Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (219)

Search Parameters:
Keywords = environmental and spatiotemporal statistics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 39231 KiB  
Article
Study on the Distribution Characteristics of Thermal Melt Geological Hazards in Qinghai Based on Remote Sensing Interpretation Method
by Xing Zhang, Zongren Li, Sailajia Wei, Delin Li, Xiaomin Li, Rongfang Xin, Wanrui Hu, Heng Liu and Peng Guan
Water 2025, 17(15), 2295; https://doi.org/10.3390/w17152295 - 1 Aug 2025
Viewed by 117
Abstract
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research [...] Read more.
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research into permafrost dynamics. Climate warming has accelerated permafrost degradation, leading to a range of geological hazards, most notably widespread thermokarst landslides. This study investigates the spatiotemporal distribution patterns and influencing factors of thermokarst landslides in Qinghai Province through an integrated approach combining field surveys, remote sensing interpretation, and statistical analysis. The study utilized multi-source datasets, including Landsat-8 imagery, Google Earth, GF-1, and ZY-3 satellite data, supplemented by meteorological records and geospatial information. The remote sensing interpretation identified 1208 cryogenic hazards in Qinghai’s permafrost regions, comprising 273 coarse-grained soil landslides, 346 fine-grained soil landslides, 146 thermokarst slope failures, 440 gelifluction flows, and 3 frost mounds. Spatial analysis revealed clusters of hazards in Zhiduo, Qilian, and Qumalai counties, with the Yangtze River Basin and Qilian Mountains showing the highest hazard density. Most hazards occur in seasonally frozen ground areas (3500–3900 m and 4300–4900 m elevation ranges), predominantly on north and northwest-facing slopes with gradients of 10–20°. Notably, hazard frequency decreases with increasing permafrost stability. These findings provide critical insights for the sustainable development of cold-region infrastructure, environmental protection, and hazard mitigation strategies in alpine engineering projects. Full article
Show Figures

Figure 1

13 pages, 1009 KiB  
Article
A Statistical Optimization Method for Sound Speed Profiles Inversion in the South China Sea Based on Acoustic Stability Pre-Clustering
by Zixuan Zhang, Ke Qu and Zhanglong Li
Appl. Sci. 2025, 15(15), 8451; https://doi.org/10.3390/app15158451 - 30 Jul 2025
Viewed by 168
Abstract
Aiming at the problem of accuracy degradation caused by the mixing of spatiotemporal disturbance patterns in sound speed profile (SSP) inversion using the traditional geographic grid division method, this study proposes an acoustic stability pre-clustering framework that integrates principal component analysis and machine [...] Read more.
Aiming at the problem of accuracy degradation caused by the mixing of spatiotemporal disturbance patterns in sound speed profile (SSP) inversion using the traditional geographic grid division method, this study proposes an acoustic stability pre-clustering framework that integrates principal component analysis and machine learning clustering. Disturbance mode principal component analysis is first used to extract characteristic parameters, and then a machine learning clustering algorithm is adopted to pre-classify SSP samples according to acoustic stability. The SSP inversion experimental results show that: (1) the SSP samples of the South China Sea can be divided into three clusters of disturbance modes with statistically significant differences. (2) The regression inversion method based on cluster attribution reduces the average error of SSP inversion for data from 2018 to 1.24 m/s, which is more than 50% lower than what can be achieved with the traditional method without pre-clustering. (3) Transmission loss prediction verification shows that the proposed method can produce highly accurate sound field calculations in environmental assessment tasks. The acoustic stability pre-clustering technology proposed in this study provides an innovative solution for the statistical modeling of marine environment parameters by effectively decoupling the mixed effect of SSP spatiotemporal disturbance patterns. Its error control level (<1.5 m/s) is 37% higher than that of the single empirical orthogonal function regression method, showing important potential in underwater acoustic applications in complex marine dynamic environments. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

31 pages, 1247 KiB  
Review
A Review of Water Quality Forecasting and Classification Using Machine Learning Models and Statistical Analysis
by Amar Lokman, Wan Zakiah Wan Ismail and Nor Azlina Ab Aziz
Water 2025, 17(15), 2243; https://doi.org/10.3390/w17152243 - 28 Jul 2025
Viewed by 420
Abstract
The prediction and management of water quality are critical to ensure sustainable water resources, particularly in regions like Malaysia, where rivers face increasing pollution from industrialisation, agriculture, and urban expansion. This review aims to provide a comprehensive analysis of machine learning (ML) models [...] Read more.
The prediction and management of water quality are critical to ensure sustainable water resources, particularly in regions like Malaysia, where rivers face increasing pollution from industrialisation, agriculture, and urban expansion. This review aims to provide a comprehensive analysis of machine learning (ML) models and statistical methods applied in forecasting and classification of water quality. A particular focus is given to hybrid models that integrate multiple approaches to improve predictive accuracy and robustness. This study also reviews water quality standards and highlights the environmental context that necessitates advanced predictive tools. Statistical techniques such as residual analysis, principal component analysis (PCA), and feature importance assessment are also explored to enhance model interpretability and reliability. Comparative tables of model performance, strengths, and limitations are presented alongside real-world applications. Despite recent advancements, challenges remain in data quality, model interpretability, and integration of spatio-temporal and fuzzy logic techniques. This review identifies key research gaps and proposes future directions for developing transparent, adaptive, and accurate models. The findings can also guide researchers and policymakers towards the development of smart water quality management systems that enhance decision-making and ecological sustainability. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

24 pages, 3580 KiB  
Article
Delineating Urban High–Risk Zones of Disease Transmission: Applying Tensor Decomposition to Trajectory Big Data
by Tianhua Lu and Wenjia Zhang
ISPRS Int. J. Geo-Inf. 2025, 14(8), 285; https://doi.org/10.3390/ijgi14080285 - 23 Jul 2025
Viewed by 262
Abstract
Risk zone delineation and mobility behavior control constitute critical measures in pandemic containment. Numerous studies utilize static demographic data or dynamic mobility data to calculate the high–risk zones present in cities; however, these studies fail to concurrently consider activity and mobility patterns of [...] Read more.
Risk zone delineation and mobility behavior control constitute critical measures in pandemic containment. Numerous studies utilize static demographic data or dynamic mobility data to calculate the high–risk zones present in cities; however, these studies fail to concurrently consider activity and mobility patterns of populations in both space and time, which results in many studies only being able to employ static geostatistical analytical methods, neglecting the transmission risks associated with human mobility. This study utilized the mobile phone signaling data of Shenzhen residents from 2019 to 2020 and developed a CP tensor decomposition algorithm to decompose the long-sequence spatiotemporal trajectory data to detect high risk zones in terms of detecting overlapped community structures. Tensor decomposition algorithms revealed community structures in 2020 and the overlapping regions among these communities. Based on the overlap in spatial distribution and the similarity in temporal rhythms of these communities, we identified regions with spatiotemporal co-location as high–risk zones. Furthermore, we calculated the degree of population mixing in these areas to indicate the level of risk. These areas could potentially lead to rapid virus spread across communities. The research findings address the shortcomings of currently used static geographic statistical methods in delineating risk zones, and emphasize the critical importance of integrating spatial and temporal dimensions within behavioral big data analytics. Future research should consider utilizing non-aggregated individual trajectories to construct tensors, enabling the inclusion of individual and environmental attributes. Full article
Show Figures

Figure 1

29 pages, 32010 KiB  
Article
Assessing Environmental Sustainability in the Eastern Mediterranean Under Anthropogenic Air Pollution Risks Through Remote Sensing and Google Earth Engine Integration
by Mohannad Ali Loho, Almustafa Abd Elkader Ayek, Wafa Saleh Alkhuraiji, Safieh Eid, Nazih Y. Rebouh, Mahmoud E. Abd-Elmaboud and Youssef M. Youssef
Atmosphere 2025, 16(8), 894; https://doi.org/10.3390/atmos16080894 - 22 Jul 2025
Viewed by 765
Abstract
Air pollution monitoring in ungauged zones presents unique challenges yet remains critical for understanding environmental health impacts and socioeconomic dynamics in the Eastern Mediterranean region. This study investigates air pollution patterns in northwestern Syria during 2019–2024, analyzing NO2 and CO concentrations using [...] Read more.
Air pollution monitoring in ungauged zones presents unique challenges yet remains critical for understanding environmental health impacts and socioeconomic dynamics in the Eastern Mediterranean region. This study investigates air pollution patterns in northwestern Syria during 2019–2024, analyzing NO2 and CO concentrations using Sentinel-5P TROPOMI satellite data processed through Google Earth Engine. Monthly concentration averages were examined across eight key locations using linear regression analysis to determine temporal trends, with Spearman’s rank correlation coefficients calculated between pollutant levels and five meteorological parameters (temperature, humidity, wind speed, atmospheric pressure, and precipitation) to determine the influence of political governance, economic conditions, and environmental sustainability factors on pollution dynamics. Quality assurance filtering retained only measurements with values ≥ 0.75, and statistical significance was assessed at a p < 0.05 level. The findings reveal distinctive spatiotemporal patterns that reflect the region’s complex political-economic landscape. NO2 concentrations exhibited clear political signatures, with opposition-controlled territories showing upward trends (Al-Rai: 6.18 × 10−8 mol/m2) and weak correlations with climatic variables (<0.20), indicating consistent industrial operations. In contrast, government-controlled areas demonstrated significant downward trends (Hessia: −2.6 × 10−7 mol/m2) with stronger climate–pollutant correlations (0.30–0.45), reflecting the impact of economic sanctions on industrial activities. CO concentrations showed uniform downward trends across all locations regardless of political control. This study contributes significantly to multiple Sustainable Development Goals (SDGs), providing critical baseline data for SDG 3 (Health and Well-being), mapping urban pollution hotspots for SDG 11 (Sustainable Cities), demonstrating climate–pollution correlations for SDG 13 (Climate Action), revealing governance impacts on environmental patterns for SDG 16 (Peace and Justice), and developing transferable methodologies for SDG 17 (Partnerships). These findings underscore the importance of incorporating environmental safeguards into post-conflict reconstruction planning to ensure sustainable development. Full article
(This article belongs to the Special Issue Study of Air Pollution Based on Remote Sensing (2nd Edition))
Show Figures

Figure 1

46 pages, 10548 KiB  
Review
A Review of Hybrid LSTM Models in Smart Cities
by Bum-Jun Kim and Il-Woo Nam
Processes 2025, 13(7), 2298; https://doi.org/10.3390/pr13072298 - 18 Jul 2025
Viewed by 650
Abstract
Rapid global urbanization poses complex challenges that demand advanced data-driven forecasting solutions for smart cities. Traditional statistical and standalone Long Short-Term Memory (LSTM) models often struggle to capture non-linear dynamics and long-term dependencies in urban time-series data. This review critically examines hybrid LSTM [...] Read more.
Rapid global urbanization poses complex challenges that demand advanced data-driven forecasting solutions for smart cities. Traditional statistical and standalone Long Short-Term Memory (LSTM) models often struggle to capture non-linear dynamics and long-term dependencies in urban time-series data. This review critically examines hybrid LSTM models that integrate LSTM with complementary algorithms, including CNN, GRU, ARIMA, and SVM. These hybrid architectures aim to enhance prediction accuracy, integrate diverse data sources, and improve computational efficiency. This study systematically reviews principles, trends, and real-world applications, quantitatively evaluating hybrid LSTM models using performance metrics such as mean absolute error (MAE), root mean square error (RMSE), and the coefficient of determination (R2), while identifying key study limitations. The case studies considered include traffic management, environmental monitoring, energy forecasting, public health, infrastructure assessment, and urban waste management. For example, hybrid models have achieved substantial accuracy improvements in traffic congestion forecasting, reducing their mean absolute error by up to 29%. Despite the inherent challenges related to structural complexity, interpretability, and data requirements, ongoing research on attention mechanisms, model compression, and explainable AI has significantly mitigated these limitations. Thus, hybrid LSTM models have emerged as vital analytical tools capable of robust spatiotemporal prediction, effectively supporting sustainable urban development and data-driven decision-making in evolving smart city environments. Full article
Show Figures

Figure 1

25 pages, 8705 KiB  
Review
A Systems Perspective on Material Stocks Research: From Quantification to Sustainability
by Tiejun Dai, Zhongchun Yue, Xufeng Zhang and Yuanying Chi
Systems 2025, 13(7), 587; https://doi.org/10.3390/systems13070587 - 15 Jul 2025
Viewed by 382
Abstract
Material stocks (MS) serve as essential physical foundations for socio–economic systems, reflecting the accumulation, transformation, and consumption of resources over time and space. Positioned at the intersection of environmental and socio–economic systems, MS are increasingly recognized as leverage points for advancing sustainability. However, [...] Read more.
Material stocks (MS) serve as essential physical foundations for socio–economic systems, reflecting the accumulation, transformation, and consumption of resources over time and space. Positioned at the intersection of environmental and socio–economic systems, MS are increasingly recognized as leverage points for advancing sustainability. However, there is currently a lack of comprehensive overview, making it difficult to fully capture the latest developments and cutting–edge research. We adopt a systems perspective to conduct a comprehensive bibliometric and thematic review of 602 scholarly publications on MS research. The results showed that MS research encompasses has three development periods: preliminary exploration (before 2007), rapid development (2007–2016), and expansion and deepening (after 2016). MS research continues to deepen, gathering multiple teams and differentiating into diverse topics. MS research has evolved from simple accounting to intersection with socio–economic, resources, and environmental systems, and shifted from relying on statistical data to integrating high–spatio–temporal–resolution geographic big data. MS research is shifting from problem revelation to problem solving, constantly achieving new developments and improvements. In the future, it is still necessary to refine MS spatio–temporal distribution, reveal MS’s evolution mechanism, establish standardized databases, strengthen interaction with other systems, enhance problem–solving abilities, and provide powerful guidance for the formulation of dematerialization and decarbonization policies to achieve sustainable development. Full article
Show Figures

Figure 1

26 pages, 6730 KiB  
Article
Construction and Application of Carbon Emissions Estimation Model for China Based on Gradient Boosting Algorithm
by Dongjie Guan, Yitong Shi, Lilei Zhou, Xusen Zhu, Demei Zhao, Guochuan Peng and Xiujuan He
Remote Sens. 2025, 17(14), 2383; https://doi.org/10.3390/rs17142383 - 10 Jul 2025
Viewed by 351
Abstract
Accurate forecasting of carbon emissions at the county level is critical to support China’s dual-carbon goals. However, most current studies are limited to national or provincial scales, employing traditional statistical methods inadequate for capturing complex nonlinear interactions and spatiotemporal dynamics at finer resolutions. [...] Read more.
Accurate forecasting of carbon emissions at the county level is critical to support China’s dual-carbon goals. However, most current studies are limited to national or provincial scales, employing traditional statistical methods inadequate for capturing complex nonlinear interactions and spatiotemporal dynamics at finer resolutions. To overcome these limitations, this study develops and validates a high-resolution predictive model using advanced gradient boosting algorithms—Gradient Boosting Decision Tree (GBDT), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM)—based on socioeconomic, industrial, and environmental data from 2732 Chinese counties during 2008–2017. Key variables were selected through correlation analysis, missing values were interpolated using K-means clustering, and model parameters were systematically optimized via grid search and cross-validation. Among the algorithms tested, LightGBM achieved the best performance (R2 = 0.992, RMSE = 0.297), demonstrating both robustness and efficiency. Spatial–temporal analyses revealed that while national emissions are slowing, the eastern region is approaching stabilization, whereas emissions in central and western regions are projected to continue rising through 2027. Furthermore, SHapley Additive exPlanations (SHAP) were applied to interpret the marginal and interaction effects of key variables. The results indicate that GDP, energy intensity, and nighttime lights exert the greatest influence on model predictions, while ecological indicators such as NDVI exhibit negative associations. SHAP dependence plots further reveal nonlinear relationships and regional heterogeneity among factors. The key innovation of this study lies in constructing a scalable and interpretable county-level carbon emissions model that integrates gradient boosting with SHAP-based variable attribution, overcoming limitations in spatial resolution and model transparency. Full article
Show Figures

Figure 1

38 pages, 25146 KiB  
Article
Driplines Layout Designs Comparison of Moisture Distribution in Clayey Soils, Using Soil Analysis, Calibrated Time Domain Reflectometry Sensors, and Precision Agriculture Geostatistical Imaging for Environmental Irrigation Engineering
by Agathos Filintas
AgriEngineering 2025, 7(7), 229; https://doi.org/10.3390/agriengineering7070229 - 10 Jul 2025
Viewed by 412
Abstract
The present study implements novel innovative geostatistical imaging using precision agriculture (PA) under sugarbeet field conditions. Two driplines layout designs (d.l.d.) and soil water content (SWC)–irrigation treatments (A: d.l.d. = 1.00 m driplines spacing × 0.50 m emitters inline spacing; B: d.l.d. = [...] Read more.
The present study implements novel innovative geostatistical imaging using precision agriculture (PA) under sugarbeet field conditions. Two driplines layout designs (d.l.d.) and soil water content (SWC)–irrigation treatments (A: d.l.d. = 1.00 m driplines spacing × 0.50 m emitters inline spacing; B: d.l.d. = 1.50 m driplines spacing × 0.50 m emitters inline spacing) were applied, with two subfactors of clay loam and clay soils (laboratory soil analysis) for modeling (evaluation of seven models) TDR multi-sensor network measurements. Different sensor calibration methods [method 1(M1) = according to factory; method 2 (M2) = according to Hook and Livingston] were applied for the geospatial two-dimensional (2D) imaging of accurate GIS maps of rootzone soil moisture profiles, soil apparent dielectric Ka profiles, and granular and hydraulic parameters profiles, in multiple soil layers (0–75 cm depth). The modeling results revealed that the best-fitted geostatistical model for soil apparent dielectric Ka was the Gaussian model, while spherical and exponential models were identified to be the most appropriate for kriging modelling, and spatial and temporal imaging was used for accurate profile SWC θvTDR (m3·m−3) M1 and M2 maps using TDR sensors. The resulting PA profile map images depict the spatio-temporal soil water and apparent dielectric Ka variability at very high resolutions on a centimeter scale. The best geostatistical validation measures for the PA profile SWC θvTDR maps obtained were MPE = −0.00248 (m3·m−3), RMSE = 0.0395 (m3·m−3), MSPE = −0.0288, RMSSE = 2.5424, ASE = 0.0433, Nash–Sutcliffe model efficiency NSE = 0.6229, and MSDR = 0.9937. Based on the results, we recommend d.l.d. A and sensor calibration method 2 for the geospatial 2D imaging of PA GIS maps because these were found to be more accurate, with the lowest statistical and geostatistical errors, and the best validation measures for accurate profile SWC imaging were obtained for clay loam over clay soils. Visualizing sensors’ soil moisture results via geostatistical maps of rootzone profiles have practical implications that assist farmers and scientists in making informed, better and timely environmental irrigation engineering decisions, to save irrigation water, increase water use efficiency and crop production, optimize energy, reduce crop costs, and manage water resources sustainably. Full article
(This article belongs to the Section Sensors Technology and Precision Agriculture)
Show Figures

Figure 1

31 pages, 19561 KiB  
Article
Geostatistics Precision Agriculture Modeling on Moisture Root Zone Profiles in Clay Loam and Clay Soils, Using Time Domain Reflectometry Multisensors and Soil Analysis
by Agathos Filintas
Hydrology 2025, 12(7), 183; https://doi.org/10.3390/hydrology12070183 - 7 Jul 2025
Cited by 1 | Viewed by 522
Abstract
Accurate measurement and understanding of the spatiotemporal distribution of soil water content (SWC) are crucial in various environmental and agricultural sectors. The present study implements a novel precision agriculture (PA) approach under sugarbeet field conditions of two moisture-irrigation treatments with two subfactors, clay [...] Read more.
Accurate measurement and understanding of the spatiotemporal distribution of soil water content (SWC) are crucial in various environmental and agricultural sectors. The present study implements a novel precision agriculture (PA) approach under sugarbeet field conditions of two moisture-irrigation treatments with two subfactors, clay loam (CL) and clay (C) soils, for geostatistics modeling (seven models’ evaluation) of time domain reflectometry (TDR) multisensor network measurements. Two different sensor calibration methods (M1 and M2) were trialed, as well as the results of laboratory soil analysis for geospatial two-dimensional (2D) imaging for accurate GIS maps of root zone moisture profiles, granular, and hydraulic profiles in multiple soil layers (0–75 cm depth). Modeling results revealed that the best-fitted semi-variogram models for the granular attributes were circular, exponential, pentaspherical, and spherical, while for hydraulic attributes were found to be exponential, circular, and spherical models. The results showed that kriging modeling, spatial and temporal imaging for accurate profile SWC θvTDR (m3·m−3) maps, the exponential model was identified as the most appropriate with TDR sensors using calibration M1, and the exponential and spherical models were the most appropriate when using calibration M2. The resulting PA profile maps depict spatiotemporal soil water variability with very high resolutions at the centimeter scale. The best validation measures of PA profile SWC θvTDR maps obtained were Nash-Sutcliffe model efficiency NSE = 0.6657, MPE = 0.00013, RMSE = 0.0385, MSPE = −0.0022, RMSSE = 1.6907, ASE = 0.0418, and MSDR = 0.9695. The sensor results using calibration M2 were found to be more valuable in environmental irrigation decision-making for a more accurate and timely decision on actual crop irrigation, with the lowest statistical and geostatistical errors. The best validation measures for accurate profile SWC θvTDR (m3·m−3) maps obtained for clay loam over clay soils. Visualizing the SWC results and their temporal changes via root zone profile geostatistical maps assists farmers and scientists in making informed and timely environmental irrigation decisions, optimizing energy, saving water, increasing water-use efficiency and crop production, reducing costs, and managing water–soil resources sustainably. Full article
(This article belongs to the Special Issue Hydrological Processes in Agricultural Watersheds)
Show Figures

Figure 1

15 pages, 5107 KiB  
Article
Spatiotemporal Evolution and Influencing Factors of Aerosol Optical Depth in Zhejiang Province: Insights from Land Use Dynamics and Transportation Networks Based on Remote Sensing
by Qi Wang, Ben Wang, Wanlin Kong, Jiali Wu, Zhifeng Yu, Xiwen Wu and Xiaohong Yuan
Sustainability 2025, 17(13), 6126; https://doi.org/10.3390/su17136126 - 3 Jul 2025
Viewed by 296
Abstract
Aerosol optical depth (AOD) serves as a critical indicator for atmospheric aerosol monitoring and air quality assessment, and quantifies the radiative attenuation caused by airborne particulate matter. This study uses MODIS remote sensing imagery together with land use transition datasets (2000–2020) and road [...] Read more.
Aerosol optical depth (AOD) serves as a critical indicator for atmospheric aerosol monitoring and air quality assessment, and quantifies the radiative attenuation caused by airborne particulate matter. This study uses MODIS remote sensing imagery together with land use transition datasets (2000–2020) and road network density metrics (2014–2020), to investigate the spatiotemporal evolution of AOD in Zhejiang Province and its synergistic correlations with urbanization patterns and transportation infrastructure. By integrating MODIS_1KM AOD product, grid-based road network density mapping, land use dynamic degree modeling, and transfer matrix analysis, this study systematically evaluates the interdependencies among aerosol loading, impervious surface expansion, and transportation network intensification. The results indicate that during the study period (2000–2020), the provincial AOD level shows a significant declining trend, with obvious spatial heterogeneity: the AOD values in eastern coastal industrial zones and urban agglomerations continue to increase, with lower values dominating southwestern forested highlands. Meanwhile, statistical analyses confirm highly positive correlations between AOD, impervious surface coverage, and road network density, emphasizing the dominant role of anthropogenic activities in aerosol accumulation. These findings provide actionable insights for enhancing land-use zoning, minimizing vehicular emissions, and developing spatially targeted air quality management strategies in rapidly urbanizing regions. This study provides a solid scientific foundation for advancing environmental sustainability by supporting policy development that balances urban expansion and air quality. It contributes to building more sustainable and resilient cities in Zhejiang Province. Full article
Show Figures

Figure 1

31 pages, 6429 KiB  
Article
Retrieval of Dissolved Oxygen Concentrations in Fishponds in the Guangdong–Hong Kong–Macao Greater Bay Area Using Satellite Imagery and Machine Learning
by Keming Mao, Dakang Wang, Shirong Cai, Tao Zhou, Wenxin Zhang, Qianqian Yang, Zikang Li, Xiankun Yang and Lorenzo Picco
Remote Sens. 2025, 17(13), 2277; https://doi.org/10.3390/rs17132277 - 3 Jul 2025
Viewed by 610
Abstract
Dissolved oxygen (DO) is a fundamental water quality parameter that directly determines aquaculture productivity. China contributes 57% of the global aquaculture production, with the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) serving as a key contributor. However, this region faces significant environmental challenges due [...] Read more.
Dissolved oxygen (DO) is a fundamental water quality parameter that directly determines aquaculture productivity. China contributes 57% of the global aquaculture production, with the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) serving as a key contributor. However, this region faces significant environmental challenges due to increasing intensive stocking densities and outdated management practices, while also grappling with the systematic monitoring limitations of large-scale operations. To address these challenges, in this study, a random forest-based model was developed for DO concentration retrieval (R2 = 0.82) using Landsat 8/9 OLI imagery. The Lindeman, Merenda, and Gold (LMG) algorithm was applied to field data collected from four cities—Foshan, Hong Kong, Huizhou, and Zhongshan—to identify key environmental drivers to the changes in DO concentration in these cities. This study also employed satellite imagery from multiple periods to analyze the spatiotemporal distribution and trends of DO concentrations over the past decade, aiming to enhance understanding of DO variability. The results indicate that the average DO concentration in fishponds across the GBA was 7.44 mg/L with a statistically insignificant upward trend. Spatially, the DO levels remained slightly lower than those in other waters. The primary environmental factor influencing DO variations was the pH levels, while the relationship between natural factors such as the temperature and DO concentration was significantly hidden by aquaculture management practices. The further analysis of fishpond water quality parameters across land uses revealed that fishponds with lower DO concentrations (7.293 mg/L) are often located in areas with intensive human intervention, particularly in highly urbanized regions. The approach proposed in this study provides an operational method for large-scale DO monitoring in aquaculture systems, enabling the qualification of anthropogenic influences on water quality dynamics. It also offers scalable solutions for the development of adaptive management strategies, thereby supporting the sustainable management of aquaculture environments. Full article
Show Figures

Figure 1

20 pages, 10397 KiB  
Article
Dynamic Monitoring and Driving Factors Analysis of Eco-Environmental Quality in the Hindu Kush–Himalaya Region
by Fangmin Zhang, Xiaofei Wang, Jinge Yu, Huijie Yu and Zhen Yu
Remote Sens. 2025, 17(13), 2141; https://doi.org/10.3390/rs17132141 - 22 Jun 2025
Viewed by 554
Abstract
The Hindu Kush–Himalaya (HKH) region is an essential component of the global ecosystem, playing a crucial role in global climate regulation and ecological balance. This study employed a remote sensing ecological index (RSEI) with Geodetector to evaluate the eco-environmental quality and its driving [...] Read more.
The Hindu Kush–Himalaya (HKH) region is an essential component of the global ecosystem, playing a crucial role in global climate regulation and ecological balance. This study employed a remote sensing ecological index (RSEI) with Geodetector to evaluate the eco-environmental quality and its driving factors within the HKH region. Results revealed a statistically significant upward trend (p < 0.05) in eco-environmental quality across the HKH region during 2001–2023, with the average RSEI value increasing by 23.9%. Areas classified as the Good/Excellent grades (RSEI > 0.6) expanded by ~12%, while areas at the Very Poor grade (RSEI ≤ 0.2) shrunk by ~20%. However, areas classified as the Poor (0.2 < RSEI ≤ 0.4) and Moderate (0.4 < RSEI ≤ 0.6) grades increased by ~11% and ~5%, respectively. This resulted in ~11% of the total area degraded across the HKH. Spatially, the highest ecological quality occurred in the southern Himalayan countries (sub-region R2), followed by China’s Tibetan Plateau (sub-region R3), while the northwestern HKH region (sub-region R3) exhibited the lowest ecological quality. Notably, the sub-region R3 and eastern sub-region R1 had the most pronounced improvement. Precipitation and land cover type were the dominant driving factors, exhibiting nonlinear enhancement effects in their interactions, whereas topographic factors (e.g., elevation) had limited but stable influences. These findings elucidate the spatiotemporal dynamics of HKH’s eco-environmental quality and underscore the combined effects of climatic and geomorphic factors, offering a scientific basis for targeted conservation and sustainable development strategies. Full article
Show Figures

Figure 1

22 pages, 17237 KiB  
Article
Spatiotemporal Evolution and Intensification of Extreme Precipitation Events in Mainland China from 1961 to 2022
by Weimeng Gan, Hao Guo, Ying Cao, Wei Wang, Na Yao, Yunqian Wang and Philippe De Maeyer
Remote Sens. 2025, 17(12), 2037; https://doi.org/10.3390/rs17122037 - 13 Jun 2025
Viewed by 476
Abstract
Under the context of global warming, extreme precipitation events have become more frequent and intense, causing substantial environmental and societal impacts. Using the daily gridded precipitation dataset (CHM_PRE) for mainland China, this study investigates the spatiotemporal evolution of extreme precipitation events from 1961 [...] Read more.
Under the context of global warming, extreme precipitation events have become more frequent and intense, causing substantial environmental and societal impacts. Using the daily gridded precipitation dataset (CHM_PRE) for mainland China, this study investigates the spatiotemporal evolution of extreme precipitation events from 1961 to 2022, focusing on regional disparities in frequency, event duration, and total precipitation. Events are further categorized based on peak frequency and the timing of peak intensity to reveal their distinct spatial and temporal characteristics. The results indicate the following: (1) From 1961 to 2022, the frequency of extreme precipitation events across most regions of mainland China exhibited a statistically significant increasing trend, especially in Xinjiang, where the average annual frequency rose by 56 times from 1961–1980 to 2000–2022. (2) Event durations show a general trend, with the most pronounced decline in Southwest China, where the overall duration and the duration above the 90th percentile decreased at Sen’s slopes of −6.4 × 10−2 and −6 × 10−3 days·year−1, respectively. (3) Event intensity has increased, especially in Southeast China, with peak and daily intensities rising at 2.9 × 10−2 mm·year−1 and 1.9 × 10−2 mm·day−1·year−1. (4) Short-duration events dominate Xinjiang, averaging 102 times per year and accounting for 35.58% of all events. (5) Events of varying durations display clear spatial differences: 2-day events are most frequent in Xinjiang, the Tibetan Plateau, Northwest China, and Northern China, while 4-day events are concentrated in Southeast China. Moreover, a nonlinear positive correlation between event duration and total precipitation volume suggests a complex interplay between precipitation persistence and intensity. Full article
Show Figures

Figure 1

25 pages, 3063 KiB  
Article
Evaluating the Health Risks of Air Quality and Human Thermal Comfort–Discomfort in Relation to Hospital Admissions in the Greater Athens Area, Greece
by Aggelos Kladakis, Adrianos Retalis, Christos Giannaros, Vasileios Vafeiadis, Kyriaki-Maria Fameli, Vasiliki D. Assimakopoulos, Konstantinos Moustris and Panagiotis T. Nastos
Sustainability 2025, 17(11), 5182; https://doi.org/10.3390/su17115182 - 4 Jun 2025
Cited by 1 | Viewed by 669
Abstract
The aim of this study is to examine the impact of poor air quality and adverse meteorological conditions on health risks in the Greater Athens Area (GAA), Greece, during the period from 2018 to 2022. Specifically, the aim is to assess the Relative [...] Read more.
The aim of this study is to examine the impact of poor air quality and adverse meteorological conditions on health risks in the Greater Athens Area (GAA), Greece, during the period from 2018 to 2022. Specifically, the aim is to assess the Relative Risk (RR) of hospital admissions (HAs) for cardiovascular diseases (CVDs) and respiratory diseases (RDs), due to air pollution in combination with thermal discomfort, as well as to identify the time lag effect on admissions. For this purpose, data from six (6) different hospitals within the GAA were collected and used. Statistical analysis of hourly measurements of key pollutants (NO2, O3, PM2.5, and PM10) obtained from the Directorate of Climate Change and Air Quality (DCCAQ), which falls under the auspices of the Ministry of Environment and Energy (MEE), and meteorological parameters (T, RH, and wind velocity), is performed to calculate the daily air quality and human thermal comfort–discomfort levels, respectively. These conditions were examined using appropriate indexes for both air quality and human thermal comfort–discomfort, as independent variables in a Negative Binomial regression model developed in R, with daily HAs (not including scheduled cases or pre-existing health conditions) as the response variable. Moreover, a spatiotemporal analysis of air quality and meteorological parameters is conducted to identify associated variations in health risks. This analysis highlights key risk patterns linked to environmental conditions and the relevant measures to both manage and mitigate the risk. Findings indicate that extreme environmental conditions significantly elevate health risks, with cumulative RR over a one-week period peaking at 1.540 (95% CI: 1.158–2.050) during the warm season, while prolonged increases in the RR are also observed during the cold season, reaching 1.214 (95% CI: 0.937–1.572) under extreme cold exposures. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

Back to TopTop