMP7 | F | GCTGGCTCATGCCTTTGC |
R | TCCTCATCGAAGTGAGCATCTC | |
MMP9 | F | TTCCAGTACCGAGAGAAAGCCTAT |
R | GGTCACGTAGCCCACTTGGT | |
uPA | F | ACTACTACGGCTCTGAAGTCACCA |
R | GAAGTGTGAGACTCTCGTGTAGAC | |
F11R | F | CCGTCCTTGTAACCCTGATT |
R | CTCCTTCACTTCGGGCACTA | |
ACTB | F | TCAAGATCATTGCTCCTCCTGAG |
R | ACATCTGCTGGAAGGTGGACA |
miRNA | Mature miRNA Sequence | |
hsa-miR-10b-5p | TACCCTGTAGAACCGAATGTG | |
hsa-miR-145-5p | GTCCAGTTTTCCCAGGAATCCCT | |
hsa-miR-200b-3p | TAATACTGCCTGGTAATGATGA | |
hsa-let-7d-5p | AGAGGTAGTAGGTTGCATAGTT | |
Normalizer | Control Sequence | |
18S rRNA | F | CAGGTCTGTGATGCCCTTAGA |
R | GCTTATGACCCGCACTTACTG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koletsis, N.E.; Mangani, S.; Franchi, M.; Piperigkou, Z.; Karamanos, N.K. Development, Functional Characterization, and Matrix Effectors Dynamics in 3D Spheroids of Triple-Negative Breast Cancer Cells. Cells 2025, 14, 1351. https://doi.org/10.3390/cells14171351
Koletsis NE, Mangani S, Franchi M, Piperigkou Z, Karamanos NK. Development, Functional Characterization, and Matrix Effectors Dynamics in 3D Spheroids of Triple-Negative Breast Cancer Cells. Cells. 2025; 14(17):1351. https://doi.org/10.3390/cells14171351
Chicago/Turabian StyleKoletsis, Nikolaos E., Sylvia Mangani, Marco Franchi, Zoi Piperigkou, and Nikos K. Karamanos. 2025. "Development, Functional Characterization, and Matrix Effectors Dynamics in 3D Spheroids of Triple-Negative Breast Cancer Cells" Cells 14, no. 17: 1351. https://doi.org/10.3390/cells14171351
APA StyleKoletsis, N. E., Mangani, S., Franchi, M., Piperigkou, Z., & Karamanos, N. K. (2025). Development, Functional Characterization, and Matrix Effectors Dynamics in 3D Spheroids of Triple-Negative Breast Cancer Cells. Cells, 14(17), 1351. https://doi.org/10.3390/cells14171351