Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = enteropathogenic Yersinia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 811 KiB  
Article
A Novel GABA-Producing Levilactobacillus brevis Strain Isolated from Organic Tomato as a Promising Probiotic
by Asia Pizzi, Carola Parolin, Davide Gottardi, Arianna Ricci, Giuseppina Paola Parpinello, Rosalba Lanciotti, Francesca Patrignani and Beatrice Vitali
Biomolecules 2025, 15(7), 979; https://doi.org/10.3390/biom15070979 - 8 Jul 2025
Viewed by 538
Abstract
Gamma-aminobutyric acid (GABA) is a non-protein amino acid playing a significant role in the central nervous system and the gut–brain axis. This study investigated the potential to produce GABA by lactic acid bacteria (LAB) isolated from different varieties of organic tomatoes. The isolated [...] Read more.
Gamma-aminobutyric acid (GABA) is a non-protein amino acid playing a significant role in the central nervous system and the gut–brain axis. This study investigated the potential to produce GABA by lactic acid bacteria (LAB) isolated from different varieties of organic tomatoes. The isolated LAB were taxonomically identified by 16S rRNA gene sequencing, the presence of the gadB gene (glutamate decarboxylase) was detected, and GABA production was quantified using HPLC. Levilactobacillus brevis CRAI showed the highest GABA production under optimised fermentation conditions with 4% monosodium glutamate (MSG). The genome sequencing of L. brevis CRAI revealed the presence of gadA and gadB isoforms and assessed the strain’s safety profile. The gene expression analysis revealed that the gadA and gadB genes were upregulated in the presence of 4% MSG. The probiotic potential of L. brevis CRAI was also assessed by functional assays. The strain showed strong antimicrobial activity against representative enteropathogens, i.e., Escherichia coli ETEC, Salmonella choleraesuis, and Yersinia enterocolitica, and anti-inflammatory effect, reducing nitric oxide production in LPS-stimulated RAW264.7 macrophages. In addition, its ability to adhere to intestinal epithelial Caco-2 cells was demonstrated. These results highlight L. brevis CRAI as a promising candidate for the development of GABA-enriched functional foods or probiotic supplements with the perspective to modulate the gut-brain axis. Full article
(This article belongs to the Special Issue Probiotics and Their Metabolites, 2nd Edition)
Show Figures

Graphical abstract

83 pages, 403 KiB  
Article
Collider Bias Assessment in Colombian Indigenous Wiwa and Kogui Populations with Chronic Gastroenteric Disorder of Likely Infectious Etiology Suggests Complex Microbial Interactions Rather Than Clear Assignments of Etiological Relevance
by Hagen Frickmann, Joy Backhaus, Achim Hoerauf, Ralf Matthias Hagen and Simone Kann
Microorganisms 2024, 12(5), 970; https://doi.org/10.3390/microorganisms12050970 - 11 May 2024
Viewed by 1347
Abstract
Multiple microbial detections in stool samples of indigenous individuals suffering from chronic gastroenteric disorder of a likely infectious origin, characterized by recurring diarrhea of variable intensity, in the rural north-east of Colombia are common findings, making the assignment of etiological relevance to individual [...] Read more.
Multiple microbial detections in stool samples of indigenous individuals suffering from chronic gastroenteric disorder of a likely infectious origin, characterized by recurring diarrhea of variable intensity, in the rural north-east of Colombia are common findings, making the assignment of etiological relevance to individual pathogens challenging. In a population of 773 indigenous people from either the tribe Wiwa or Kogui, collider bias analysis was conducted comprising 32 assessed microorganisms including 10 bacteria (Aeromonas spp., Campylobacter spp., enteroaggregative Escherichia coli (EAEC), enteropathogenic Escherichia coli (EPEC), enterotoxigenic Escherichia coli (ETEC), Salmonella spp., Shiga toxin-producing Escherichia coli (STEC), Shigella spp./enteroinvasive Escherichia coli (EIEC), Tropheryma whipplei and Yersinia spp.), 11 protozoa (Blastocystis spp., Cryptosporidium spp., Cyclospora spp., Dientamoeba fragilis, Entamoeba coli, Entamoeba bangladeshi/dispar/histolytica/moshkovskii complex, Entamoeba histolytica, Endolimax nana, Giardia duodenalis, Iodamoeba buetschlii and Pentatrichomonas hominis), 8 helminths (Ascaris spp., Enterobius vermicularis, Hymenolepis spp., Necator americanus, Schistosoma spp., Strongyloides spp., Taenia spp. and Trichuris spp.), microsporidia (Encephalocytozoon spp.) and fungal elements (microscopically observed conidia and pseudoconidia). The main results indicated that negative associations potentially pointing towards collider bias were infrequent events (n = 14), while positive associations indicating increased likelihood of co-occurrence of microorganisms quantitatively dominated (n = 88). Microorganisms showing the most frequent negative associations were EPEC (n = 6) and Blastocystis spp. (n = 3), while positive associations were most common for Trichuris spp. (n = 16), Dientamoeba fragilis (n = 15), Shigella spp./EIEC (n = 12), Ascaris spp. (n = 11) and Blastocystis spp. (n = 10). Of note, positive associations quantitively dominated for Blastocystis spp. In conclusion, collider bias assessment did not allow clear-cut assignment of etiological relevance for detected enteric microorganisms within the assessed Colombian indigenous population. Instead, the results suggested complex microbial interactions with potential summative effects. Future studies applying alternative biostatistical approaches should be considered to further delineate respective interactions. Full article
(This article belongs to the Special Issue Novel Strategies in the Study of the Human Gut Microbiota 2.0)
10 pages, 783 KiB  
Article
Enteropathogenic Yersinia with Public Health Relevance Found in Dogs and Cats in Finland
by Maria Fredriksson-Ahomaa, Thomas Grönthal, Viivi Heljanko, Venla Johansson, Merja Rantala, Annamari Heikinheimo and Riikka Laukkanen-Ninios
Pathogens 2024, 13(1), 54; https://doi.org/10.3390/pathogens13010054 - 5 Jan 2024
Cited by 1 | Viewed by 2660
Abstract
Yersiniosis is a common zoonotic enteric disease among humans, which has been linked to pigs and contaminated food, especially pork. The epidemiology of yersiniosis is still obscure, and studies on yersiniosis in pets are very scarce. In this study, we performed pheno- and [...] Read more.
Yersiniosis is a common zoonotic enteric disease among humans, which has been linked to pigs and contaminated food, especially pork. The epidemiology of yersiniosis is still obscure, and studies on yersiniosis in pets are very scarce. In this study, we performed pheno- and genotypic characterisation of 50 Yersinia strains isolated from pets in Finland between 2012 and 2023. Y. enterocolitica 4/O:3/ST135, the most common type in human yersiniosis, was also the most common type (68%) found in clinical faecal samples in our study. Also, human pathogenic Y. enterocolitica 2/O:9/ST139 and Y. pseudotuberculosis O:1/ST9 and O:1/ST42 strains carrying all essential pathogenic genes were identified. Three Y. enterocolitica 4/O:3/ST9 strains were multi-drug-resistant and two of them were highly related, showing one allelic difference (AD) with core genome multi-locus sequence typing. Non-pathogenic, genotypically highly diverse Y. enterocolitica 1A strains, showing more than 1000 ADs and missing the essential virulence genes, were also recognised in dogs and cats. Our study demonstrates that pets can excrete human pathogenic Yersinia in their faeces and may serve as an infection source for human yersiniosis, especially in families with small children in close contact with their pets. Full article
Show Figures

Figure 1

11 pages, 1240 KiB  
Article
Comparison of Multiple-Locus Variable-Number Tandem Repeat Analysis Profiles of Enteropathogenic Yersinia spp. Obtained from Humans, Domestic Pigs, Wild Boars, Rodents, Pork and Dog Food
by Axel Sannö, Thomas Rosendal, Anna Aspán, Annette Backhans and Magdalena Jacobson
Animals 2023, 13(19), 3055; https://doi.org/10.3390/ani13193055 - 29 Sep 2023
Cited by 1 | Viewed by 1275
Abstract
The enteropathogenic Yersinia genus is commonly detected in wildlife including wild boars. Difficulties in its cultivation may hamper subsequent epidemiological studies and outbreak investigations. Multiple-locus variable-number tandem repeat analysis (MLVA) of Yersinia (Y.) enterocolitica and Y. pseudotuberculosis has proven useful in source attribution [...] Read more.
The enteropathogenic Yersinia genus is commonly detected in wildlife including wild boars. Difficulties in its cultivation may hamper subsequent epidemiological studies and outbreak investigations. Multiple-locus variable-number tandem repeat analysis (MLVA) of Yersinia (Y.) enterocolitica and Y. pseudotuberculosis has proven useful in source attribution and epidemiological studies but has hitherto relied on the analysis of isolates. In the present study, MLVA profiles generated from 254 isolates of Y. enterocolitica indicated similarities between human, pig and rodent isolates. Further, MLVA analyses of 13 Y. pseudotuberculosis pure-cultured isolates were compared to MLVA analyses performed directly on the 14 PCR-positive enrichment broths from which the isolates originated, which showed matching MLVA profiles. This indicates that MLVA analysis performed directly on enrichment broths could be a useful method for molecular epidemiological investigations. In addition, 10 out of 32 samples of wild boar minced meat obtained from private hunters and from approved wild-game-handling establishments were PCR-positive for the presence of Y. enterocolitica and may indicate a risk for public health. Full article
Show Figures

Figure 1

30 pages, 6561 KiB  
Article
Interplay between the RNA Chaperone Hfq, Small RNAs and Transcriptional Regulator OmpR Modulates Iron Homeostasis in the Enteropathogen Yersinia enterocolitica
by Karolina Jaworska, Julia Konarska, Patrycja Gomza, Paula Rożen, Marta Nieckarz, Agata Krawczyk-Balska, Katarzyna Brzostek and Adrianna Raczkowska
Int. J. Mol. Sci. 2023, 24(13), 11157; https://doi.org/10.3390/ijms241311157 - 6 Jul 2023
Cited by 1 | Viewed by 2425
Abstract
Iron is both essential for and potentially toxic to bacteria, so the precise maintenance of iron homeostasis is necessary for their survival. Our previous study indicated that in the human enteropathogen Yersinia enterocolitica, the regulator OmpR directly controls the transcription of the [...] Read more.
Iron is both essential for and potentially toxic to bacteria, so the precise maintenance of iron homeostasis is necessary for their survival. Our previous study indicated that in the human enteropathogen Yersinia enterocolitica, the regulator OmpR directly controls the transcription of the fur, fecA and fepA genes, encoding the ferric uptake repressor and two transporters of ferric siderophores, respectively. This study was undertaken to determine the significance of the RNA chaperone Hfq and the small RNAs OmrA and RyhB1 in the post-transcriptional control of the expression of these OmpR targets. We show that Hfq silences fur, fecA and fepA expression post-transcriptionally and negatively affects the production of FLAG-tagged Fur, FecA and FepA proteins. In addition, we found that the fur gene is under the negative control of the sRNA RyhB1, while fecA and fepA are negatively regulated by the sRNA OmrA. Finally, our data revealed that the role of OmrA results from a complex interplay of transcriptional and post-transcriptional effects in the feedback circuit between the regulator OmpR and the sRNA OmrA. Thus, the expression of fur, fecA and fepA is subject to complex transcriptional and post-transcriptional regulation in order to maintain iron homeostasis in Y. enterocolitica. Full article
(This article belongs to the Collection State-of-the-Art Molecular Microbiology in Poland)
Show Figures

Figure 1

8 pages, 509 KiB  
Article
Campylobacter spp. Prevalence in Santiago, Chile: A Study Based on Molecular Detection in Clinical Stool Samples from 2014 to 2019
by Lorena Porte, Caricia Pérez, Mario Barbé, Carmen Varela, Valeska Vollrath, Paulette Legarraga and Thomas Weitzel
Pathogens 2023, 12(3), 504; https://doi.org/10.3390/pathogens12030504 - 22 Mar 2023
Cited by 5 | Viewed by 2118
Abstract
Campylobacter spp. is an emerging cause of infectious diarrhea worldwide. In South American countries such as Chile, its prevalence is underestimated due to inadequate detection methods. Gastrointestinal multiplex PCR panels (GMP) permit rapid and sensitive detection of bacterial pathogens and provide important epidemiological [...] Read more.
Campylobacter spp. is an emerging cause of infectious diarrhea worldwide. In South American countries such as Chile, its prevalence is underestimated due to inadequate detection methods. Gastrointestinal multiplex PCR panels (GMP) permit rapid and sensitive detection of bacterial pathogens and provide important epidemiological information. This study aimed to analyze Campylobacter epidemiology using the results of molecular methods and to compare molecular detection results to those of culture methods. We performed a retrospective, descriptive analysis of Campylobacter spp. detected in clinical stool samples between 2014–2019 by GMP and culture. Within 16,582 specimens examined by GMP, Campylobacter was the most prevalent enteropathogenic bacteria (8.5%), followed by Salmonella spp. (3.9%), Shigella spp./enteroinvasive Escherichia coli (EIEC) (1.9%), and Yersinia enterocolitica (0.8%). The highest Campylobacter prevalence occurred in 2014/2015. Campylobacteriosis affected more males (57.2%) and adults from 19–65 years (47.9%) and showed a bimodal seasonality with summer and winter peaks. In 11,251 routine stool cultures, Campylobacter spp. was detected in 4.6%, mostly C. jejuni (89.6%). Among 4533 samples tested by GMP and culture in parallel, GMP showed a superior sensitivity (99.1% versus 50%, respectively). The study suggests that Campylobacter spp. is the most frequent bacterial enteropathogen in Chile. Full article
Show Figures

Figure 1

9 pages, 419 KiB  
Article
Higher Resistance of Yersinia enterocolitica in Comparison to Yersinia pseudotuberculosis to Antibiotics and Cinnamon, Oregano and Thyme Essential Oils
by Radka Hulankova
Pathogens 2022, 11(12), 1456; https://doi.org/10.3390/pathogens11121456 - 1 Dec 2022
Cited by 6 | Viewed by 2855
Abstract
Yersiniosis is an important zoonotic disease; however, data are scarce on the resistance of enteropathogenic yersiniae, especially that of Y. pseudotuberculosis. Minimum inhibitory concentrations (MIC) of 21 antibiotics and 3 essential oils (EOs) were determined by broth microdilution for Y. enterocolitica bioserotype [...] Read more.
Yersiniosis is an important zoonotic disease; however, data are scarce on the resistance of enteropathogenic yersiniae, especially that of Y. pseudotuberculosis. Minimum inhibitory concentrations (MIC) of 21 antibiotics and 3 essential oils (EOs) were determined by broth microdilution for Y. enterocolitica bioserotype 4/O:3 strains isolated from domestic swine (n = 132) and Y. pseudotuberculosis strains isolated from wild boars (n = 46). For 15 of 21 antibiotics, statistically significant differences were found between MIC values of Y. enterocolitica and Y. pseudotuberculosis. While Y. enterocolitica was more resistant to amoxiclav, ampicillin, cefotaxime, cefuroxime, gentamicin, imipenem, meropenem, tetracycline, tobramycin, and trimethoprim, Y. pseudotuberculosis was more resistant to cefepime, ceftazidime, colistin, erythromycin, and nitrofurantoin. Statistically significant differences were found between various essential oils (p < 0.001) and species (p < 0.001). The lowest MICs for multiresistant Y. enterocolitica (n = 12) and Y. pseudotuberculosis (n = 12) were obtained for cinnamon (median 414 and 207 μg/mL, respectively) and oregano EOs (median 379 and 284 μg/mL), whereas thyme EO showed significantly higher MIC values (median 738 and 553 μg/mL; p < 0.001). There was no difference between Y. enterocolitica strains of plant (1A) and animal (4/O:3) origin (p = 0.855). The results show that Y. enterocolitica is generally more resistant to antimicrobials than Y. pseudotuberculosis. Full article
Show Figures

Figure 1

23 pages, 6357 KiB  
Article
The Regulatory Circuit Underlying Downregulation of a Type III Secretion System in Yersinia enterocolitica by Transcription Factor OmpR
by Marta Nieckarz, Karolina Jaworska, Adrianna Raczkowska and Katarzyna Brzostek
Int. J. Mol. Sci. 2022, 23(9), 4758; https://doi.org/10.3390/ijms23094758 - 26 Apr 2022
Cited by 5 | Viewed by 3621
Abstract
In a previous study, differential proteomic analysis was used to identify membrane proteins of the human enteropathogen Yersinia enterocolitica, whose levels are influenced by OmpR, the transcriptional regulator in the two-component EnvZ/OmpR system. Interestingly, this analysis demonstrated that at 37 °C, OmpR [...] Read more.
In a previous study, differential proteomic analysis was used to identify membrane proteins of the human enteropathogen Yersinia enterocolitica, whose levels are influenced by OmpR, the transcriptional regulator in the two-component EnvZ/OmpR system. Interestingly, this analysis demonstrated that at 37 °C, OmpR negatively affects the level of over a dozen Ysc-Yop proteins, which constitute a type III secretion system (T3SS) that is essential for the pathogenicity of Y. enterocolitica. Here, we focused our analysis on the role of OmpR in the expression and secretion of Yops (translocators and effectors). Western blotting with anti-Yops antiserum and specific anti-YopD, -YopE and -YopH antibodies, confirmed that the production of Yops is down-regulated by OmpR with the greatest negative effect on YopD. The RT-qPCR analysis demonstrated that, while OmpR had a negligible effect on the activity of regulatory genes virF and yscM1, it highly repressed the expression of yopD. OmpR was found to bind to the promoter of the lcrGVsycD-yopBD operon, suggesting a direct regulatory effect. In addition, we demonstrated that the negative regulatory influence of OmpR on the Ysc-Yop T3SS correlated with its positive role in the expression of flhDC, the master regulator of the flagellar-associated T3SS. Full article
(This article belongs to the Collection State-of-the-Art Molecular Microbiology in Poland)
Show Figures

Figure 1

35 pages, 4722 KiB  
Article
A Computational Model of Bacterial Population Dynamics in Gastrointestinal Yersinia enterocolitica Infections in Mice
by Janina K. Geißert, Erwin Bohn, Reihaneh Mostolizadeh, Andreas Dräger, Ingo B. Autenrieth, Sina Beier, Oliver Deusch, Alina Renz, Martin Eichner and Monika S. Schütz
Biology 2022, 11(2), 297; https://doi.org/10.3390/biology11020297 - 12 Feb 2022
Cited by 1 | Viewed by 4330
Abstract
The complex interplay of a pathogen with its virulence and fitness factors, the host’s immune response, and the endogenous microbiome determine the course and outcome of gastrointestinal infection. The expansion of a pathogen within the gastrointestinal tract implies an increased risk of developing [...] Read more.
The complex interplay of a pathogen with its virulence and fitness factors, the host’s immune response, and the endogenous microbiome determine the course and outcome of gastrointestinal infection. The expansion of a pathogen within the gastrointestinal tract implies an increased risk of developing severe systemic infections, especially in dysbiotic or immunocompromised individuals. We developed a mechanistic computational model that calculates and simulates such scenarios, based on an ordinary differential equation system, to explain the bacterial population dynamics during gastrointestinal infection. For implementing the model and estimating its parameters, oral mouse infection experiments with the enteropathogen, Yersinia enterocolitica (Ye), were carried out. Our model accounts for specific pathogen characteristics and is intended to reflect scenarios where colonization resistance, mediated by the endogenous microbiome, is lacking, or where the immune response is partially impaired. Fitting our data from experimental mouse infections, we can justify our model setup and deduce cues for further model improvement. The model is freely available, in SBML format, from the BioModels Database under the accession number MODEL2002070001. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

9 pages, 268 KiB  
Article
Prevalence and Antimicrobial Resistance of Enteropathogenic Bacteria in Yellow-Legged Gulls (Larus michahellis) in Southern Italy
by Tamara Pasqualina Russo, Antonino Pace, Lorena Varriale, Luca Borrelli, Antonio Gargiulo, Marina Pompameo, Alessandro Fioretti and Ludovico Dipineto
Animals 2021, 11(2), 275; https://doi.org/10.3390/ani11020275 - 22 Jan 2021
Cited by 31 | Viewed by 2972
Abstract
Wild birds may host and spread pathogens, integrating the epidemiology of infectious diseases. Particularly, Larus spp. have been described as responsible for the spread of many enteric diseases, primarily because of their large populations at landfill sites. The aim of this study was [...] Read more.
Wild birds may host and spread pathogens, integrating the epidemiology of infectious diseases. Particularly, Larus spp. have been described as responsible for the spread of many enteric diseases, primarily because of their large populations at landfill sites. The aim of this study was to examine the role of yellow-legged gulls as a source of enteropathogenic bacteria such as Campylobacter spp., Salmonella spp., Shiga toxin-producing Escherichia coli and Yersinia spp., with particular attention to antibiotic-resistant strains. Enteropathogenic bacteria were isolated from 93/225 yellow-legged gulls examined from April to July, during a four-year period (2016–2019). Specifically, Campylobacter spp. was isolated from 60/225 samples (26.7%), and identified as C. coli (36/60) and as C. jejuni (24/60). Salmonella spp. was isolated from 3/225 samples (1.3%), and identified as Salmonella arizonae. Shiga toxin-producing E. coli were isolated from 30/225 samples (13.3%) samples, and serotyped as E. coli O128 (12/30) O26 (9/30), O157 (6/30) and O11 (3/30); Yersinia spp. was never detected. Isolated strains exhibited multidrug resistance, including vitally important antibiotics for human medicine (i.e., fluoroquinolones, tetracyclines). Our study emphasizes the importance of yellow-legged gulls as potential reservoirs of pathogenic and resistant strains and their involvement in the dissemination of these bacteria across different environments, with resulting public health concerns. Full article
(This article belongs to the Special Issue Avian Pathology)
13 pages, 2096 KiB  
Review
Survivability of Salmonella and Escherichia coli O157:H7 Pathogens and Food Safety Concerns on Commercial Powder Milk Products
by Roshan Paswan and Young W. Park
Dairy 2020, 1(3), 189-201; https://doi.org/10.3390/dairy1030014 - 21 Oct 2020
Cited by 26 | Viewed by 13745
Abstract
Milk and dairy products are susceptible to the incidence of foodborne illnesses by numerous pathogens, including Listeria monocytogenes, Salmonella spp., Escherichia coli, enteropathogenic Campylobacter jejuni, Yersinia enterocolitica, Cronobacter (Enterobacter sakazakii) and Staphylococcus aureus. Annually Salmonella infections cause approximately [...] Read more.
Milk and dairy products are susceptible to the incidence of foodborne illnesses by numerous pathogens, including Listeria monocytogenes, Salmonella spp., Escherichia coli, enteropathogenic Campylobacter jejuni, Yersinia enterocolitica, Cronobacter (Enterobacter sakazakii) and Staphylococcus aureus. Annually Salmonella infections cause approximately 93.8 million cases of gastroenteritis and 155,000 deaths worldwide. Including meat and poultry, dairy products are the most commonly contaminated foods by Salmonella. Studies show that Salmonella, Escherichia coli O157:H7 and Listeria monocytogenes are among the top 5 pathogens causing hospitalization and life-threatening foodborne illnesses. The U.S. Centers for Disease Control and Prevention (CDC) estimated that annually around 1.2 million foodborne illnesses with more than 23,000 hospitalizations, 450 deaths and 130 outbreaks were attributed to Salmonella infection in the U.S. The Salmonella enteric in skim milk powder survived at three months storage, with water activity as low as 0.33. With respect to Escherichia coli O157:H7, it is capable of causing disease at a low dosage, ranging from 5–50 cells. Viable cells of Escherichia coli O157:H7 reportedly survive in infant formula powder for one year at 5 °C. The survivability of Escherichia coli in powder milk was significantly reduced with the synergistic effects of storage time and temperature. The U.S. Dairy Export Council recommends that milk powder should be stored in a cool and dry place, at a temperature not to exceed 27 °C, and a relative humidity not to exceed 65%. Reports have recommended that milk powder products need to be stored in light, oxygen, and moisture-proof containers. In this article, the survival of the major foodborne pathogens including Salmonella and Escherichia coli O157:H7 in powdered milk products from common dairy species such as cow and goats are reviewed. Full article
(This article belongs to the Special Issue Challenge to The Dairy Industry and Human Nutrition)
Show Figures

Figure 1

15 pages, 1184 KiB  
Article
High Prevalence of Intestinal Pathogens in Indigenous in Colombia
by Simone Kann, Daniela Bruennert, Jessica Hansen, Gustavo Andrés Concha Mendoza, José José Crespo Gonzalez, Cielo Leonor Armenta Quintero, Miriam Hanke, Ralf Matthias Hagen, Joy Backhaus and Hagen Frickmann
J. Clin. Med. 2020, 9(9), 2786; https://doi.org/10.3390/jcm9092786 - 28 Aug 2020
Cited by 27 | Viewed by 4017
Abstract
Background: Intestinal infections remain a major public health burden in developing countries. Due to social, ecological, environmental, and cultural conditions, Indigenous peoples in Colombia are at particularly high risk. Materials: 137 stool samples were analyzed by microscopy and real-time-Polymerase Chain Reaction (RT-PCR), targeting [...] Read more.
Background: Intestinal infections remain a major public health burden in developing countries. Due to social, ecological, environmental, and cultural conditions, Indigenous peoples in Colombia are at particularly high risk. Materials: 137 stool samples were analyzed by microscopy and real-time-Polymerase Chain Reaction (RT-PCR), targeting protozoan parasites (Giardia intestinalis, Entamoeba histolytica, Cryptosporidium spp., and Cyclospora cayetanensis), bacteria (Campylobacter jejuni, Salmonella spp., Shigella ssp./enteroinvasive E. coli (EIEC), Yersinia spp., enterohemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC), enterotoxin-producing E. coli (ETEC), enteroaggregative E. coli (EAEC), and Tropheryma whipplei), and helminths (Necator americanus, Strongyloides stercoralis, Ascaris lumbricoides, Ancylostoma spp., Trichuris. trichiura, Taenia spp., Hymenolepis nana, Enterobius vermicularis, and Schistosoma spp.). Microscopy found additional cases of helminth infections. Results: At least one pathogen was detected in 93% of the samples. The overall results revealed protozoa in 79%, helminths in 69%, and bacteria in 41%. G. intestinalis (48%), Necator/hookworm (27%), and EAEC (68%) were the most common in each group. Noteworthy, T. whipplei was positive in 7% and T. trichirua in 23% of the samples. A significant association of one infection promoting the other was determined for G. intestinalis and C. jejuni, helminth infections, and EIEC. Conclusions: The results illustrate the high burden of gastrointestinal pathogens among Indigenous peoples compared to other developing countries. Countermeasures are urgently required. Full article
(This article belongs to the Section Infectious Diseases)
Show Figures

Figure 1

32 pages, 3123 KiB  
Review
Staying out or Going in? The Interplay between Type 3 and Type 5 Secretion Systems in Adhesion and Invasion of Enterobacterial Pathogens
by Rachel Whelan, Gareth McVicker and Jack C. Leo
Int. J. Mol. Sci. 2020, 21(11), 4102; https://doi.org/10.3390/ijms21114102 - 8 Jun 2020
Cited by 8 | Viewed by 8297
Abstract
Enteric pathogens rely on a variety of toxins, adhesins and other virulence factors to cause infections. Some of the best studied pathogens belong to the Enterobacterales order; these include enteropathogenic and enterohemorrhagic Escherichia coli, Shigella spp., and the enteropathogenic Yersiniae. The [...] Read more.
Enteric pathogens rely on a variety of toxins, adhesins and other virulence factors to cause infections. Some of the best studied pathogens belong to the Enterobacterales order; these include enteropathogenic and enterohemorrhagic Escherichia coli, Shigella spp., and the enteropathogenic Yersiniae. The pathogenesis of these organisms involves two different secretion systems, a type 3 secretion system (T3SS) and type 5 secretion systems (T5SSs). The T3SS forms a syringe-like structure spanning both bacterial membranes and the host cell plasma membrane that translocates toxic effector proteins into the cytoplasm of the host cell. T5SSs are also known as autotransporters, and they export part of their own polypeptide to the bacterial cell surface where it exerts its function, such as adhesion to host cell receptors. During infection with these enteropathogens, the T3SS and T5SS act in concert to bring about rearrangements of the host cell cytoskeleton, either to invade the cell, confer intracellular motility, evade phagocytosis or produce novel structures to shelter the bacteria. Thus, in these bacteria, not only the T3SS effectors but also T5SS proteins could be considered “cytoskeletoxins” that bring about profound alterations in host cell cytoskeletal dynamics and lead to pathogenic outcomes. Full article
Show Figures

Graphical abstract

14 pages, 4448 KiB  
Article
Insights into the Phylogeny and Evolution of Cold Shock Proteins: From Enteropathogenic Yersinia and Escherichia coli to Eubacteria
by Tao Yu, Riikka Keto-Timonen, Xiaojie Jiang, Jussa-Pekka Virtanen and Hannu Korkeala
Int. J. Mol. Sci. 2019, 20(16), 4059; https://doi.org/10.3390/ijms20164059 - 20 Aug 2019
Cited by 26 | Viewed by 4666
Abstract
Psychrotrophic foodborne pathogens, such as enteropathogenic Yersinia, which are able to survive and multiply at low temperatures, require cold shock proteins (Csps). The Csp superfamily consists of a diverse group of homologous proteins, which have been found throughout the eubacteria. They are [...] Read more.
Psychrotrophic foodborne pathogens, such as enteropathogenic Yersinia, which are able to survive and multiply at low temperatures, require cold shock proteins (Csps). The Csp superfamily consists of a diverse group of homologous proteins, which have been found throughout the eubacteria. They are related to cold shock tolerance and other cellular processes. Csps are mainly named following the convention of those in Escherichia coli. However, the nomenclature of certain Csps reflects neither their sequences nor functions, which can be confusing. Here, we performed phylogenetic analyses on Csp sequences in psychrotrophic enteropathogenic Yersinia and E. coli. We found that representative Csps in enteropathogenic Yersinia and E. coli can be clustered into six phylogenetic groups. When we extended the analysis to cover Enterobacteriales, the same major groups formed. Moreover, we investigated the evolutionary and structural relationships and the origin time of Csp superfamily members in eubacteria using nucleotide-level comparisons. Csps in eubacteria were classified into five clades and 12 subclades. The most recent common ancestor of Csp genes was estimated to have existed 3585 million years ago, indicating that Csps have been important since the beginning of evolution and have enabled bacterial growth in unfavorable conditions. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

11 pages, 4540 KiB  
Benchmark
Influence of Metabolite Extraction Methods on 1H-NMR-Based Metabolomic Profiling of Enteropathogenic Yersinia
by Brandon R. Gines, Willard E. Collier, Mohamed A. Abdalla and Teshome Yehualaeshet
Methods Protoc. 2018, 1(4), 45; https://doi.org/10.3390/mps1040045 - 20 Nov 2018
Viewed by 3753
Abstract
Metabolite extraction is one of the critical steps in microbial metabolome analysis. It affects both the observed metabolite content and biological interpretation of the data. Several methods exist for metabolite extraction of microbes, but the literature is not consistent regarding the sample model, [...] Read more.
Metabolite extraction is one of the critical steps in microbial metabolome analysis. It affects both the observed metabolite content and biological interpretation of the data. Several methods exist for metabolite extraction of microbes, but the literature is not consistent regarding the sample model, adequacy, and performance of each method. In this study, an optimal extraction protocol for Yersinia intracellular metabolites was investigated. The effect of five extraction protocols consisting of different extraction solvent systems (60% methanol, 100% methanol, acetonitrile/methanol/water (2:2:1), chloroform/methanol/water (2:1:1), and 60% ethanol) on Yersinia metabolic profiles were compared. The number of detected peaks, sample-to-sample variation, and metabolite yield were used as criteria. Extracted metabolites were analyzed by 1H-NMR and principal component analysis (PCA), as well as partial least squares discriminant analysis (PLS-DA) multivariate statistics. The extraction protocol using 100% methanol as the extraction solvent provided the highest number of detected peaks for both Yersinia species analyzed, yielding more spectral information. Together with the reproducibility and spectrum quality, 100% methanol extraction was suitable for intracellular metabolite extraction from both species. However, depending on the metabolites of interest, other solvents might be more suitable for future studies, as distinct profiles were observed amongst the extraction methods. Full article
Show Figures

Figure 1

Back to TopTop