Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (566)

Search Parameters:
Keywords = enteric emissions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1097 KiB  
Review
Natural Feed Additives in Sub-Saharan Africa: A Systematic Review of Efficiency and Sustainability in Ruminant Production
by Zonaxolo Ntsongota, Olusegun Oyebade Ikusika and Thando Conference Mpendulo
Ruminants 2025, 5(3), 36; https://doi.org/10.3390/ruminants5030036 (registering DOI) - 6 Aug 2025
Abstract
Ruminant livestock production plays a crucial role in the agricultural systems of Sub-Saharan Africa, significantly supporting rural livelihoods through income generation, improved nutrition, and employment opportunities. Despite its importance, the sector continues to face substantial challenges, such as low feed quality, seasonal feed [...] Read more.
Ruminant livestock production plays a crucial role in the agricultural systems of Sub-Saharan Africa, significantly supporting rural livelihoods through income generation, improved nutrition, and employment opportunities. Despite its importance, the sector continues to face substantial challenges, such as low feed quality, seasonal feed shortages, and climate-related stresses, all of which limit productivity and sustainability. Considering these challenges, the adoption of natural feed additives has emerged as a promising strategy to enhance animal performance, optimise nutrient utilisation, and mitigate environmental impacts, including the reduction of enteric methane emissions. This review underscores the significant potential of natural feed additives such as plant extracts, essential oils, probiotics, and mineral-based supplements such as fossil shell flour as sustainable alternatives to conventional growth promoters in ruminant production systems across the region. All available documented evidence on the topic from 2000 to 2024 was collated and synthesised through standardised methods of systematic review protocol—PRISMA. Out of 319 research papers downloaded, six were included and analysed directly or indirectly in this study. The results show that the addition of feed additives to ruminant diets in all the studies reviewed significantly (p < 0.05) improved growth parameters such as average daily growth (ADG), feed intake, and feed conversion ratio (FCR) compared to the control group. However, no significant (p > 0.05) effect was found on cold carcass weight (CCW), meat percentage, fat percentage, bone percentage, or intramuscular fat (IMF%) compared to the control. The available evidence indicates that these additives can provide tangible benefits, including improved growth performance, better feed efficiency, enhanced immune responses, and superior meat quality, while also supporting environmental sustainability by reducing nitrogen excretion and decreasing dependence on antimicrobial agents. Full article
Show Figures

Figure 1

19 pages, 1667 KiB  
Article
Carbon Footprint and Economic Trade-Offs in Traditional Greek Silvopastoral Systems: An Integrated Life Cycle Assessment Approach
by Emmanouil Tziolas, Andreas Papadopoulos, Vasiliki Lappa, Georgios Bakogiorgos, Stavroula Galanopoulou, María Rosa Mosquera-Losada and Anastasia Pantera
Forests 2025, 16(8), 1262; https://doi.org/10.3390/f16081262 - 2 Aug 2025
Viewed by 202
Abstract
Silvopastoral systems, though ecologically beneficial, remain underrepresented in the European Union’s Common Agricultural Policy and are seldom studied in Mediterranean contexts. The current study assesses both the environmental and economic aspects of five typical silvopastoral systems in central Greece, encompassing cattle, sheep, and [...] Read more.
Silvopastoral systems, though ecologically beneficial, remain underrepresented in the European Union’s Common Agricultural Policy and are seldom studied in Mediterranean contexts. The current study assesses both the environmental and economic aspects of five typical silvopastoral systems in central Greece, encompassing cattle, sheep, and goat farming. A Life Cycle Assessment approach was implemented to quantify greenhouse gas emissions using economic allocation, distributing impacts between milk and meat outputs. Enteric fermentation was the major emission source, accounting for up to 65.14% of total emissions in beef-based systems, while feeding and soil emissions were more prominent in mixed and small ruminant systems. Total farm-level emissions ranged from 60,609 to 273,579 kg CO2eq per year. Economically, only beef-integrated systems achieved an average annual profitability above EUR 20,000 per farm, based on financial data averaged over the last five years (2020–2024) from selected case studies in central Greece, while the remaining systems fell below the national poverty threshold for an average household, underscoring concerns about their economic viability. The findings underline the dual challenges of economic viability and policy neglect, stressing the need for targeted support if these multifunctional systems are to add value to EU climate goals and rural sustainability. Full article
(This article belongs to the Special Issue Forestry in the Contemporary Bioeconomy)
Show Figures

Figure 1

17 pages, 458 KiB  
Article
Effects of Chestnut Tannin Extract on Enteric Methane Emissions, Blood Metabolites and Lactation Performance in Mid-Lactation Cows
by Radiša Prodanović, Dušan Bošnjaković, Ana Djordjevic, Predrag Simeunović, Sveta Arsić, Aleksandra Mitrović, Ljubomir Jovanović, Ivan Vujanac, Danijela Kirovski and Sreten Nedić
Animals 2025, 15(15), 2238; https://doi.org/10.3390/ani15152238 - 30 Jul 2025
Viewed by 131
Abstract
Dietary tannin supplementation represents a potential strategy to modulate rumen fermentation and enhance lactation performance in dairy cows, though responses remain inconsistent. A 21-day feeding trial was conducted to evaluate the effect of chestnut tannin (CNT) extract on the enteric methane emissions (EME), [...] Read more.
Dietary tannin supplementation represents a potential strategy to modulate rumen fermentation and enhance lactation performance in dairy cows, though responses remain inconsistent. A 21-day feeding trial was conducted to evaluate the effect of chestnut tannin (CNT) extract on the enteric methane emissions (EME), blood metabolites, and milk production traits in mid-lactation dairy cows. Thirty-six Holstein cows were allocated to three homogeneous treatment groups: control (CNT0, 0 g/d CNT), CNT40 (40 g/d CNT), and CNT80 (80 g/d CNT). Measurements of EME, dry matter intake (DMI), milk yield (MY), and blood and milk parameters were carried out pre- and post-21-day supplementation period. Compared with the no-additive group, the CNT extract reduced methane production, methane yield, and methane intensity in CNT40 and CNT80 (p < 0.001). CNT40 and CNT80 cows exhibited lower blood urea nitrogen (p = 0.019 and p = 0.002) and elevated serum insulin (p = 0.003 and p < 0.001) and growth hormone concentrations (p = 0.046 and p = 0.034), coinciding with reduced aspartate aminotransferase (p = 0.016 and p = 0.045), and lactate dehydrogenase (p = 0.011 and p = 0.008) activities compared to control. However, CNT80 had higher circulating NEFA and BHBA than CNT0 (p = 0.003 and p = 0.004) and CNT40 (p = 0.035 and p = 0.019). The blood glucose, albumin, and total bilirubin concentrations were not affected. MY and fat- and protein-corrected milk (FPCM), MY/DMI, and FPCM/DMI were higher in both CNT40 (p = 0.004, p = 0.003, p = 0.014, p = 0.010) and CNT80 (p = 0.002, p = 0.003, p = 0.008, p = 0.013) cows compared with controls. Feeding CNT80 resulted in higher protein content (p = 0.015) but lower fat percentage in milk (p = 0.004) compared to CNT0. Milk urea nitrogen and somatic cell counts were significantly lower in both CNT40 (p < 0.001, p = 0.009) and CNT80 (p < 0.001 for both) compared to CNT0, while milk lactose did not differ between treatments. These findings demonstrate that chestnut tannin extract effectively mitigates EME while enhancing lactation performance in mid-lactation dairy cows. Full article
(This article belongs to the Special Issue Advances in Nutrition and Feeding Strategies for Dairy Cows)
Show Figures

Figure 1

25 pages, 3891 KiB  
Review
The Carbon Footprint of Milk Production on a Farm
by Mariusz Jerzy Stolarski, Kazimierz Warmiński, Michał Krzyżaniak, Ewelina Olba-Zięty and Paweł Dudziec
Appl. Sci. 2025, 15(15), 8446; https://doi.org/10.3390/app15158446 - 30 Jul 2025
Viewed by 314
Abstract
The environmental impact of milk production, particularly its share of greenhouse gas (GHG) emissions, is a topic under investigation in various parts of the world. This paper presents an overview of current knowledge on the carbon footprint (CF) of milk production at the [...] Read more.
The environmental impact of milk production, particularly its share of greenhouse gas (GHG) emissions, is a topic under investigation in various parts of the world. This paper presents an overview of current knowledge on the carbon footprint (CF) of milk production at the farm level, with a particular focus on technological, environmental and organisational factors affecting emission levels. The analysis is based on a review of, inter alia, 46 peer-reviewed publications and 11 environmental reports, legal acts and databases concerning the CF in different regions and under various production systems. This study identifies the main sources of emissions, including enteric fermentation, manure management, and the production and use of feed and fertiliser. It also demonstrates the significant variability of the CF values, which range, on average, from 0.78 to 3.20 kg CO2 eq kg−1 of milk, determined by the farm scale, nutritional strategies, local environmental and economic determinants, and the methodology applied. Moreover, this study stresses that higher production efficiency and integrated farm management could reduce the CF per milk unit, with further intensification having, however, diminishing effects. The application of life cycle assessment (LCA) methods is essential for a reliable assessment and comparison of the CF between systems. Ultimately, an effective CF reduction requires a comprehensive approach that combines improved nutritional practices, efficient use of resources, and implementation of technological innovations adjusted to regional and farm-specific determinants. The solutions presented in this paper may serve as guidelines for practitioners and decision-makers with regard to reducing GHG emissions. Full article
(This article belongs to the Special Issue Environmental Management in Milk Production and Processing)
Show Figures

Figure 1

19 pages, 1537 KiB  
Review
Milk Fatty Acids as Potential Biomarkers of Enteric Methane Emissions in Dairy Cattle: A Review
by Emily C. Youngmark and Jana Kraft
Animals 2025, 15(15), 2212; https://doi.org/10.3390/ani15152212 - 28 Jul 2025
Viewed by 343
Abstract
Measuring methane (CH4) emissions from dairy systems is crucial for advancing sustainable agricultural practices aimed at mitigating climate change. However, current CH4 measurement techniques are primarily designed for controlled research settings and are not readily scalable to diverse production environments. [...] Read more.
Measuring methane (CH4) emissions from dairy systems is crucial for advancing sustainable agricultural practices aimed at mitigating climate change. However, current CH4 measurement techniques are primarily designed for controlled research settings and are not readily scalable to diverse production environments. Thus, there is a need to develop accessible, production-level methods for estimating CH4 emissions. This review examines the relationship between enteric CH4 emissions and milk fatty acid (FA) composition, highlights key FA groups with potential as biomarkers for indirect CH4 estimation, and outlines critical factors of predictive model development. Several milk FAs exhibit strong and consistent correlations to CH4 emissions, supporting their utility as predictive biomarkers. Saturated and branched-chain FAs are generally positively associated with CH4 emissions, while unsaturated FAs, including linolenic acid, conjugated linoleic acids, and odd-chain FAs, are typically negatively associated. Variability in the strength and direction of correlations across studies is often attributable to differences in diet or lactation stage. Similarly, differences in experimental design, data processing, and model development contribute to much of the variation observed in predictive equations across studies. Future research should aim to (1) identify milk FAs that consistently correlate with CH4 emissions regardless of diet, (2) develop robust and standardized prediction models, and (3) prioritize the external validation of prediction models across herds and production systems. Full article
Show Figures

Figure 1

11 pages, 270 KiB  
Article
Comparison of Contemporary Grazing Cattle and Bison Greenhouse Gas Emissions in the Southern Great Plains
by Maria De Bernardi, Carlee M. Salisbury, Haley E. Larson, Matthew R. Beck and Logan R. Thompson
Ruminants 2025, 5(3), 34; https://doi.org/10.3390/ruminants5030034 - 28 Jul 2025
Viewed by 304
Abstract
The objective of this analysis was to compare the greenhouse gas (GHG) emissions from contemporary grazing cattle production with bison grazing, both modern and historical. The data sets used in this analysis were derived from existing research and conservation properties located outside of [...] Read more.
The objective of this analysis was to compare the greenhouse gas (GHG) emissions from contemporary grazing cattle production with bison grazing, both modern and historical. The data sets used in this analysis were derived from existing research and conservation properties located outside of Manhattan, KS (USA), which are home to stocker cattle, cow–calf production (CCS), and grazing bison. For stocker cattle, 10 years of animal production data (2007–2016) from season-long stocking (SLS, grazing 156 d) and intensive early stocking systems (IES; 76 grazing d and 2× stocking density) were used for GHG calculations. Enteric CH4, manure CH4, and direct nitrous oxide emissions were estimated using the IPCC tier 2 methodology. Historic bison (HGB) enteric CH4 estimates were calculated using a stocking density of 0.15 ha/animal and assuming that only 13% of grassland was used by bison each year. Within contemporary systems, IES had the lowest emissions (463.3 kg CO2-eq./ha/yr), while SLS, CCS, and MGB had the highest estimates (494.7, 493.9, and 595.9 kg CO2-eq./ha/yr, respectively). HGB had the lowest estimated annual emissions at 295.7 kg CO2-eq./ha/yr. These results imply that the historic grazing baseline of this grassland system is lower but similar to that of contemporary grazing cattle in the Great Plains region. Full article
Show Figures

Figure 1

27 pages, 4623 KiB  
Article
Preparation and Application of Wetland-Plant-Derived Biochar for Tetracycline Antibiotic Adsorption in Water
by Qingyun Chen, Hao Tong, Xing Gao, Peng Li, Jiaqi Li, Haifeng Zhuang and Suqing Wu
Sustainability 2025, 17(14), 6625; https://doi.org/10.3390/su17146625 - 20 Jul 2025
Viewed by 334
Abstract
Every year, a large amount of antibiotics enter aquatic environments globally through discharging of pharmaceutical wastewater and domestic sewage, emissions from agriculture, and livestock, posing a severe threat to ecosystems and human health. Therefore, it is essential to develop efficient adsorption materials for [...] Read more.
Every year, a large amount of antibiotics enter aquatic environments globally through discharging of pharmaceutical wastewater and domestic sewage, emissions from agriculture, and livestock, posing a severe threat to ecosystems and human health. Therefore, it is essential to develop efficient adsorption materials for rapid removal of antibiotics in water. In this study, abundant and renewable wetland plants (lotus leaves, Arundo donax, and canna lilies) were utilized as raw materials to prepare biochar through slow pyrolysis combined with KOH chemical activation. The prepared biochar was employed to adsorb typical tetracycline (TC) antibiotics (TC-HCl, CTC-HCl, OTC-HCl) from water. The results showed that the optimum biochar (LBC-600 (1:3)) was prepared at a pyrolysis temperature of 600 °C with the mass ratio of KOH to lotus leaf of 1:3. The optimum pH for the adsorption of the three antibiotics were 5, 4, and 3, respectively. The highest adsorption rates reached 93.32%, 81.44%, and 83.76% for TC-HCl, CTC-HCl, and OTC-HCl with 0.6 g/L of biochar, respectively. At an initial antibiotic concentration of 80 mg·L−1, the maximum adsorption capacities achieved 40.17, 27.76, and 24.6 mg·g−1 for TC-HCl, CTC-HCl, and OTC-HCl, respectively. The adsorption process conformed to the pseudo-second-order kinetic and Langmuir isotherm models, indicating that it was a spontaneous endothermic process and primarily involved monolayer chemical adsorption. This study transformed wetland plant waste into adsorbent and applied it for antibiotic removal, providing a valuable resource utilization strategy and technical support for recycling wetland plant residues and antibiotic removal from water environments. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

28 pages, 2422 KiB  
Article
Reverse Logistics Network Optimization for Retired BIPV Panels in Smart City Energy Systems
by Cimeng Zhou and Shilong Li
Buildings 2025, 15(14), 2549; https://doi.org/10.3390/buildings15142549 - 19 Jul 2025
Viewed by 310
Abstract
Through the energy conversion of building skins, building-integrated photovoltaic (BIPV) technology, the core carrier of the smart city energy system, encourages the conversion of buildings into energy-generating units. However, the decommissioning of the module faces the challenge of physical dismantling and financial environmental [...] Read more.
Through the energy conversion of building skins, building-integrated photovoltaic (BIPV) technology, the core carrier of the smart city energy system, encourages the conversion of buildings into energy-generating units. However, the decommissioning of the module faces the challenge of physical dismantling and financial environmental damage because of the close coupling with the building itself. As the first tranche of BIPV projects will enter the end of their life cycle, it is urgent to establish a multi-dimensional collaborative recycling mechanism that meets the characteristics of building pv systems. Based on the theory of reverse logistics network, the research focuses on optimizing the reverse logistics network during the decommissioning stage of BIPV modules, and proposes a dual-objective optimization model that considers both cost and carbon emissions for BIPV. Meanwhile, the multi-level recycling network which covers “building points-regional transfer stations-specialized distribution centers” is designed in the research, the Pareto solution set is solved by the improved NSGA-II algorithm, a “1 + 1” du-al-core construction model of distribution center and transfer station is developed, so as to minimize the total cost and life cycle carbon footprint of the logistics network. At the same time, the research also reveals the driving effect of government reward and punishment policies on the collaborative behavior of enterprise recycling, and provides methodological support for the construction of a closed-loop supply chain of “PV-building-environment” symbiosis. The study concludes that in the process of constructing smart city energy system, the systematic control of resource circulation and environmental risks through the optimization of reverse logistics network can provide technical support for the sustainable development of smart city. Full article
(This article belongs to the Special Issue Research on Smart Healthy Cities and Real Estate)
Show Figures

Figure 1

19 pages, 1066 KiB  
Article
Toward a Sustainable Livestock Sector in China: Evolution Characteristics and Driving Factors of Carbon Emissions from a Life Cycle Perspective
by Xiao Wang, Xuezhen Xiong and Xiangfei Xin
Sustainability 2025, 17(14), 6537; https://doi.org/10.3390/su17146537 - 17 Jul 2025
Viewed by 305
Abstract
Addressing the sustainability challenges posed by the expanding livestock sector is crucial for China’s green transition. With the transformation of national dietary structure and increasing demand for livestock products, the associated resource consumption and environmental impacts, particularly carbon emissions have intensified. Reducing carbon [...] Read more.
Addressing the sustainability challenges posed by the expanding livestock sector is crucial for China’s green transition. With the transformation of national dietary structure and increasing demand for livestock products, the associated resource consumption and environmental impacts, particularly carbon emissions have intensified. Reducing carbon emissions from livestock is vital for mitigating global warming, enhancing resource utilization efficiency, improving ecosystems and biodiversity, and ultimately achieving sustainable development of the livestock industry. Against this backdrop, this study measures the carbon emissions from livestock sector employing the Life Cycle Assessment (LCA) method, and applies the Generalized Divisia Index Method (GDIM) to analyze the factors affecting the changes in carbon emissions, aiming to quantify and analyze the carbon footprint of China’s livestock sector to inform sustainable practices. The findings reveal that China’s total carbon emissions from the livestock sector fluctuated between 645.15 million tons and 812.99 million tons from 2000 to 2023. Since 2020, emissions have entered a new phase of continuous growth, with a 5.40% increase in 2023 compared to 2020. Significantly, a positive trend toward sustainability is observed in the substantial decline of carbon emission intensity over the study period, with notable reductions in emission intensity across provinces and a gradual convergence in inter-provincial disparities. Understanding the drivers is key for effective mitigation. The output level and total mechanical power consumption level emerged as primary positive drivers of carbon emissions, while output carbon intensity and mechanical power consumption carbon intensity served as major negative drivers. Moving forward, to foster a sustainable and low-carbon livestock sector, China’s livestock sector development should prioritize coordinated carbon reduction across the entire industrial chain, adjust the industrial structure, and enhance the utilization efficiency of advanced low-carbon agricultural machinery while introducing such equipment. Full article
Show Figures

Figure 1

32 pages, 857 KiB  
Review
Integrating Technological Innovations and Sustainable Practices to Abate Methane Emissions from Livestock: A Comprehensive Review
by Amr S. Morsy, Yosra A. Soltan, Waleed Al-Marzooqi and Hani M. El-Zaiat
Sustainability 2025, 17(14), 6458; https://doi.org/10.3390/su17146458 - 15 Jul 2025
Viewed by 554
Abstract
Livestock farming is a vital component of global food security, yet it remains a major contributor to greenhouse gas (GHG) emissions, particularly methane (CH4), which has a global warming potential 28 times greater than carbon dioxide (CO2). This review [...] Read more.
Livestock farming is a vital component of global food security, yet it remains a major contributor to greenhouse gas (GHG) emissions, particularly methane (CH4), which has a global warming potential 28 times greater than carbon dioxide (CO2). This review provides a comprehensive synthesis of current knowledge surrounding the sources, biological mechanisms, and mitigation strategies related to CH4 emissions from ruminant livestock. We first explore the process of methanogenesis within the rumen, detailing the role of methanogenic archaea and the environmental factors influencing CH4 production. A thorough assessment of both direct and indirect methods used to quantify CH4 emissions is presented, including in vitro techniques (e.g., syringe method, batch culture, RUSITEC), in vivo techniques (e.g., respiration chambers, Greenfeed, laser CH4 detectors), and statistical modeling approaches. The advantages and limitations of each method are critically analyzed in terms of accuracy, cost, feasibility, and applicability to different farming systems. We then examine a wide range of mitigation strategies, organized into four core pillars: (1) animal and feed management (e.g., genetic selection, pasture quality improvement), (2) diet formulation (e.g., feed additives such as oils, tannins, saponins, and seaweed), (3) rumen manipulation (e.g., probiotics, ionophores, defaunation, vaccination), and (4) manure management practices and policy-level interventions. These strategies are evaluated not only for their environmental impact but also for their economic and practical viability in diverse livestock systems. By integrating technological innovations with sustainable agricultural practices, this review highlights pathways to reduce CH4 emissions while maintaining animal productivity. It aims to support decision-makers, researchers, and livestock producers in the global effort to transition toward climate-smart, low-emission livestock farming. Full article
Show Figures

Figure 1

19 pages, 316 KiB  
Article
Does Industrial Robot Adoption Reduce Pollution Emission? Evidence from China
by Fang Chen and Wenge Liu
Sustainability 2025, 17(13), 6202; https://doi.org/10.3390/su17136202 - 7 Jul 2025
Viewed by 397
Abstract
As China enters a high-quality development stage, balancing economic growth and environmental sustainability is essential. Can industrial intelligence reconcile these goals? Using theoretical modeling, this paper integrates production decisions, pollution emissions, and environmental regulations to construct a micro-level analytical framework incorporating technology choice [...] Read more.
As China enters a high-quality development stage, balancing economic growth and environmental sustainability is essential. Can industrial intelligence reconcile these goals? Using theoretical modeling, this paper integrates production decisions, pollution emissions, and environmental regulations to construct a micro-level analytical framework incorporating technology choice and emission reduction investment. It theoretically explores how robot adoption affects firms’ emission reduction behaviors and empirically tests the model using data from Chinese listed companies (2011–2022). Results indicate that industrial robots significantly reduce firms’ pollution emission intensity through productivity boost, technological progress, and emission reduction effects. Additionally, heterogeneity analyses show that robots have stronger pollution-reducing impacts in heavily polluting industries, state-owned enterprises, and regions with stringent environmental regulations. Therefore, policymakers should encourage robot adoption based on local contexts, formulate differentiated environmental regulations, and implement targeted strategies to maximize robots’ emission reduction potential. Accelerating green and intelligent transformation of enterprises will further align ecological protection with sustainable economic and social development. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

15 pages, 1101 KiB  
Article
Influence of Oregano Essential Oil on the Rumen Microbiome of Organically Reared Alpine Goats: Implications for Methanobacteria Abundance
by Dimitrios Kyrtsoudis, Maria V. Alvanou, Dimitrios Loukovitis, Dimitrios Gourdouvelis, Vasileios A. Bampidis, Dimitrios Chatziplis and Ioannis K. Mitsopoulos
Animals 2025, 15(13), 1937; https://doi.org/10.3390/ani15131937 - 1 Jul 2025
Viewed by 329
Abstract
The present study aimed to evaluate the effects of dietary supplementation with organic oregano (Origanum vulgare) essential oil (OEO) on the rumen microbial population, with a focus on methanogenic archaea, in lactating dairy goats. A total of nine age-matched goats (mean [...] Read more.
The present study aimed to evaluate the effects of dietary supplementation with organic oregano (Origanum vulgare) essential oil (OEO) on the rumen microbial population, with a focus on methanogenic archaea, in lactating dairy goats. A total of nine age-matched goats (mean body weight 49 ± 1.8 kg) were assigned to three experimental groups (n = 3 per group) in a completely randomized design. All animals were fed a basal diet consisting of a corn-based concentrate and a forage mix composed of alfalfa hay, wheat straw and corn silage. Group 1 was the control group while Groups 2 and 3 received an OEO supplement at dosages of 1 mL/day and 2 mL/day per animal, respectively, incorporated into the concentrate feed. Rumen fluid samples were collected on days 15, 30 and 45 of the feeding trial and their microbial profile was assessed using NGS analysis. The results demonstrated a reduction in the relative abundance of methanobacteria in both OEO-supplemented groups compared to the control group. Statistical analysis revealed significant differences between feeding groups and days of sampling. These findings suggest that OEO has the potential to modulate the rumen microbiome by reducing methane-producing archaeal populations. In conclusion, dietary supplementation with OEO may serve as a natural strategy to mitigate enteric methane emissions in Alpine dairy goats. Full article
Show Figures

Figure 1

21 pages, 4410 KiB  
Article
GS-YOLO-Seg: A Lightweight Instance Segmentation Method for Low-Grade Graphite Ore Sorting Based on Improved YOLO11-Seg
by Zeyang Qiu, Xueyu Huang, Zhaojie Sun, Sifan Li and Jionghui Wang
Sustainability 2025, 17(12), 5663; https://doi.org/10.3390/su17125663 - 19 Jun 2025
Viewed by 694
Abstract
Efficient identification and removal of low-grade minerals during graphite ore processing is essential for improving product quality, optimizing resource recovery, and promoting sustainable production. To address the limitations of traditional sorting methods and performance bottlenecks in edge devices, this paper proposes a lightweight [...] Read more.
Efficient identification and removal of low-grade minerals during graphite ore processing is essential for improving product quality, optimizing resource recovery, and promoting sustainable production. To address the limitations of traditional sorting methods and performance bottlenecks in edge devices, this paper proposes a lightweight instance segmentation model, GS-YOLO-seg, for rapid identification and intelligent sorting of low-grade graphite ore in industrial production lines. The model first reduces network depth by adjusting the depth factor. Subsequently, the backbone network adopts the lightweight and efficient GSConv to perform downsampling, while a novel C3k2-Faster architecture is proposed to improve the effectiveness of feature extraction. Finally, the Segment-Efficient segmentation head is optimized to reduce redundant computations, further lowering the model load. On a self-constructed graphite ore image dataset, GS-YOLO-seg achieved comparable segmentation performance to the baseline YOLO11n-seg, while achieving a 30% reduction in FLOPs, 59% fewer parameters, 56% smaller model size, and 8% higher FPS. This method enhances the intelligence of the sorting process, preventing low-grade ores from entering subsequent stages, thus reducing resource waste, energy consumption, and carbon emissions, providing crucial technical support and feasible deployment pathways for building intelligent, green, and sustainable mining systems. Full article
(This article belongs to the Special Issue Data-Driven Sustainable Development: Techniques and Applications)
Show Figures

Figure 1

12 pages, 3259 KiB  
Article
An Experimental Study on the Performance of Proton Exchange Membrane Fuel Cells with Marine Ion Contamination
by Shian Li, Li Zhang, Gaokui Chen, Ruiyang Zhang, Aolong Liu, Guogang Yang and Qiuwan Shen
J. Mar. Sci. Eng. 2025, 13(6), 1182; https://doi.org/10.3390/jmse13061182 - 17 Jun 2025
Viewed by 422
Abstract
Proton exchange membrane fuel cells (PEMFCs) have the advantages of high efficiency, a low operating temperature, and a pollution-free reaction. Therefore, PEMFCs have emerged as a viable clean energy solution for ships to reduce their carbon emissions. When PEMFCs operate in marine salt [...] Read more.
Proton exchange membrane fuel cells (PEMFCs) have the advantages of high efficiency, a low operating temperature, and a pollution-free reaction. Therefore, PEMFCs have emerged as a viable clean energy solution for ships to reduce their carbon emissions. When PEMFCs operate in marine salt spray environments, foreign ions entering the cathodes of fuel cells with air can cause a decline in cell performance. In this study, the effects of the cation type (K+, Na+, Mg2+, and Ca2+) and concentration (0.25 M and 0.5 M) on cell performance in terms of the polarization curve were systematically investigated using a fuel cell test system. Cell performance degradation was observed due to the existence of cations. The influence of the four cations on cell performance followed the rule of Ca2+ > Mg2+ > Na+ > K+. Meanwhile, cell performance decreased with an increase in concentration. When the fuel cell was not contaminated, the voltage was 0.645 V at a current density of 1 A/cm2. When the concentration was 0.5 M, the corresponding voltages were 0.594 V, 0.583 V, 0.559 V, and 0.300 V, respectively. In addition, fuel cells contaminated by NaNO3 and NaCl were compared. Due to the existence of Cl, more severe performance degradation was observed when the fuel cells were contaminated by NaCl. Full article
(This article belongs to the Special Issue Research and Development of Green Ship Energy)
Show Figures

Figure 1

17 pages, 1269 KiB  
Article
Key Influencing Factors in the Variation in Livestock Carbon Emissions in the Grassland Region of Gannan Prefecture, China (2009–2024)
by Guohua Chang, Jinxiang Wang, Panliang Liu, Qi Wang, Fanxiang Han, Chao Wang, Tawatchai Sumpradit and Tianpeng Gao
Agriculture 2025, 15(12), 1300; https://doi.org/10.3390/agriculture15121300 - 17 Jun 2025
Viewed by 501
Abstract
Research was conducted in Gannan Prefecture, China, to better understand the characteristics of carbon emissions and sequestration in areas dominated by animal husbandry. The emission factor method was used to calculate and analyze changes in carbon emissions from 2009 to 2024. The region’s [...] Read more.
Research was conducted in Gannan Prefecture, China, to better understand the characteristics of carbon emissions and sequestration in areas dominated by animal husbandry. The emission factor method was used to calculate and analyze changes in carbon emissions from 2009 to 2024. The region’s average annual carbon emissions from animal husbandry are 774,286 t C-eq (2,839,049 t CO2eq), with enteric emissions from cattle being the biggest contributor. However, as the number of locally raised cattle and sheep has decreased, carbon emissions have gradually fallen at an average annual rate of −1.0%. The annual average total carbon sequestration of vegetation in the region is 6,861,535 t C-eq, and the carbon content in underground biomass is higher than that in aboveground biomass, making it the main contributor to grassland carbon sequestration. Carbon sequestration from grassland vegetation is greater than the carbon emissions from animal husbandry, which means that the entire production system is currently a carbon sink. Meanwhile, the analysis of land-use carbon sequestration found that the annual average total sequestration by forests and grasslands over the same time period was 752,327 t C-eq, and sequestration is increasing at an annual rate of 1.4%, primarily driven by the progressive expansion of forested areas. Although the regional carbon emissions from animal husbandry are lower than the carbon sequestration, developing a science-based animal husbandry plan aligned with regional ecological thresholds, continuing to implement grass–livestock balance management measures, and preventing livestock numbers from exceeding their ecological carrying capacity remain critical to promoting sustainable coordination between livestock economies and ecological conservation. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

Back to TopTop