Differential Effects of Green Space Typologies on Congenital Anomalies: Data from the Korean National Health Insurance Service (2008–2013)
Abstract
1. Introduction
2. Materials and Methods
2.1. Data and Variables
2.2. Exposure to Green Space
2.3. Covariates
2.4. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Association Between Green Space and Congenital Anomalies
3.3. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boyle, B.; Addor, M.C.; Arriola, L.; Barisic, I.; Bianchi, F.; Csáky-Szunyogh, M.; de Walle, H.E.K.; Dias, C.M.; Draper, E.; Gatt, M.; et al. Estimating Global Burden of Disease due to congenital anomaly: An analysis of European data. Arch. Dis. Child. Fetal Neonatal Ed. 2018, 103, F22–F28. [Google Scholar] [CrossRef]
- Lee, J.A.; Lee, S.M.; Chung, S.H.; Lee, J.H.; Shim, J.W.; Lim, J.W.; Kim, C.R.; Chang, Y.S. Major Congenital Anomalies in Korean Livebirths in 2013–2014: Based on the National Health Insurance Database. J. Korean Med. Sci. 2023, 38, e304. [Google Scholar] [CrossRef]
- Ardenghi, C.; Vestri, E.; Costanzo, S.; Lanfranchi, G.; Vertemati, M.; Destro, F.; Pierucci, U.M.; Calcaterra, V.; Pelizzo, G. Congenital Esophageal Atresia Long-Term Follow-Up-The Pediatric Surgeon’s Duty to Focus on Quality of Life. Children 2022, 9, 331. [Google Scholar] [CrossRef]
- Lee, K.S.; Choi, Y.J.; Cho, J.; Lee, H.; Lee, H.; Park, S.J.; Park, J.S.; Hong, Y.C. Environmental and Genetic Risk Factors of Congenital Anomalies: An Umbrella Review of Systematic Reviews and Meta-Analyses. J. Korean Med. Sci. 2021, 36, e183. [Google Scholar] [CrossRef]
- Bai, Z.; Han, J.; An, J.; Wang, H.; Du, X.; Yang, Z.; Mo, X. The global, regional, and national patterns of change in the burden of congenital birth defects, 1990–2021: An analysis of the global burden of disease study 2021 and forecast to 2040. EClinicalMedicine 2024, 77, 102873. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.C.; Robinson, J.C.; Cooke, W.H., 3rd; Parnell, A.S.; Zhang, L.; Northington, L. Relationship Between Environmental Air Quality and Congenital Heart Defects. Nurs. Res. 2022, 71, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, M.M.; Wright, C.Y.; Ayer, J.; Urban, M.F.; Pham, M.D.; Boeckmann, M.; Areal, A.; Wernecke, B.; Swift, C.P.; Robinson, M.; et al. Impacts of High Environmental Temperatures on Congenital Anomalies: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 4910. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Lin, Z.; Ou, Y.; Soim, A.; Shrestha, S.; Lu, Y.; Sheridan, S.; Luben, T.J.; Fitzgerald, E.; Bell, E.; et al. Maternal ambient heat exposure during early pregnancy in summer and spring and congenital heart defects—A large US population-based, case-control study. Environ. Int. 2018, 118, 211–221. [Google Scholar] [CrossRef]
- Li, S.; Wang, Q.; Luo, W.; Jia, S.; Liu, D.; Ma, W.; Gu, H.; Wei, X.; He, Y.; Cao, S.; et al. Relationship between maternal heavy metal exposure and congenital heart defects: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. Int. 2022, 29, 55348–55366. [Google Scholar] [CrossRef]
- Diener, A.; Mudu, P. How can vegetation protect us from air pollution? A critical review on green spaces’ mitigation abilities for air-borne particles from a public health perspective—With implications for urban planning. Sci. Total Environ. 2021, 796, 148605. [Google Scholar] [CrossRef]
- Peters, K.; Elands, B.; Buijs, A. Social interactions in urban parks: Stimulating social cohesion? Urban For. Urban Green. 2010, 9, 93–100. [Google Scholar] [CrossRef]
- Zhen, S.; Zheng, L.; Li, Q.; Yin, Z.; Cui, H.; Li, Y.; Wu, S.; Li, K.; Zhao, Y.; Liang, F.; et al. Maternal green space exposure and congenital heart defects: A population-based study. Environ. Res. 2025, 268, 120745. [Google Scholar] [CrossRef]
- Weber, K.A.; Yang, W.; Carmichael, S.L.; Collins, R.T., 2nd; Luben, T.J.; Desrosiers, T.A.; Insaf, T.Z.; Le, M.T.; Evans, S.P.; Romitti, P.A.; et al. Assessing associations between residential proximity to greenspace and birth defects in the National Birth Defects Prevention Study. Environ. Res. 2023, 216, 114760. [Google Scholar] [CrossRef] [PubMed]
- Balany, F.; Ng, A.W.; Muttil, N.; Muthukumaran, S.; Wong, M.S. Green Infrastructure as an Urban Heat Island Mitigation Strategy—A Review. Water 2020, 12, 3577. [Google Scholar] [CrossRef]
- Wang, H.; Huang, X.; Hao, H.; Chang, H.H. Greenspace Morphology and Preterm Birth: A State-Wide Study in Georgia, United States (2001–2016). Environ. Health Perspect. 2024, 132, 127001. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.S.; Wheeler, B.W.; White, M.P.; Economou, T.; Osborne, N.J. Research note: Urban street tree density and antidepressant prescription rates—A cross-sectional study in London, UK. Landsc. Urban Plan. 2015, 136, 174–179. [Google Scholar] [CrossRef]
- Wang, H.; Tassinary, L.G. Association between greenspace morphology and prevalence of non-communicable diseases mediated by air pollution and physical activity. Landsc. Urban Plan. 2024, 242, 104934. [Google Scholar] [CrossRef]
- Bratman, G.N.; Anderson, C.B.; Berman, M.G.; Cochran, B.; de Vries, S.; Flanders, J.; Folke, C.; Frumkin, H.; Gross, J.J.; Hartig, T.; et al. Nature and mental health: An ecosystem service perspective. Sci. Adv. 2019, 5, eaax0903. [Google Scholar] [CrossRef]
- Rivera-Dominguez, G.; Ward, R. Pediatric Gastroenteritis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Verhaegh, B.P.M.; Bijnens, E.M.; van den Heuvel, T.R.A.; Goudkade, D.; Zeegers, M.P.; Nawrot, T.S.; Masclee, A.A.M.; Jonkers, D.; Pierik, M.J. Ambient air quality as risk factor for microscopic colitis—A geographic information system (GIS) study. Environ. Res. 2019, 178, 108710. [Google Scholar] [CrossRef]
- Thorsen, A.J. Noninfectious colitides: Collagenous colitis, lymphocytic colitis, diversion colitis, and chemically induced colitis. Clin. Colon. Rectal Surg. 2007, 20, 47–57. [Google Scholar] [CrossRef]
- Chun, T.H.; Schnadower, D.; Casper, T.C.; Sapién, R.; Tarr, P.I.; O’Connell, K.; Roskind, C.; Rogers, A.; Bhatt, S.; Mahajan, P.; et al. Lack of Association of Household Income and Acute Gastroenteritis Disease Severity in Young Children: A Cohort Study. Acad. Pediatr. 2022, 22, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Haaland, C.; van den Bosch, C.K. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban For. Urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
- Hwang, Y.; Ryu, Y.; Qu, S. Expanding vegetated areas by human activities and strengthening vegetation growth concurrently explain the greening of Seoul. Landsc. Urban Plan. 2022, 227, 104518. [Google Scholar] [CrossRef]
- AIRKOREA. Confirmed Data by Sensing Station. Available online: http://www.airkorea.or.kr/eng (accessed on 25 March 2021).
- Markevych, I.; Schoierer, J.; Hartig, T.; Chudnovsky, A.; Hystad, P.; Dzhambov, A.M.; de Vries, S.; Triguero-Mas, M.; Brauer, M.; Nieuwenhuijsen, M.J.; et al. Exploring pathways linking greenspace to health: Theoretical and methodological guidance. Environ. Res. 2017, 158, 301–317. [Google Scholar] [CrossRef]
- Aleixo, C.; Branquinho, C.; Laanisto, L.; Tryjanowski, P.; Niinemets, Ü.; Moretti, M.; Samson, R.; Pinho, P. Urban Green Connectivity Assessment: A Comparative Study of Datasets in European Cities. Remote Sens. 2024, 16, 771. [Google Scholar] [CrossRef]
- Wang, H.; Gholami, S.; Xu, W.; Samavatekbatan, A.; Sleipness, O.; Tassinary, L.G. Where and how to invest in greenspace for optimal health benefits: A systematic review of greenspace morphology and human health relationships. Lancet Planet. Health 2024, 8, e574–e587. [Google Scholar] [CrossRef]
- Banay, R.F.; Bezold, C.P.; James, P.; Hart, J.E.; Laden, F. Residential greenness: Current perspectives on its impact on maternal health and pregnancy outcomes. Int. J. Womens Health 2017, 9, 133–144. [Google Scholar] [CrossRef]
- Agay-Shay, K.; Peled, A.; Crespo, A.V.; Peretz, C.; Amitai, Y.; Linn, S.; Friger, M.; Nieuwenhuijsen, M.J. Green spaces and adverse pregnancy outcomes. Occup. Environ. Med. 2014, 71, 562–569. [Google Scholar] [CrossRef]
- Rigolon, A.; Browning, M.; McAnirlin, O.; Yoon, H.V. Green Space and Health Equity: A Systematic Review on the Potential of Green Space to Reduce Health Disparities. Int. J. Environ. Res. Public Health 2021, 18, 2563. [Google Scholar] [CrossRef]
- Dennis, M.; Cook, P.A.; James, P.; Wheater, C.P.; Lindley, S.J. Relationships between health outcomes in older populations and urban green infrastructure size, quality and proximity. BMC Public Health 2020, 20, 626. [Google Scholar] [CrossRef]
- Torres Toda, M.; Estarlich, M.; Ballester, F.; De Castro, M.; Fernández-Somoano, A.; Ibarluzea, J.; Iñiguez, C.; Lertxundi, A.; Subiza-Perez, M.; Sunyer, J.; et al. Associations of residential greenspace exposure and fetal growth across four areas in Spain. Health Place 2022, 78, 102912. [Google Scholar] [CrossRef]
- Zheng, T.; Zhang, J.; Sommer, K.; Bassig, B.A.; Zhang, X.; Braun, J.; Xu, S.; Boyle, P.; Zhang, B.; Shi, K.; et al. Effects of Environmental Exposures on Fetal and Childhood Growth Trajectories. Ann. Glob. Health 2016, 82, 41–99. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Li, Q.; Yang, J.; Han, N.; Chen, G.; Jin, C.; Xu, X.; Liu, Z.; Liu, J.; Luo, S.; et al. The associations of residential greenness with fetal growth in utero and birth weight: A birth cohort study in Beijing, China. Environ. Int. 2020, 141, 105793. [Google Scholar] [CrossRef]
- Lin, Q.; Gao, Y.; Liu, Y.; Huang, S.; Su, Y.; Luo, W.; Shi, C.; Yang, Y.; Lin, H.; Su, X.; et al. Heat wave exposure during pregnancy and neurodevelopmental delay in young children: A birth cohort study. Environ. Res. 2025, 266, 120541. [Google Scholar] [CrossRef]
- Barbalat, G.; Guilbert, A.; Adelaïde, L.; Charles, M.A.; Hough, I.; Launay, L.; Kloog, I.; Lepeule, J. Impact of early life exposure to heat and cold on linguistic development in two-year-old children: Findings from the ELFE cohort study. Environ. Health 2025, 24, 19. [Google Scholar] [CrossRef] [PubMed]
- Kilinc, M.F.; Cakmak, S.; Demir, D.O.; Doluoglu, O.G.; Yildiz, Y.; Horasanli, K.; Dalkilic, A. Does maternal exposure during pregnancy to higher ambient temperature increase the risk of hypospadias? J. Pediatr. Urol. 2016, 12, 407.e401–407.e406. [Google Scholar] [CrossRef]
- Auger, N.; Fraser, W.D.; Arbour, L.; Bilodeau-Bertrand, M.; Kosatsky, T. Elevated ambient temperatures and risk of neural tube defects. Occup. Environ. Med. 2017, 74, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Aram, F.; Higueras García, E.; Solgi, E.; Mansournia, S. Urban green space cooling effect in cities. Heliyon 2019, 5, e01339. [Google Scholar] [CrossRef]
- Hasan, S.; Choi, W.; Kang, S. Associations of Urban and Green Land Covers and Heat Waves in 49 U.S. Cities between 1992 and 2019. Int. J. Environ. Res. Public Health 2022, 19, 7688. [Google Scholar] [CrossRef]
- Grazuleviciene, R.; Danileviciute, A.; Dedele, A.; Vencloviene, J.; Andrusaityte, S.; Uždanaviciute, I.; Nieuwenhuijsen, M.J. Surrounding greenness, proximity to city parks and pregnancy outcomes in Kaunas cohort study. Int. J. Hyg. Environ. Health 2015, 218, 358–365. [Google Scholar] [CrossRef]
- Verheyen, V.J.; Remy, S.; Lambrechts, N.; Govarts, E.; Colles, A.; Poelmans, L.; Verachtert, E.; Lefebvre, W.; Monsieurs, P.; Vanpoucke, C.; et al. Residential exposure to air pollution and access to neighborhood greenspace in relation to hair cortisol concentrations during the second and third trimester of pregnancy. Environ. Health 2021, 20, 11. [Google Scholar] [CrossRef]
- Boll, L.M.; Khamirchi, R.; Alonso, L.; Llurba, E.; Pozo, Ó.J.; Miri, M.; Dadvand, P. Prenatal greenspace exposure and cord blood cortisol levels: A cross-sectional study in a middle-income country. Environ. Int. 2020, 144, 106047. [Google Scholar] [CrossRef]
- Van den Bergh, B.R.H.; van den Heuvel, M.I.; Lahti, M.; Braeken, M.; de Rooij, S.R.; Entringer, S.; Hoyer, D.; Roseboom, T.; Räikkönen, K.; King, S.; et al. Prenatal developmental origins of behavior and mental health: The influence of maternal stress in pregnancy. Neurosci. Biobehav. Rev. 2020, 117, 26–64. [Google Scholar] [CrossRef]
- Wu, Y.; De Asis-Cruz, J.; Limperopoulos, C. Brain structural and functional outcomes in the offspring of women experiencing psychological distress during pregnancy. Mol. Psychiatry 2024, 29, 2223–2240. [Google Scholar] [CrossRef]
- Lee, K.S.; Kim, B.N.; Cho, J.; Jang, Y.Y.; Choi, Y.J.; Lee, W.S.; Han, C.; Bae, H.J.; Lim, Y.H.; Kim, J.I.; et al. Associations between surrounding residential greenness and intelligence quotient in 6-year-old children. Sci. Total Environ. 2021, 759, 143561. [Google Scholar] [CrossRef] [PubMed]
- Frumkin, H.; Bratman, G.N.; Breslow, S.J.; Cochran, B.; Kahn, P.H., Jr.; Lawler, J.J.; Levin, P.S.; Tandon, P.S.; Varanasi, U.; Wolf, K.L.; et al. Nature Contact and Human Health: A Research Agenda. Environ. Health Perspect. 2017, 125, 075001. [Google Scholar] [CrossRef] [PubMed]
- Çaylan, N.; Yalçin, S.S.; Tezel, B.; Aydin, Ş.; Üner, O.; Kara, F. Evaluation of neural tube defects from 2014 to 2019 in Turkey. BMC Pregnancy Childbirth 2022, 22, 340. [Google Scholar] [CrossRef] [PubMed]
Type of Congenital Diseases | Cases |
---|---|
Overall congenital diseases (1) | 35,629 (124) |
Nervous system | 1416 (4.9) |
Eye, ear, nose, and face | 2702 (9.4) |
Circulatory system | 12,893 (44.9) |
Digestive system | 3426 (11.9) |
Genitourinary system | 7398 (25.8) |
Musculoskeletal system | 12,123 (42.2) |
Exposure | Total | Case | Control | p-Value |
---|---|---|---|---|
(N = 142,422) | (n = 35,629) | (n = 106,793) | ||
Sex, N (%) | ||||
Male | 78,334 (55.00) | 19,601 (55.01) | 58,733 (55.00) | 0.96 |
Female | 64,088 (45.00) | 16,028 (44.99) | 48,060 (45.00) | |
Season of birth, N (%) | ||||
Winter (December–February) | 35,988 (25.27) | 8526 (23.93) | 27,462 (25.72) | <0.0001 |
Spring (March–May) | 37,193 (26.11) | 8748 (24.55) | 28,445 (26.64) | |
Summer (June–August) | 33,997 (23.87) | 8715 (24.46) | 25,282 (23.67) | |
Fall (September–November) | 35,244 (24.75) | 9640 (27.06) | 25,604 (23.98) | |
Birth year, N (%) | ||||
2008 | 12,156 (6.06) | 3040 (8.53) | 9116 (8.54) | 1.00 |
2009 | 14,031 (7.00) | 3509 (9.85) | 10,522 (9.85) | |
2010 | 19,518 (9.74) | 4881 (13.70) | 14,637 (13.71) | |
2011 | 27,604 (13.77) | 6904 (19.38) | 20,700 (19.38) | |
2012 | 33,115 (16.52) | 8286 (23.26) | 24,829 (23.25) | |
2013 | 35,998 (17.96) | 9009 (25.29) | 26,989 (25.27) | |
Income level, N (%) | ||||
Low | 13,546 (9.51) | 3385 (9.50) | 10,161 (9.51) | 0.94 |
High | 128,876 (90.49) | 32,244 (90.50) | 96,632 (90.49) | |
Unmet medical need rates, Mean (SD) | 13.59 (3.48) | 13.65 (3.51) | 13.57 (3.47) | 0.0002 |
OB/GYN clinics, N (%) | 33.43 (18.05) | 33.54 (18.22) | 33.40 (17.98) | 0.19 |
Population density (p/m2), N (%) | 227.4 (446.5) | 233.6 (472.5) | 225.4 (437.4) | 0.0038 |
Temperature, Mean (SD) | 12.89 (0.94) | 12.90 (0.94) | 12.89 (0.94) | 0.04 |
Air pollution, Median (IQR) | ||||
PM2.5 (μg/m3) | 28.82 (6.92) | 28.82 (7.09) | 28.82 (6.88) | 0.58 |
NO2 (ppb) | 28.92 (13.79) | 28.92 (14.03) | 28.92 (13.63) | 0.06 |
CO (ppb) | 572.98 (140.36) | 572.98 (143.74) | 572.98 (136.48) | 0.42 |
SO2 (ppb) | 5.25 (1.80) | 5.22 (1.82) | 5.25 (1.76) | 0.03 |
O3 (ppb) | 21.35 (5.62) | 21.38 (5.73) | 21.35 (5.59) | 0.004 |
Odds Ratio (95% CI) | |||
---|---|---|---|
Type of Congenital Diseases | Total | Grassland | Forest |
Overall congenital diseases (1) | 0.96 (0.92, 1.01) | 0.88 (0.73, 1.05) | 0.98 (0.94, 1.02) |
Nervous system | 1.00 (0.93, 1.07) | 0.77 (0.63, 0.94) | 1.02 (0.95, 1.08) |
Eye, ear, nose, and face | 0.97 (0.91, 1.03) | 0.85 (0.71, 1.02) | 0.99 (0.94, 1.04) |
Circulatory system | 0.96 (0.92, 1.01) | 0.86 (0.70, 1.06) | 0.98 (0.93, 1.02) |
Digestive system | 1.05 (0.98, 1.13) | 0.84 (0.70, 1.01) | 1.05 (0.99, 1.11) |
Genitourinary system | 1.00 (0.96, 1.04) | 0.83 (0.71, 0.97) | 1.01 (0.97, 1.05) |
Musculoskeletal system | 0.98 (0.93, 1.02) | 0.88 (0.74, 1.05) | 0.99 (0.95, 1.03) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-E.; Lee, K.-S.; Lim, Y.-H.; Kim, S.; Lee, N.; Hong, Y.-C. Differential Effects of Green Space Typologies on Congenital Anomalies: Data from the Korean National Health Insurance Service (2008–2013). Healthcare 2025, 13, 1886. https://doi.org/10.3390/healthcare13151886
Lee J-E, Lee K-S, Lim Y-H, Kim S, Lee N, Hong Y-C. Differential Effects of Green Space Typologies on Congenital Anomalies: Data from the Korean National Health Insurance Service (2008–2013). Healthcare. 2025; 13(15):1886. https://doi.org/10.3390/healthcare13151886
Chicago/Turabian StyleLee, Ji-Eun, Kyung-Shin Lee, Youn-Hee Lim, Soontae Kim, Nami Lee, and Yun-Chul Hong. 2025. "Differential Effects of Green Space Typologies on Congenital Anomalies: Data from the Korean National Health Insurance Service (2008–2013)" Healthcare 13, no. 15: 1886. https://doi.org/10.3390/healthcare13151886
APA StyleLee, J.-E., Lee, K.-S., Lim, Y.-H., Kim, S., Lee, N., & Hong, Y.-C. (2025). Differential Effects of Green Space Typologies on Congenital Anomalies: Data from the Korean National Health Insurance Service (2008–2013). Healthcare, 13(15), 1886. https://doi.org/10.3390/healthcare13151886