Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (226)

Search Parameters:
Keywords = entangled polymers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2695 KiB  
Article
Gelling Characteristics and Mechanisms of Heat-Triggered Soy Protein Isolated Gels Incorporating Curdlan with Different Helical Conformations
by Pei-Wen Long, Shi-Yong Liu, Yi-Xin Lin, Lin-Feng Mo, Yu Wu, Long-Qing Li, Le-Yi Pan, Ming-Yu Jin and Jing-Kun Yan
Foods 2025, 14(14), 2484; https://doi.org/10.3390/foods14142484 - 16 Jul 2025
Viewed by 211
Abstract
This study investigated the effects of curdlan (CUR) with different helical conformations on the gelling behavior and mechanisms of heat-induced soy protein isolate (SPI) gels. The results demonstrated that CUR significantly improved the functional properties of SPI gels, including water-holding capacity (0.31–5.06% increase), [...] Read more.
This study investigated the effects of curdlan (CUR) with different helical conformations on the gelling behavior and mechanisms of heat-induced soy protein isolate (SPI) gels. The results demonstrated that CUR significantly improved the functional properties of SPI gels, including water-holding capacity (0.31–5.06% increase), gel strength (7.01–240.51% enhancement), textural properties, viscoelasticity, and thermal stability. The incorporation of CUR facilitated the unfolding and cross-linking of SPI molecules, leading to enhanced network formation. Notably, SPI composite gels containing CUR with an ordered triple-helix bundled structure exhibited superior gelling performance compared to other helical conformations, characterized by a more compact and uniform microstructure. This improvement was attributed to stronger hydrogen bonding interactions between the triple-helix CUR and SPI molecules. Furthermore, the entanglement of triple-helix CUR with SPI promoted the formation of a denser and more homogeneous interpenetrating polymer network. These findings indicate that triple-helix CUR is highly effective in optimizing the gelling characteristics of heat-induced SPI gels. This study provides new insights into the structure–function relationship of CUR in SPI-based gel systems, offering potential strategies for designing high-performance protein–polysaccharide composite gels. The findings establish a theoretical foundation for applications in the food industry. Full article
(This article belongs to the Special Issue Natural Polysaccharides: Structure and Health Functions)
Show Figures

Figure 1

23 pages, 2793 KiB  
Article
Doping Carbon Coating on Glass Fiber to Enhance Its Reinforcing Potential in a Polymer Matrix
by Siok Wei Tay, Inez Lau and Liang Hong
J. Compos. Sci. 2025, 9(7), 348; https://doi.org/10.3390/jcs9070348 - 6 Jul 2025
Viewed by 428
Abstract
This research investigates a novel hybrid E-glass fiber coated with a thin amorphous carbon (coke) layer, referred to as GF@C, designed to enhance the affinity of fiber with a polymer matrix. Acrylonitrile butadiene styrene (ABS), an engineering thermoplastic, was selected as the matrix [...] Read more.
This research investigates a novel hybrid E-glass fiber coated with a thin amorphous carbon (coke) layer, referred to as GF@C, designed to enhance the affinity of fiber with a polymer matrix. Acrylonitrile butadiene styrene (ABS), an engineering thermoplastic, was selected as the matrix to form the composite. The carbon coating was produced by pyrolyzing a lubricant oil (Lo) layer applied to the glass fiber strands. To promote the formation of graphite crystallites during carbonization, a small amount (x wt.% of Lo) of coronene (Cor) was added to Lo as a dopant. The resulting doped fibers, denoted GF@CLo-Cor(x%), were embedded in ABS at 70 wt.%, leading to significant improvements in mechanical properties. At the optimal doping level (x = 5), the composite achieved a Young’s modulus of 1.02 GPa and a tensile strength of 6.96 MPa, substantially higher than the 0.4 GPa and 3.81 MPa observed for the composite with the pristine GF. This enhancement is attributed to a distribution of graphite crystallites and their graphitization extent in the carbon coating, which improves interfacial bonding and increases chain entanglement. Additionally, GF@CLo-Cor(x%)–ABS composites (x = 0 and 5) exhibit significantly higher dielectric constant–temperature profiles than GF–ABS, attributed to the formation of diverse chain adsorption states on the C-coating. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

15 pages, 3222 KiB  
Article
Gamma Irradiation-Induced Changes in Microstructure of Cyclic Olefin Copolymer (COC) Revealed by NMR and SAXS Characterization
by Fan Zhang, Heng Lei, Feng Guo, Jiangtao Hu, Haiming Liu, Qing Wang, Weihua Liu, Zhe Xing and Guozhong Wu
Polymers 2025, 17(13), 1751; https://doi.org/10.3390/polym17131751 - 24 Jun 2025
Viewed by 325
Abstract
Cyclic Olefin Copolymer (COC) is an amorphous thermoplastic polymer synthesized through the catalytic copolymerization of α-olefin and cyclic olefin. When used in pre-filled syringes and pharmaceutical packaging, COCs require radiation sterilization. The radiation sterilization alters the microstructure of COC, which ultimately affects its [...] Read more.
Cyclic Olefin Copolymer (COC) is an amorphous thermoplastic polymer synthesized through the catalytic copolymerization of α-olefin and cyclic olefin. When used in pre-filled syringes and pharmaceutical packaging, COCs require radiation sterilization. The radiation sterilization alters the microstructure of COC, which ultimately affects its performance and biosafety. In this study, to investigate the effects of γ-radiation on COC microstructures, ethylene-norbornene copolymers with various compositions, representative of COC, are studied by nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) techniques. During irradiation, the COC containing 35 mol% norbornene produced free radicals that triggered migration and reaction processes, leading to the formation of entanglements within flexible chain segments. This, in turn, affected nearby ring structures with high steric hindrance, resulting in a 9.2% decrease in internal particle size and an increase in particle spacing. Conversely, when the norbornene content in COC was increased to 57 mol%, the internal particle size increased by 17.9%, while the particle spacing decreased. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

17 pages, 3691 KiB  
Article
Lamellar Orientation Analysis and Mechanical Properties of Polyethylene in Stretch-Induced Crystallization
by Mohammed Althaf Hussain, Takeshi Aoyagi, Takeshi Kikutani, Wataru Takarada, Takashi Yamamoto, Syed Farooq Adil and Shigeru Yao
Polymers 2025, 17(11), 1450; https://doi.org/10.3390/polym17111450 - 23 May 2025
Viewed by 594
Abstract
Polyethylene films prepared from orientation-dependent methods are strong and resilient, have reduced permeability, and possess higher tensile strength. A molecular dynamics investigation is performed to reveal the emergence of chain folding and lamellar crystal axis alignment along the stretching axis (tilt angle) in [...] Read more.
Polyethylene films prepared from orientation-dependent methods are strong and resilient, have reduced permeability, and possess higher tensile strength. A molecular dynamics investigation is performed to reveal the emergence of chain folding and lamellar crystal axis alignment along the stretching axis (tilt angle) in the stretch-induced crystallization (SIC) of high-density polyethylene (HDPE), which mimics the internal structure of the fiber. The morphology in phase transition is assessed by the total density (ρ), degree of crystallinity (%χc), average number of entanglements per chain (<Z>), elastic modulus of the mechanical property, and lamellar chain tilt angle (θ) from the stretch-axis. The simulation emphasizes crystal formation by changing the total ρ from 0.85 g·cm−3 to 0.90 g·cm−3 and by tracking the gradual increase in % χc during stretching (~40%) and relaxation processes (~50%). Moreover, the primitive path analysis-based <Z> decreased during stretching and further in the subsequent relaxation process, supporting the alignment and thickening of the lamellar chain structure and chain folding from the random coil structure. The elastic modulus of ~350–400 MPa evidences the high alignment of the lamellar chains along the stretching axis. Consistent with the chain tilt angle of the HDPE in SAXS/WAXS experiments, the model estimated the lamellar chain title angle (θ) relative to the stretching axis to be ~20–35°. In conclusion, SIC is a convenient approach for simulating high stiffness, tensile strength, reduced permeability, and chain alignment in fiber film models, which can help design new fiber morphology-based polymers or composites. Full article
Show Figures

Graphical abstract

16 pages, 2498 KiB  
Article
Synthesis, Characteristics, and Field Applications of High-Temperature and Salt-Resistant Polymer Gel Tackifier
by Guowei Zhou, Xin Zhang, Weijun Yan and Zhengsong Qiu
Gels 2025, 11(6), 378; https://doi.org/10.3390/gels11060378 - 22 May 2025
Viewed by 397
Abstract
To address the technical challenge of high polymer gel viscosity reducers losing viscosity at elevated temperatures and difficulty in controlling fluid loss, a polymer-based nano calcium carbonate composite high-temperature tackifier named GW-VIS was prepared using acrylamide (AM), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), N-vinylpyrrolidone (NVP), and [...] Read more.
To address the technical challenge of high polymer gel viscosity reducers losing viscosity at elevated temperatures and difficulty in controlling fluid loss, a polymer-based nano calcium carbonate composite high-temperature tackifier named GW-VIS was prepared using acrylamide (AM), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), N-vinylpyrrolidone (NVP), and nano calcium carbonate as raw materials through water suspension polymerization. This polymer gel can absorb water well at room temperature and has a small solubility. After a long period of high-temperature treatment, most of it can dissolve in water, increasing the viscosity of the suspension. The structure of the samples was characterized by infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy, and their performance was evaluated. Rheological tests indicated that the 0.5% water suspension had a consistency coefficient (k = 761) significantly higher than the requirement for clay-free drilling fluids (k > 200). In thermal resistance experiments, the material maintained stable viscosity at 180 °C (reduction rate of 0%), and only decreased by 14.8% at 200 °C. Salt tolerance tests found that the viscosity reduction after hot rolling at 200 °C was only 17.31% when the NaCl concentration reached saturation. Field trials in three wells in the Liaohe oilfield verified that the clay-free drilling fluid supported formation operations successfully. The study shows that the polymer gel has the potential to maintain rheological stability at high temperatures by forming a network structure through polymer chain adsorption and entanglement, with a maximum temperature resistance of up to 200 °C, providing an efficient drilling fluid for deep oil and gas well development. It is feasible to select nano calcium carbonate to participate in the research of high-temperature resistant polymer materials. Meanwhile, the combined effect of monomers with large steric hindrance and inorganic materials can enhance the product’s temperature resistance and resistance to NaCl pollution. Full article
(This article belongs to the Special Issue Gels for Oil and Gas Industry Applications (3rd Edition))
Show Figures

Figure 1

24 pages, 7153 KiB  
Article
A Comparative Study on the Compatibilization of Thermoplastic Starch/Polybutylene Succinate Blends by Chain Extender and Epoxidized Linseed Oil
by Ke Gong, Yinshi Lu, Alexandre Portela, Soheil Farshbaf Taghinezhad, David Lawlor, Shane Connolly, Mengli Hu, Yuanyuan Chen and Maurice N. Collins
Macromol 2025, 5(2), 24; https://doi.org/10.3390/macromol5020024 - 12 May 2025
Cited by 1 | Viewed by 1302
Abstract
The immiscibility of thermoplastic starch (TPS) and polybutylene succinate (PBS) complicates the thermal processing of these materials. This study provides the first comparative assessment of two compatibilizers with differing reaction mechanisms, Joncryl® ADR 4468 and epoxidized linseed oil (ELO), for the optimization [...] Read more.
The immiscibility of thermoplastic starch (TPS) and polybutylene succinate (PBS) complicates the thermal processing of these materials. This study provides the first comparative assessment of two compatibilizers with differing reaction mechanisms, Joncryl® ADR 4468 and epoxidized linseed oil (ELO), for the optimization of biobased TPS/PBS blends. A total of 13 batches, varying in compatibilizer and blend composition, were processed via hot melt extrusion and injection molding to produce pellets. Blends were analyzed using tensile and impact testing, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), rheology, and scanning electron microscopy (SEM). The findings suggest that both compatibilizers can improve the compatibility of these blends, as evidenced by higher glass transition temperatures (Tg) compared to the reference batch (100-0-N/A). Joncryl® ADR 4468 batches exhibit superior tensile strength and Young’s moduli, while ELO batches demonstrate greater elongation at break. The enhanced processability observed in Joncryl® ADR 4468 is attributed to the increased polymer chain entanglement and molecular weight, whereas ELO facilitates greater chain mobility due to its plasticizing effect. These differences arise from the distinct mechanisms of action: Joncryl® ADR 4468 promotes chain extension and crosslinking, whereas ELO mainly enhances flexibility through plasticization. Overall, this study provides a comparative assessment of these compatibilizers in TPS/PBS blends, laying the groundwork for future investigations into optimizing compatibilizer concentration and blend composition. Full article
(This article belongs to the Collection Advances in Biodegradable Polymers)
Show Figures

Figure 1

26 pages, 20430 KiB  
Article
Influence of Partial Disentanglement of Macromolecules on the Rheological, Thermal, and Mechanical Properties of Polypropylene–Polyethylene Blends
by Justyna Krajenta, Magdalena Lipinska and Andrzej Pawlak
Molecules 2025, 30(8), 1786; https://doi.org/10.3390/molecules30081786 - 16 Apr 2025
Viewed by 648
Abstract
The properties of compatibilized blends of polyethylene (PE) and polypropylene (PP), having reduced macromolecular entanglements, were studied. The density of PP macromolecular entanglements was controlled by prior disentangling in solution. The polymer ratio in the blend was 4:1 or 1:4. An ethylene–octene copolymer [...] Read more.
The properties of compatibilized blends of polyethylene (PE) and polypropylene (PP), having reduced macromolecular entanglements, were studied. The density of PP macromolecular entanglements was controlled by prior disentangling in solution. The polymer ratio in the blend was 4:1 or 1:4. An ethylene–octene copolymer was used as a compatibilizer. The melt blending process resulted in good dispersion of the minority component, with slightly larger inclusions when more disentangled PP was used. Rheological studies confirmed the achievement of different entanglement densities of PP macromolecules in the blends. The partial disentanglement did not affect the thermal stability of the blends. During the isothermal crystallization studies, faster growth of PP spherulites was observed in the blend with reduced entanglements, which also influenced the entire crystallization process. The recovery time of equilibrium entanglement was investigated and it turned out to be 45 min if the blend was annealed at 190 °C, which was shorter than in the analogous homopolymer. Studies of tensile properties showed that in blends with a majority share of polyethylene, the elongation at break increased with the disentanglement of the minority component, due to better bonding of the blend components and thus the reduction in microcavitation. Full article
(This article belongs to the Special Issue Macromolecular Chemistry in Europe, 2nd Edition)
Show Figures

Graphical abstract

28 pages, 4775 KiB  
Review
Progress and Prospects of Polymer/One-Dimensional Nanoclay Superabsorbent Composites
by Haifeng Xing, Xiangyu Liu, Qingdong He and Wenbo Wang
Polymers 2025, 17(5), 669; https://doi.org/10.3390/polym17050669 - 28 Feb 2025
Viewed by 989
Abstract
Superabsorbent materials (SAMs), featuring a three-dimensional (3D) hydrophilic polymer network, can absorb and retain water up to thousands of times their own weight, even under pressure. This makes them indispensable in various fields, including hygiene products and agriculture. The water absorption capacity of [...] Read more.
Superabsorbent materials (SAMs), featuring a three-dimensional (3D) hydrophilic polymer network, can absorb and retain water up to thousands of times their own weight, even under pressure. This makes them indispensable in various fields, including hygiene products and agriculture. The water absorption capacity of SAMs is influenced by the presence of hydrophilic groups and a swellable network structure. To optimize performance, one must adjust the types and concentrations of functional groups. Additionally, changes in the density and regularity of the polymer network are necessary. Significant performance improvements are limited by inherent challenges in modifying polymer chains or networks. To enhance performance, researchers focus on manipulating the components and structure of the polymer network. Effective water retention requires the network to fully expand while maintaining its strength. Incorporating nanoparticles, especially one-dimensional (1D) nanoclays, minimizes chain entanglement and prevents network collapse during drying. This approach effectively addresses the above challenges. Upon swelling, these nanoparticles improve hydrogen bonding within the polymer network, significantly boosting the performance of SAMs. Nanoclays are abundant natural silicates found in various nanostructures like nanorods, nanofibers, and nanotubes. These nanoclays contain reactive silanol groups that form strong hydrogen bonds with polymer chains. This aids in network formation and reduces costs. Advances in synthesis and structural control have facilitated the development of versatile 1D nanoclay-based SAMs. This paper reviews the structure, characteristics, and applications of such materials and proposes future research directions aimed at developing higher-performance clay-based SAMs. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

14 pages, 2691 KiB  
Article
Tailoring Polyamide66 Mechanical Performance: A Strategy for Condensed Phase Structure Optimization Through Hydrogen Bond Reorganization
by Wen-Yan Wang, Pan He, Ting Peng, Shuai Zhang, Guang-Zhao Li, Min Nie and Rui Han
Molecules 2025, 30(4), 862; https://doi.org/10.3390/molecules30040862 - 13 Feb 2025
Viewed by 750
Abstract
Polymers are widely used in various industries due to their unique properties, but their mechanical strength often falls short compared to other materials. This has spurred extensive research into enhancing their mechanical performance through condensed phase structure regulation. This study investigates the enhancement [...] Read more.
Polymers are widely used in various industries due to their unique properties, but their mechanical strength often falls short compared to other materials. This has spurred extensive research into enhancing their mechanical performance through condensed phase structure regulation. This study investigates the enhancement of mechanical properties in polyamide 66 (PA66) through the introduction of arylamide-based materials (TMB-5) during the melt-spinning process. TMB-5, possessing amide groups like PA66, can reorganize intermolecular hydrogen bonds within PA66, thereby facilitating molecular movement and reducing chain entanglement during fiber formation. Consequently, the synergistic effect of TMB-5 and the stretching field leads to enhanced crystallization and molecular and lamellae orientation in PA66 fibers without post-drawing, resulting in a significant increase in tensile strength and modulus. This work not only offers a novel strategy for adjusting polymer mechanical performance but also sheds light on the importance of molecular interactions in governing polymer properties. Full article
Show Figures

Graphical abstract

24 pages, 5166 KiB  
Article
Flocculation Mechanism and Microscopic Statics Analysis of Polyacrylamide Gel in Underwater Cement Slurry
by Hao Lu, Bo Dai, Chunhe Li, Hua Wei and Jinhui Wang
Gels 2025, 11(2), 99; https://doi.org/10.3390/gels11020099 - 1 Feb 2025
Viewed by 834
Abstract
Zeta potential testing, Fourier infrared spectroscopy, and total organic carbon analysis were employed in this manuscript to explore the flocculation mechanism of polyacrylamide (PAM) on slurry with a high content of polycarboxylate ether (PCE). Through the combination of assessments of chemical bond shifts, [...] Read more.
Zeta potential testing, Fourier infrared spectroscopy, and total organic carbon analysis were employed in this manuscript to explore the flocculation mechanism of polyacrylamide (PAM) on slurry with a high content of polycarboxylate ether (PCE). Through the combination of assessments of chemical bond shifts, adsorption indicators, and intrinsic viscosity of high-molecular-weight polymer systems, the microscale flocculation mechanisms of different PAM dosages in cement suspensions were elucidated, showcasing stages of “adsorption–lubrication–entanglement”. Initially (PAM < 0.3%), with PAM introduction, the polymer primarily underwent adsorption interactions, including hydrogen bonding between the ester group, amine group, and water molecules; chelation between the ester group and Ca2+ and Al3+ on the cement surface; and bridging between PAM’s long-chain structure and cement particles. As the PAM content increased, the cement particles’ adsorption capacity saturated (PAM < 0.67%). The entropy loss of polymer conformation could not be offset by adsorption energy, leading to its exclusion from the interface and depletion attractive forces. Slurry movement shifted from inter-particle motion to high-molecular-weight polymer sliding in interstitial fluid, forming a lubrication effect. With further PAM content no less than 0.67%, the polymer solution reached a critical entanglement concentration, and the contact of the rotation radius of the long-chain molecules led to entanglement domination. By introducing bridging adsorption, depletion attraction, and entanglement forces, the cohesion of cement-based polymer suspensions was subsequently determined. The results showed a linear correlation between cohesion and PAM concentration raised to powers of 0.30, 1.0, and 0.75 at different interaction stages, and a multiscale validation from microscopic flocculation mechanisms to macroscopic performance was finally completed through a comparative analysis with macroscopic anti-washout performance. Full article
(This article belongs to the Special Issue Gels for Removal and Adsorption (3rd Edition))
Show Figures

Figure 1

10 pages, 1810 KiB  
Article
Evidence for Proximity Effect in Superconductor–Organic Semiconductor–Superconductor Stacked Devices
by Anna Kremen, Hagit Aviv, Yaakov Raphael Tischler and Amos Sharoni
Appl. Sci. 2025, 15(1), 85; https://doi.org/10.3390/app15010085 - 26 Dec 2024
Viewed by 967
Abstract
Coupling superconducting (SC) contacts to light-emitting layers can lead to remarkable effects, as seen in inorganic quantum-well LEDs with superconducting contacts, where an enhancement in radiative recombination was observed. Additional dramatic effects were theorized if both electrodes are SC, such as correlated emission [...] Read more.
Coupling superconducting (SC) contacts to light-emitting layers can lead to remarkable effects, as seen in inorganic quantum-well LEDs with superconducting contacts, where an enhancement in radiative recombination was observed. Additional dramatic effects were theorized if both electrodes are SC, such as correlated emission and 2-photon entanglement. Motivated by this and by the question of whether proximity induced SC is possible in organic light-emitting materials, we studied the electronic properties of stacked SC–organic–SC devices. Our structures consisted of Nb (bottom) and NbN (top) SC electrodes and a spin-coated light-emitting semiconductor polymer, MEH-PPV. Sputtering the SC directly on the polymer causes pinholes, which we prevent by ultra-slow deposition of a 5 nm aluminum film, before depositing the top SC in situ. The Al protects the organic film from damage and pinhole formation, while preserving SC in the top electrodes due to the proximity effect between Al and NbN. Electrical transport measurements of the completed junctions indicate that indeed, the top and bottom contacts are superconducting and the protected MEH-PPV layer is pinhole-free, as supported by HR-TEM and EDS. Most importantly, we find that as the temperature is decreased below the critical temperature of the SCs, the device shows evidence for the proximity effect in the MEH-PPV. Full article
Show Figures

Figure 1

12 pages, 4288 KiB  
Article
Polymer Entanglement-Induced Hydrogel Adhesion
by Kai Hu, Qingyun Li and Xiaofan Ji
Gels 2024, 10(12), 822; https://doi.org/10.3390/gels10120822 - 13 Dec 2024
Cited by 1 | Viewed by 1308
Abstract
Hydrogels are widely used in the field of adhesive materials. However, hydrogel adhesion has previously required the covalent graft of supramolecular groups on polymeric chains. In contrast to that, here, a hydrogel adhesion induced by covalent polymer entanglement between two hydrogel networks was [...] Read more.
Hydrogels are widely used in the field of adhesive materials. However, hydrogel adhesion has previously required the covalent graft of supramolecular groups on polymeric chains. In contrast to that, here, a hydrogel adhesion induced by covalent polymer entanglement between two hydrogel networks was reported. Hydrogels G1 and G2 contain the monomers M1, with diazonium groups, and M2, with sulfonate groups, respectively. When the two hydrogels come into contact, the monomers diffuse into each other’s networks and assemble into supramolecular polymers (SPs) based on electrostatic interactions, threading the two hydrogel networks. Subsequently, SPs convert into covalent polymers (CPs) under UV light stimulation due to the reaction between the diazonium groups and sulfonate groups, leading to the entanglement of the two hydrogel networks and the production of an adhesive effect. This finding provides a novel strategy for hydrogel adhesion. Full article
Show Figures

Graphical abstract

22 pages, 19199 KiB  
Article
Impact of Hexyl Branch Content on the Mechanical Properties and Deformation Mechanisms of Amorphous Ethylene/1-Octene Copolymers: A Molecular Dynamics Study
by Ruijun Zhang, Qiqi He, Hongbo Yu, Junhua Li, Yuexin Hu and Jianhua Qian
Polymers 2024, 16(23), 3236; https://doi.org/10.3390/polym16233236 - 21 Nov 2024
Viewed by 1110
Abstract
Ethylene/1-octene copolymers exhibit enhanced flexibility and impact resistance compared to polyethylene, which makes them well suited for applications in advanced plastics and elastomers. United-atom molecular dynamics (MD) simulations were conducted to explore the mechanical behavior and deformation mechanisms of ethylene/1-octene copolymers under uniaxial [...] Read more.
Ethylene/1-octene copolymers exhibit enhanced flexibility and impact resistance compared to polyethylene, which makes them well suited for applications in advanced plastics and elastomers. United-atom molecular dynamics (MD) simulations were conducted to explore the mechanical behavior and deformation mechanisms of ethylene/1-octene copolymers under uniaxial tensile loading. This study systematically examined the influence of temperature, polymer chain length, chain quantity, and strain rate, with a specific focus on how hexyl branch content impacts the mechanical properties of amorphous ethylene/1-octene copolymers. The simulation results indicate that as the branch content increases, the yield strength and elastic modulus decrease, suggesting a trade-off between flexibility and mechanical strength. Energy decomposition analysis reveals that copolymers with more branched chains undergo greater changes in van der Waals energy. Additionally, as the branch content increases, the reduction in dihedral angle energy in the strain hardening region becomes more gradual, and the rate and the extent of the transition of dihedral angles from gauche to trans conformation decrease under deformation. Ethylene/1-octene copolymers exhibit higher chain entanglement parameters compared to linear polyethylene, with these parameters increasing as the branch content rises. Moreover, increasing the branch content results in a less pronounced increase in chain orientation along the loading direction. Full article
(This article belongs to the Special Issue Advanced Polymer Materials: Synthesis, Structure, and Properties)
Show Figures

Graphical abstract

27 pages, 9044 KiB  
Review
Comprehensive Review of Hydrogel Synthesis, Characterization, and Emerging Applications
by Arumugasamy Sathiya Priya, Rajaraman Premanand, Indhumathi Ragupathi, Vijayabhaskara Rao Bhaviripudi, Radhamanohar Aepuru, Karthik Kannan and Krishnamoorthy Shanmugaraj
J. Compos. Sci. 2024, 8(11), 457; https://doi.org/10.3390/jcs8110457 - 4 Nov 2024
Cited by 13 | Viewed by 13237
Abstract
Hydrogels play a crucial role due to their high-water content and 3D structure, which make them ideal for various applications in biomedicine, sensing, and beyond. They can be prepared from a variety of biomaterials, polymers, and their combinations, allowing for versatility in properties [...] Read more.
Hydrogels play a crucial role due to their high-water content and 3D structure, which make them ideal for various applications in biomedicine, sensing, and beyond. They can be prepared from a variety of biomaterials, polymers, and their combinations, allowing for versatility in properties and applications. Hydrogels include natural types derived from collagen, gelatin, alginate, and hyaluronic acid, as well as synthetic types based on polyethylene glycol (PEG), polyvinyl alcohol (PVA), and polyacrylamide (PAAm). Each type possesses distinct properties, such as mechanical strength, biodegradability, and biocompatibility, which can be tailored for applications such as wound healing, contact lenses, 3D bioprinting, and tissue engineering. The high-water content of hydrogels mimics natural tissue environments, promoting cell growth and allowing nutrient and waste exchange, which supports the development of functional tissues. They serve as scaffolds in tissue engineering applications, including wound healing, cartilage and bone regeneration, vascular tissue engineering, and organ-on-a-chip systems. Additionally, hydrogels can encapsulate and deliver therapeutic agents, such as growth factors or drugs, to specific target sites in the body. Hydrogels can be prepared through three primary methods: physical crosslinking, which relies on non-covalent interactions such as physical entanglements or hydrogen bonding; chemical crosslinking, which forms covalent bonds between polymer chains to create a stable structure; and irradiation-based crosslinking, where UV irradiation induces rapid hydrogel formation. The choice of crosslinking method depends on the desired properties and applications of the hydrogel. By providing a biomimetic environment, hydrogels facilitate cell growth and differentiation, support tissue formation, and aid in the regeneration of damaged or diseased tissues while delivering therapeutic agents. This review focuses on the critical advancements in processing routes for hydrogel development, summarizing the characterization and application of hydrogels. It also details key applications, including wound healing and cartilage and bone regeneration, as well as the challenges and future perspectives in the field. Full article
(This article belongs to the Section Biocomposites)
Show Figures

Figure 1

21 pages, 8489 KiB  
Article
De- and Re-Structuring of Starch to Control the Melt and Solid State Visco-Elasticity as Method for Getting New Multi Component Compounds with Scalable Properties
by Doina Dimonie, Ramona-Marina Grigorescu, Bogdan Trică, Monica Raduly, Celina-Maria Damian, Roxana Trusca, Alina-Elena Mustatea, Stefan-Ovidiu Dima and Florin Oancea
Polymers 2024, 16(21), 3063; https://doi.org/10.3390/polym16213063 - 30 Oct 2024
Viewed by 1249
Abstract
The aim of the article was to design and develop new thermodynamically stable starch-based compounds, with scalable properties, that are melt-processable into finished products by classic or 3D printing methods. This is based on phenomena of de-structuring, entanglement compatibilization, and re-structuring of starch, [...] Read more.
The aim of the article was to design and develop new thermodynamically stable starch-based compounds, with scalable properties, that are melt-processable into finished products by classic or 3D printing methods. This is based on phenomena of de-structuring, entanglement compatibilization, and re-structuring of starch, along with the modification of the polymer, polyvinyl alcohol (PVA), by following an experimental sequence involving pre-treatment and melt compounding in two stages. The new compounds selection was made considering the dependence of viscoelastic properties on formulation and flowing conditions in both the melted and solid states. Starting from starch with 125 °C glass transition and PVA with a Tg at 85 °C, and following the mentioned experimental sequence, new starch-PVA compounds with a high macromolecular miscibility and proven thermodynamic stability for at least 10 years, with glass transitions ranging from −10 °C to 50 °C, optimal processability through both classical melt procedures (extrusion, injection) and 3D printing, as well as good scalability properties, were achieved. The results are connected to the approaches considering the relationship between miscibility and the lifetime of compounds with renewable-based polymer content. By deepening the understanding of the thermodynamic stability features characterizing these compounds, it can be possible to open the way for starch usage in medium-life compositions, not only for short-life applications, as until now. Full article
(This article belongs to the Special Issue Biobased and Biodegradable Polymer Blends and Composites II)
Show Figures

Figure 1

Back to TopTop