Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,537)

Search Parameters:
Keywords = environmental adjustment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3150 KiB  
Article
Research on the Influence Mechanism of Thermal Load on the Au-Sn Sealing Weld State on Three-Dimensional DPC Substrates
by Heran Zhao, Lihua Cao, ShiZhao Wang, He Zhang and Mingxiang Chen
Materials 2025, 18(15), 3678; https://doi.org/10.3390/ma18153678 - 5 Aug 2025
Abstract
Direct copper-plated ceramic (DPC) substrates have emerged as a favored solution for power device packaging due to their unique technical advantages. AuSn, characterized by its high hermeticity and environmental adaptability, represents the optimal sealing technology for DPC substrates. Through the application of vacuum [...] Read more.
Direct copper-plated ceramic (DPC) substrates have emerged as a favored solution for power device packaging due to their unique technical advantages. AuSn, characterized by its high hermeticity and environmental adaptability, represents the optimal sealing technology for DPC substrates. Through the application of vacuum sintering techniques and adjustment of peak temperatures (325 °C, 340 °C, and 355 °C), the morphology and composition of interfacial compounds were systematically investigated, along with an analysis of their formation mechanisms. A gradient aging experiment was designed (125 °C/150 °C/175 °C × oxygen/argon dual atmosphere × 600 h) to elucidate the synergistic effects of environmental temperature and atmosphere on the growth of intermetallic compounds (IMCs). The results indicate that the primary reaction in the sealing weld seam involves Ni interacting with Au-Sn to form (Ni, Au)3Sn2 and Au5Sn. However, upon completion of the sealing process, this reaction remains incomplete, leading to a coexistence state of (Ni, Au)3Sn2, Au5Sn, and AuSn. Additionally, Ni diffuses into the weld seam center via dendritic fracture and locally forms secondary phases such as δ(Ni) and ζ’(Ni). These findings suggest that the weld seam interface exhibits a complex, irregular, and asymmetric microstructure comprising multiple coexisting compounds. It was determined that Tpeak = 325 °C to 340 °C represents the ideal welding temperature range, where the weld seam morphology, width, and Ni diffusion degree achieve optimal states, ensuring excellent device hermeticity. Aging studies further demonstrate that IMC growth remains within controllable limits. These findings address critical gaps in the understanding of the microstructural evolution and interface characteristics of asymmetric welded joints formed by multi-material systems. Full article
Show Figures

Graphical abstract

22 pages, 2029 KiB  
Article
A Deep Reinforcement Learning Framework for Cascade Reservoir Operations Under Runoff Uncertainty
by Jing Xu, Jiabin Qiao, Qianli Sun and Keyan Shen
Water 2025, 17(15), 2324; https://doi.org/10.3390/w17152324 - 5 Aug 2025
Abstract
Effective management of cascade reservoir systems is essential for balancing hydropower generation, flood control, and ecological sustainability, especially under increasingly uncertain runoff conditions driven by climate change. Traditional optimization methods, while widely used, often struggle with high dimensionality and fail to adequately address [...] Read more.
Effective management of cascade reservoir systems is essential for balancing hydropower generation, flood control, and ecological sustainability, especially under increasingly uncertain runoff conditions driven by climate change. Traditional optimization methods, while widely used, often struggle with high dimensionality and fail to adequately address inflow variability. This study introduces a novel deep reinforcement learning (DRL) framework that tightly couples probabilistic runoff forecasting with adaptive reservoir scheduling. We integrate a Long Short-Term Memory (LSTM) neural network to model runoff uncertainty and generate probabilistic inflow forecasts, which are then embedded into a Proximal Policy Optimization (PPO) algorithm via Monte Carlo sampling. This unified forecast–optimize architecture allows for dynamic policy adjustment in response to stochastic hydrological conditions. A case study on China’s Xiluodu–Xiangjiaba cascade system demonstrates that the proposed LSTM-PPO framework achieves superior performance compared to traditional baselines, notably improving power output, storage utilization, and spillage reduction. The results highlight the method’s robustness and scalability, suggesting strong potential for supporting resilient water–energy nexus management under complex environmental uncertainty. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

33 pages, 7414 KiB  
Article
Carbon Decoupling of the Mining Industry in Mineral-Rich Regions Based on Driving Factors and Multi-Scenario Simulations: A Case Study of Guangxi, China
by Wei Wang, Xiang Liu, Xianghua Liu, Luqing Rong, Li Hao, Qiuzhi He, Fengchu Liao and Han Tang
Processes 2025, 13(8), 2474; https://doi.org/10.3390/pr13082474 - 5 Aug 2025
Abstract
The mining industry (MI) in mineral-rich regions is pivotal for economic growth but is challenged by significant pollution and emissions. This study examines Guangxi, a representative region in China, in light of the country’s “Dual Carbon” goals. We quantified carbon emissions from the [...] Read more.
The mining industry (MI) in mineral-rich regions is pivotal for economic growth but is challenged by significant pollution and emissions. This study examines Guangxi, a representative region in China, in light of the country’s “Dual Carbon” goals. We quantified carbon emissions from the MI from 2005 to 2021, employing the generalized Divisia index method (GDIM) to analyze the factors driving these emissions. Additionally, a system dynamics (SD) model was developed, integrating economic, demographic, energy, environmental, and policy variables to assess decarbonization strategies and the potential for carbon decoupling. The key findings include the following: (1) Carbon accounting analysis reveals a rising emission trend in Guangxi’s MI, predominantly driven by electricity consumption, with the non-ferrous metal mining sector contributing the largest share of total emissions. (2) The primary drivers of carbon emissions were identified as economic scale, population intensity, and energy intensity, with periodic fluctuations in sector-specific drivers necessitating coordinated policy adjustments. (3) Scenario analysis showed that the Emission Reduction Scenario (ERS) is the only approach that achieves a carbon peak before 2030, indicating that it is the most effective decarbonization pathway. (4) Between 2022 and 2035, carbon decoupling from total output value is projected to improve under both the Energy-Saving Scenario (ESS) and ERS, achieving strong decoupling, while the resource extraction shows limited decoupling effects often displaying an expansionary connection. This study aims to enhance the understanding and promote the advancement of green and low-carbon development within the MI in mineral-rich regions. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

20 pages, 3741 KiB  
Article
Use of Amino Acids and Organic Waste Extracts to Improve the Quality of Liquid Nitrogen–Calcium–Magnesium Fertilizers
by Eglė Didžiulytė and Rasa Šlinkšienė
Sustainability 2025, 17(15), 7081; https://doi.org/10.3390/su17157081 - 5 Aug 2025
Abstract
Agriculture is one of the most important sectors of the global economy, but it increasingly faces sustainability challenges in meeting rising food demands. The intensive use of mineral fertilizers not only improves yields, but also causes negative environmental impacts such as increasing greenhouse [...] Read more.
Agriculture is one of the most important sectors of the global economy, but it increasingly faces sustainability challenges in meeting rising food demands. The intensive use of mineral fertilizers not only improves yields, but also causes negative environmental impacts such as increasing greenhouse gas emissions, water eutrophication, and soil degradation. To develop more sustainable solutions, the focus is on organic fertilizers, which are produced using waste and biostimulants such as amino acids. The aim of this study was to develop and characterize liquid nitrogen–calcium–magnesium fertilizers produced by decomposing dolomite with nitric acid followed by further processing and to enrich them with a powdered amino acid concentrate Naturamin-WSP and liquid extracts from digestate, a by-product of biogas production. Nutrient-rich extracts were obtained using water and potassium hydroxide solutions, with the latter proving more effective by yielding a higher organic carbon content (4495 ± 0.52 mg/L) and humic substances, which can improve soil structure. The produced fertilizers demonstrated favourable physical properties, including appropriate viscosity and density, as well as low crystallization temperatures (eutectic points from –3 to –34 °C), which are essential for storage and application in cold climates. These properties were achieved by adjusting the content of nitrogenous compounds and bioactive extracts. The results of the study show that liquid fertilizers enriched with organic matter can be an effective and more environmentally friendly alternative to mineral fertilizers, contributing to the development of the circular economy and sustainable agriculture. Full article
Show Figures

Figure 1

22 pages, 3217 KiB  
Article
A Deep Reinforcement Learning Approach for Energy Management in Low Earth Orbit Satellite Electrical Power Systems
by Silvio Baccari, Elisa Mostacciuolo, Massimo Tipaldi and Valerio Mariani
Electronics 2025, 14(15), 3110; https://doi.org/10.3390/electronics14153110 - 5 Aug 2025
Abstract
Effective energy management in Low Earth Orbit satellites is critical, as inefficient energy management can significantly affect mission objectives. The dynamic and harsh space environment further complicates the development of effective energy management strategies. To address these challenges, we propose a Deep Reinforcement [...] Read more.
Effective energy management in Low Earth Orbit satellites is critical, as inefficient energy management can significantly affect mission objectives. The dynamic and harsh space environment further complicates the development of effective energy management strategies. To address these challenges, we propose a Deep Reinforcement Learning approach using Deep-Q Network to develop an adaptive energy management framework for Low Earth Orbit satellites. Compared to traditional techniques, the proposed solution autonomously learns from environmental interaction, offering robustness to uncertainty and online adaptability. It adjusts to changing conditions without manual retraining, making it well-suited for handling modeling uncertainties and non-stationary dynamics typical of space operations. Training is conducted using a realistic satellite electric power system model with accurate component parameters and single-orbit power profiles derived from real space missions. Numerical simulations validate the controller performance across diverse scenarios, including multi-orbit settings, demonstrating superior adaptability and efficiency compared to conventional Maximum Power Point Tracking methods. Full article
Show Figures

Figure 1

17 pages, 2219 KiB  
Article
Assessing Lithium-Ion Battery Safety Under Extreme Transport Conditions: A Comparative Study of Measured and Standardised Parameters
by Yihan Pan, Xingliang Liu, Jinzhong Wu, Haocheng Zhou and Lina Zhu
Energies 2025, 18(15), 4144; https://doi.org/10.3390/en18154144 - 5 Aug 2025
Abstract
The safety of lithium-ion batteries during transportation is critically important. However, current standards exhibit limitations, as their environmental testing parameter thresholds fail to fully encompass actual transportation conditions. To enhance both safety and standard applicability, in this study, we focused on four representative [...] Read more.
The safety of lithium-ion batteries during transportation is critically important. However, current standards exhibit limitations, as their environmental testing parameter thresholds fail to fully encompass actual transportation conditions. To enhance both safety and standard applicability, in this study, we focused on four representative environmental conditions: temperature, vibration, shock, and low atmospheric pressure. Field measurements were conducted across road, rail, and air transport modes using a self-developed data acquisition system based on the NearLink communication technology. The measured data were then compared with the threshold values defined in current international and national standards. The results reveal that certain measured values exceeded the upper limits prescribed by existing standards, indicating limitations in their applicability under extreme transport conditions. Based on these findings, we propose revised testing parameters that better reflect actual transport risks, including a temperature cycling range of 72 ± 2 °C (high) and −40 ± 2 °C (low), a shock acceleration limit of 50 gn, adjusted peak frequencies in the vibration PSD profile, and a minimum pressure threshold of 11.6 kPa. These results provide a scientific basis for optimising safety standards and improving the safety of lithium-ion battery transportation. Full article
Show Figures

Figure 1

21 pages, 3452 KiB  
Article
Features of Ash and Slag Formation During Incomplete Combustion of Coal from the Karazhyra Deposit in Small- and Medium-Scale Power Plants
by Natalya Seraya, Vadim Litvinov, Gulzhan Daumova, Maksat Shaikhov, Raigul Ramazanova and Roza Aubakirova
Processes 2025, 13(8), 2467; https://doi.org/10.3390/pr13082467 (registering DOI) - 4 Aug 2025
Abstract
The study presents a comprehensive assessment of the combustion efficiency of low-grade coal from the Karazhyra deposit in small- and medium-capacity boiler units of the energy workshops operated by Vostokenergo LLP (East Kazakhstan Region, Kazakhstan). It was found that the average annual thermal [...] Read more.
The study presents a comprehensive assessment of the combustion efficiency of low-grade coal from the Karazhyra deposit in small- and medium-capacity boiler units of the energy workshops operated by Vostokenergo LLP (East Kazakhstan Region, Kazakhstan). It was found that the average annual thermal energy output amounts to 2,387,348.85 GJ with a coal consumption of 164,328.5 tons. Based on operational data from 2016 to 2017, the average thermal efficiency (boiler efficiency) was 66.03%, with a maximum value of 75% recorded at the Zhezkent energy workshop. The average lower heating value (LHV) of the coal was 19.41 MJ/kg, which is below the design value of 20.52 MJ/kg, indicating the use of coal with reduced energy characteristics and elevated ash content (21.4%). The unburned carbon content in the ash and slag waste (ASW) was determined to be between 14 and 35%, indicating incomplete combustion. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed the presence of microspheres, porous granules, and coal residues, with silicon and aluminum oxides dominating the composition (up to 70.49%). Differences in the pollutant potential of ash from different boiler units were identified. Recommendations were substantiated regarding the adjustment of the air–fuel regime, modernization of combustion control systems, and utilization of ASW. The results may be used to develop measures aimed at improving the energy efficiency and environmental safety of coal-fired boiler plants. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 7618 KiB  
Article
A Comparative Analysis of Axial Bearing Behaviour in Steel Pipe Piles and PHC Piles for Port Engineering
by Runze Zhang, Yizhi Liu, Lei Wang, Weiming Gong and Zhihui Wan
Buildings 2025, 15(15), 2738; https://doi.org/10.3390/buildings15152738 - 3 Aug 2025
Viewed by 57
Abstract
This paper addresses the critical challenge of selecting suitable pile foundations in port engineering by systematically investigating the axial bearing behavior of large-diameter steel pipe piles and prestressed high-strength concrete (PHC) piles. The study integrates both numerical simulations and field tests within the [...] Read more.
This paper addresses the critical challenge of selecting suitable pile foundations in port engineering by systematically investigating the axial bearing behavior of large-diameter steel pipe piles and prestressed high-strength concrete (PHC) piles. The study integrates both numerical simulations and field tests within the context of the Yancheng Dafeng Port Security Facilities Project. A self-balanced static load numerical model for PHC piles was developed using Plaxis 3D, enabling the simulation of load-displacement responses, axial force transfer, and side resistance distribution. The accuracy of the model was verified through a comparison with field static load test data. With the verified model parameters, the internal force distribution of steel pipe piles was analysed by modifying material properties and adjusting boundary conditions. A comparative analysis of the two pile types was conducted under identical working conditions. The results reveal that the ultimate bearing capacities of the 1# steel pipe pile and the 2# PHC pile are 6734 kN and 6788 kN, respectively. Despite the PHC pile having a 20% larger diameter, its ultimate bearing capacity is comparable to that of the steel pipe pile, suggesting a more efficient utilisation of material strength in the latter. Further numerical simulations indicate that, under the same working conditions, the ultimate bearing capacity of the steel pipe pile exceeds that of the PHC pile by 18.43%. Additionally, the axial force distribution along the steel pipe pile shaft is more uniform, and side resistance is mobilised more effectively. The reduction in side resistance caused by construction disturbances, combined with the slenderness ratio (L/D = 41.7) of the PHC pile, results in 33.87% of the pile’s total bearing capacity being attributed to tip resistance. The findings of this study provide crucial insights into the selection of optimal pile types for terminal foundations, considering factors such as bearing capacity, environmental conditions, and economic viability. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 1016 KiB  
Article
Genetic Associations of ITGB3, FGG, GP1BA, PECAM1, and PEAR1 Polymorphisms and the Platelet Activation Pathway with Recurrent Pregnancy Loss in the Korean Population
by Eun Ju Ko, Eun Hee Ahn, Hyeon Woo Park, Jae Hyun Lee, Da Hwan Kim, Young Ran Kim, Ji Hyang Kim and Nam Keun Kim
Int. J. Mol. Sci. 2025, 26(15), 7505; https://doi.org/10.3390/ijms26157505 (registering DOI) - 3 Aug 2025
Viewed by 61
Abstract
Recurrent pregnancy loss (RPL) is defined as the occurrence of two or more pregnancy losses before 20 weeks of gestation. RPL is a common medical condition among reproductive-age women, with approximately 23 million cases reported annually worldwide. Up to 5% of pregnant women [...] Read more.
Recurrent pregnancy loss (RPL) is defined as the occurrence of two or more pregnancy losses before 20 weeks of gestation. RPL is a common medical condition among reproductive-age women, with approximately 23 million cases reported annually worldwide. Up to 5% of pregnant women may experience two or more consecutive pregnancy losses. Previous studies have investigated risk factors for RPL, including maternal age, uterine pathology, genetic anomalies, infectious agents, endocrine disorders, thrombophilia, and immune dysfunction. However, RPL is a disease caused by a complex interaction of genetic factors, environmental factors (e.g., diet, lifestyle, and stress), epigenetic factors, and the immune system. In addition, due to the lack of research on genetics research related to RPL, the etiology remains unclear in up to 50% of cases. Platelets play a critical role in pregnancy maintenance. This study examined the associations of platelet receptor and ligand gene variants, including integrin subunit beta 3 (ITGB3) rs2317676 A > G, rs3809865 A > T; fibrinogen gamma chain (FGG) rs1049636 T > C, rs2066865 T > C; glycoprotein 1b subunit alpha (GP1BA) rs2243093 T > C, rs6065 C > T; platelet endothelial cell adhesion molecule 1 (PECAM1) rs2812 C > T; and platelet endothelial aggregation receptor 1 (PEAR1) rs822442 C > A, rs12137505 G > A, with RPL prevalence. In total, 389 RPL patients and 375 healthy controls (all Korean women) were enrolled. Genotyping of each single nucleotide polymorphism was performed using polymerase chain reaction–restriction fragment length polymorphism and the TaqMan genotyping assay. All samples were collected with approval from the Institutional Review Board at Bundang CHA Medical Center. The ITGB3 rs3809865 A > T genotype was strongly associated with RPL prevalence (pregnancy loss [PL] ≥ 2: adjusted odds ratio [AOR] = 2.505, 95% confidence interval [CI] = 1.262–4.969, p = 0.009; PL ≥ 3: AOR = 3.255, 95% CI = 1.551–6.830, p = 0.002; PL ≥ 4: AOR = 3.613, 95% CI = 1.403–9.307, p = 0.008). The FGG rs1049636 T > C polymorphism was associated with a decreased risk in women who had three or more pregnancy losses (PL ≥ 3: AOR = 0.673, 95% CI = 0.460–0.987, p = 0.043; PL ≥ 4: AOR = 0.556, 95% CI = 0.310–0.997, p = 0.049). These findings indicate significant associations of the ITGB3 rs3809865 A > T and FGG rs1049636 T > C polymorphisms with RPL, suggesting that platelet function influences RPL in Korean women. Full article
(This article belongs to the Special Issue Molecular Research in Gynecological Diseases—2nd Edition)
Show Figures

Figure 1

15 pages, 428 KiB  
Article
Biodiversity Patterns and Community Construction in Subtropical Forests Driven by Species Phylogenetic Environments
by Pengcheng Liu, Jiejie Jiao, Chuping Wu, Weizhong Shao, Xuesong Liu and Liangjin Yao
Plants 2025, 14(15), 2397; https://doi.org/10.3390/plants14152397 - 2 Aug 2025
Viewed by 142
Abstract
To explore the characteristics of species diversity and phylogenetic diversity, as well as the dominant processes of community construction, in different forest types (deciduous broad-leaved forest, mixed coniferous and broad-leaved forest, and Chinese fir plantation) in subtropical regions, analyze the specific driving patterns [...] Read more.
To explore the characteristics of species diversity and phylogenetic diversity, as well as the dominant processes of community construction, in different forest types (deciduous broad-leaved forest, mixed coniferous and broad-leaved forest, and Chinese fir plantation) in subtropical regions, analyze the specific driving patterns of soil nutrients and other environmental factors on the formation of forest diversity in different forest types, and clarify the differences in response to environmental heterogeneity between natural forests and plantation forests. Based on 48 fixed monitoring plots of 50 m × 50 m in Shouchang Forest Farm, Jiande City, Zhejiang Province, woody plants with a diameter at breast height ≥5 cm were investigated. Species diversity indices (Margalef index, Shannon–Wiener index, Simpson index, and Pielou index), phylogenetic structure index (PD), and environmental factors were used to analyze the relationship between diversity characteristics and environmental factors through variance analysis, correlation analysis, and generalized linear models. Phylogenetic structural indices (NRI and NTI) were used, combined with a random zero model, to explore the mechanisms of community construction in different forest types. Research has found that (1) the deciduous broad-leaved forest had the highest species diversity (Margalef index of 4.121 ± 1.425) and phylogenetic diversity (PD index of 21.265 ± 7.796), significantly higher than the mixed coniferous and broad-leaved forest and the Chinese fir plantation (p < 0.05); (2) there is a significant positive correlation between species richness and phylogenetic diversity, with the best fit being AIC = 70.5636 and R2 = 0.9419 in broad-leaved forests; however, the contribution of evenness is limited; (3) the specific effects of soil factors on different forest types: available phosphorus (AP) is negatively correlated with the diversity of deciduous broad-leaved forests (p < 0.05), total phosphorus (TP) promotes the diversity of coniferous and broad-leaved mixed forests, while the diversity of Chinese fir plantations is significantly negatively correlated with total nitrogen (TN); (4) the phylogenetic structure of three different forest types shows a divergent pattern in deciduous broad-leaved forests, indicating that competition and exclusion dominate the construction of deciduous broad-leaved forests; the aggregation mode of Chinese fir plantation indicates that environmental filtering dominates the construction of Chinese fir plantation; the mixed coniferous and broad-leaved forest is a transitional model, indicating that the mixed coniferous and broad-leaved forest is influenced by both stochastic processes and ecological niche processes. In different forest types in subtropical regions, the species and phylogenetic diversity of broad-leaved forests is significantly higher than in other forest types. The impact of soil nutrients on the diversity of different forest types varies, and the characteristics of community construction in different forest types are also different. This indicates the importance of protecting the original vegetation and provides a scientific basis for improving the ecological function of artificial forest ecosystems through structural adjustment. The research results have important practical guidance value for sustainable forest management and biodiversity conservation in the region. Full article
Show Figures

Figure 1

13 pages, 709 KiB  
Article
Differential Effects of Green Space Typologies on Congenital Anomalies: Data from the Korean National Health Insurance Service (2008–2013)
by Ji-Eun Lee, Kyung-Shin Lee, Youn-Hee Lim, Soontae Kim, Nami Lee and Yun-Chul Hong
Healthcare 2025, 13(15), 1886; https://doi.org/10.3390/healthcare13151886 - 1 Aug 2025
Viewed by 137
Abstract
Background/Objectives: Urban green space has been increasingly recognized as a determinant of maternal and child health. This study investigated the association between prenatal exposure to different types of green space and the risk of congenital anomalies in South Korea. Methods: We [...] Read more.
Background/Objectives: Urban green space has been increasingly recognized as a determinant of maternal and child health. This study investigated the association between prenatal exposure to different types of green space and the risk of congenital anomalies in South Korea. Methods: We analyzed data from the National Health Insurance Service (N = 142,422). Green space exposure was measured at the area level and categorized into grassland and forest; statistical analysis was performed using generalized estimating equations and generalized additive models to analyze the associations. Additionally, subgroup and sensitivity analyses were performed. Results: GEE analysis showed that a 10% increase in the proportion of grassland in a residential district was associated with a reduced risk of nervous system (adjusted odds ratio [aOR]: 0.77, 95% confidence interval [CI]: 0.63–0.94) and genitourinary system anomalies (aOR: 0.83, 95% CI: 0.71–0.97). The subgroup analysis results showed significance only for male infants, but the difference between the sexes was not significant. In the quartile-based analysis, we found a slightly significant p-value for trend for the effect of forests on digestive system anomalies, but the trend was toward increasing risk. In a sensitivity analysis with different exposure classifications, the overall and nervous system anomalies in built green space showed that the risk decreased as green space increased compared to that in the lowest quartile. Conclusions: Our results highlight the importance of spatial environmental factors during pregnancy and suggest that different types of green spaces differentially impact the offspring’s early health outcomes. This study suggests the need for built environment planning as part of preventive maternal and child health strategies. Full article
Show Figures

Figure 1

23 pages, 3153 KiB  
Article
Research on Path Planning Method for Mobile Platforms Based on Hybrid Swarm Intelligence Algorithms in Multi-Dimensional Environments
by Shuai Wang, Yifan Zhu, Yuhong Du and Ming Yang
Biomimetics 2025, 10(8), 503; https://doi.org/10.3390/biomimetics10080503 - 1 Aug 2025
Viewed by 177
Abstract
Traditional algorithms such as Dijkstra and APF rely on complete environmental information for path planning, which results in numerous constraints during modeling. This not only increases the complexity of the algorithms but also reduces the efficiency and reliability of the planning. Swarm intelligence [...] Read more.
Traditional algorithms such as Dijkstra and APF rely on complete environmental information for path planning, which results in numerous constraints during modeling. This not only increases the complexity of the algorithms but also reduces the efficiency and reliability of the planning. Swarm intelligence algorithms possess strong data processing and search capabilities, enabling them to efficiently solve path planning problems in different environments and generate approximately optimal paths. However, swarm intelligence algorithms suffer from issues like premature convergence and a tendency to fall into local optima during the search process. Thus, an improved Artificial Bee Colony-Beetle Antennae Search (IABCBAS) algorithm is proposed. Firstly, Tent chaos and non-uniform variation are introduced into the bee algorithm to enhance population diversity and spatial searchability. Secondly, the stochastic reverse learning mechanism and greedy strategy are incorporated into the beetle antennae search algorithm to improve direction-finding ability and the capacity to escape local optima, respectively. Finally, the weights of the two algorithms are adaptively adjusted to balance global search and local refinement. Results of experiments using nine benchmark functions and four comparative algorithms show that the improved algorithm exhibits superior path point search performance and high stability in both high- and low-dimensional environments, as well as in unimodal and multimodal environments. Ablation experiment results indicate that the optimization strategies introduced in the algorithm effectively improve convergence accuracy and speed during path planning. Results of the path planning experiments show that compared with the comparison algorithms, the average path planning distance of the improved algorithm is reduced by 23.83% in the 2D multi-obstacle environment, and the average planning time is shortened by 27.97% in the 3D surface environment. The improvement in path planning efficiency makes this algorithm of certain value in engineering applications. Full article
(This article belongs to the Section Biological Optimisation and Management)
Show Figures

Figure 1

14 pages, 1714 KiB  
Article
A Kalman Filter-Based Localization Calibration Method Optimized by Reinforcement Learning and Information Matrix Fusion
by Zijia Huang, Qiushi Xu, Menghao Sun and Xuzhen Zhu
Entropy 2025, 27(8), 821; https://doi.org/10.3390/e27080821 (registering DOI) - 1 Aug 2025
Viewed by 179
Abstract
To address the degradation in localization accuracy caused by insufficient robustness of filter parameters and inefficient multi-trajectory data fusion in dynamic environments, this paper proposes a Kalman filter-based localization calibration method optimized by reinforcement learning and information matrix fusion (RL-IMKF). An actor–critic reinforcement [...] Read more.
To address the degradation in localization accuracy caused by insufficient robustness of filter parameters and inefficient multi-trajectory data fusion in dynamic environments, this paper proposes a Kalman filter-based localization calibration method optimized by reinforcement learning and information matrix fusion (RL-IMKF). An actor–critic reinforcement learning network is designed to adaptively adjust the state covariance matrix, enhancing the Kalman filter’s adaptability to environmental changes. Meanwhile, a multi-trajectory information matrix fusion strategy is introduced, which aggregates multiple trajectories in the information domain via weighted inverse covariance matrices to suppress error propagation and improve system consistency. Experiments using both simulated and real-world sensor data demonstrate that the proposed method outperforms traditional extended Kalman filter approaches in terms of localization accuracy and stability, providing a novel solution for cooperative localization calibration of unmanned aerial vehicle (UAV) swarms in dynamic environments. Full article
(This article belongs to the Special Issue Complexity, Entropy and the Physics of Information II)
Show Figures

Figure 1

14 pages, 6773 KiB  
Article
MoTiCo Conversion Coating on 7075 Aluminium Alloy Surface: Preparation, Corrosion Resistance Analysis, and Application in Outdoor Sports Equipment Trekking Poles
by Yiqun Wang, Feng Huang and Xuzheng Qian
Metals 2025, 15(8), 864; https://doi.org/10.3390/met15080864 (registering DOI) - 1 Aug 2025
Viewed by 117
Abstract
The problem of protecting 7075 Al alloy trekking poles from corrosion in complex outdoor environments was addressed using a composite conversion coating system. This system comprised Na2MoO4, NaF, CoSO4·7H2O, ethylenediaminetetraacetic acid-2Na, and H2(TiF [...] Read more.
The problem of protecting 7075 Al alloy trekking poles from corrosion in complex outdoor environments was addressed using a composite conversion coating system. This system comprised Na2MoO4, NaF, CoSO4·7H2O, ethylenediaminetetraacetic acid-2Na, and H2(TiF6). The influences of this system on the properties of the coating layer were systematically studied by adjusting the pH of the coating solution. The conversion temperature and pH were the pivotal parameters influencing the formation of the conversion coating. The pH substantially influenced the compactness of the coating layer, acting as a regulatory agent of the coating kinetics. When the conversion temperature and pH were set to 40 °C and 3.8, respectively, the prepared coating layer displayed optimal performance in terms of compactness and protective properties. Therefore, this parameter combination favours the synthesis of high-performance conversion coatings. Microscopy confirmed the formation of a continuous, dense composite oxide film structure under these conditions, effectively blocking erosion in corrosive media. Furthermore, the optimised process led to substantial enhancements in the environmental adaptabilities and service lives of the components of trekking poles, thus establishing a theoretical foundation and technical reference for use in the surface protection of outdoor equipment. Full article
Show Figures

Figure 1

30 pages, 599 KiB  
Review
A Survey of Approximation Algorithms for the Power Cover Problem
by Jiaming Zhang, Zhikang Zhang and Weidong Li
Mathematics 2025, 13(15), 2479; https://doi.org/10.3390/math13152479 - 1 Aug 2025
Viewed by 90
Abstract
Wireless sensor networks (WSNs) have attracted significant attention due to their widespread applications in various fields such as environmental monitoring, agriculture, intelligent transportation, and healthcare. In these networks, the power cost of a sensor node is closely related to the radius of its [...] Read more.
Wireless sensor networks (WSNs) have attracted significant attention due to their widespread applications in various fields such as environmental monitoring, agriculture, intelligent transportation, and healthcare. In these networks, the power cost of a sensor node is closely related to the radius of its coverage area, following a nonlinear relationship where power increases as the coverage radius grows according to an attenuation factor. This means that increasing the coverage radius of a sensor leads to a corresponding increase in its power cost. Consequently, minimizing the total power cost of the network while all clients are served has become a crucial research topic. The power cover problem focuses on adjusting the power levels of sensors to serve all clients while minimizing the total power cost. This survey focuses on the power cover problem and its related variants in WSNs. Specifically, it introduces nonlinear integer programming formulations for the power cover problem and its related variants, all within the specified sensor setting. It also provides a comprehensive overview of the power cover problem and its variants under both specified and unspecified sensor settings, summarizes existing results and approximation algorithms, and outlines potential directions for future research. Full article
Show Figures

Figure 1

Back to TopTop