Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (80)

Search Parameters:
Keywords = ensiling time

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5270 KiB  
Article
Dynamic Changes in Microorganisms and Metabolites During Silage Fermentation of Whole Winter Wheat
by Li Zhang, Yu Zeng, Lin Fu, Yan Zhou, Juncai Chen, Gaofu Wang, Qifan Ran, Liang Hu, Rui Hu, Jia Zhou and Xianwen Dong
Vet. Sci. 2025, 12(8), 708; https://doi.org/10.3390/vetsci12080708 - 28 Jul 2025
Viewed by 173
Abstract
Winter wheat (Triticum aestivum L.) silage has high feeding value and has become an important roughage resource in China. To recognize the optimal fermentation time of the silage product, this study systematically evaluated the temporal dynamics of microbial communities and metabolic profiles [...] Read more.
Winter wheat (Triticum aestivum L.) silage has high feeding value and has become an important roughage resource in China. To recognize the optimal fermentation time of the silage product, this study systematically evaluated the temporal dynamics of microbial communities and metabolic profiles in whole winter wheat silage at days 7, 14, 30, 50, and 70. The dry matter (DM) content slightly fluctuated with the extension of fermentation time, with 28.14% at 70 days of ensiling. The organic matter and neutral detergent fiber content gradually decreased with the extension of fermentation time. A significant decrease in pH was observed at days 30, 50, and 70 compared to days 7 and 14 (p < 0.05), with the lowest pH value of 4.4 recorded at day 70. The contents of lactic acid, acetic acid, butyric acid, and total volatile fatty acids gradually increased with the extension of fermentation time, reaching a maximum at 70 days of ensiling. The dominant bacteria were Proteobacteria and Firmicutes at the phylum level, and the predominant bacteria were Hafnia-Obesumbacterium, Enterobacter, and Lactobacillus at the genus level. The relative abundance of Hafnia-Obesumbacterium and Lactobacillus fluctuated slightly with the duration of fermentation, reaching a minimum for the former and a maximum for Lactobacillus at 50 days of ensiling. By day 70, Sporolactobacillus emerged as a distinct silage biomarker. The dominant fungi was Ascomycota at the phylum level, and the predominant fungi were Fusarium and an unidentified fungus at the genus level. The correlation analysis revealed significant pH–organic acid–microbe interactions, with pH negatively correlating with organic acids but positively with specific bacteria, while organic acids showed complex microbial associations. Collectively, under natural fermentation conditions, the optimal fermentation period for wheat silage exceeds 70 days, and Sporolactobacillus shows potential as a microbial inoculant for whole winter wheat silage. These findings provide a theoretical foundation for optimizing whole winter wheat silage utilization and enhancing fermentation quality. Full article
Show Figures

Figure 1

13 pages, 2088 KiB  
Article
Assessment of Effects of Storage Time on Fermentation Profile, Chemical Composition, Bacterial Community Structure, Co-Occurrence Network, and Pathogenic Risk in Corn Stover Silage
by Zhumei Du, Ying Meng, Yifan Chen, Shaojuan Cui, Siran Wang and Xuebing Yan
Fermentation 2025, 11(8), 425; https://doi.org/10.3390/fermentation11080425 - 23 Jul 2025
Viewed by 399
Abstract
In order to achieve the efficient utilization of agricultural by-products and overcome the bottleneck of animal feed shortages in dry seasons, this study utilized corn stover (CS; Zea mays L.) as a material to systematically investigate the dynamic changes in the fermentation quality, [...] Read more.
In order to achieve the efficient utilization of agricultural by-products and overcome the bottleneck of animal feed shortages in dry seasons, this study utilized corn stover (CS; Zea mays L.) as a material to systematically investigate the dynamic changes in the fermentation quality, bacterial community structure, and pathogenic risk of silage under different fermentation times (0, 3, 7, 15, and 30 days). CS has high nutritive value, including crude protein and sugar, and can serve as a carbon source and a nitrogen source for silage fermentation. After ensiling, CS silage (CSTS) exhibited excellent fermentation quality, characterized by relatively high lactic acid content, low pH, and ammonia nitrogen content within an acceptable range. In addition, neither propionic acid nor butyric acid was detected in any of the silages. CS exhibited high α-diversity, with Serratia marcescens being the dominant bacterial species. After ensiling, the α-diversity significantly (p < 0.05) decreased, and Lactiplantibacillus plantarum was the dominant species during the fermentation process. With the extension of fermentation days, the relative abundance of Lactiplantibacillus plantarum significantly (p < 0.05) increased, reaching a peak and stabilizing between 15 and 30 days. Ultimately, lactic acid bacteria dominated and constructed a microbial symbiotic network system. In the bacterial community of CSTS, the abundance of “potential pathogens” was significantly (p < 0.01) lower than that of CS. These results provide data support for establishing a microbial regulation theory for silage fermentation, thereby improving the basic research system for the biological conversion of agricultural by-products and alleviating feed shortages in dry seasons. Full article
Show Figures

Figure 1

19 pages, 4928 KiB  
Article
Microbial and Metabolomic Insights into Lactic Acid Bacteria Co-Inoculation for Dough-Stage Triticale Fermentation
by Yujie Niu, Xiaoling Ma, Chuying Wang, Peng Zhang, Qicheng Lu, Rui Long, Yanyan Wu and Wenju Zhang
Microorganisms 2025, 13(8), 1723; https://doi.org/10.3390/microorganisms13081723 - 23 Jul 2025
Viewed by 203
Abstract
Triticale (Triticosecale Wittmack) is a versatile forage crop valued for its high yield, balanced nutrition, and environmental adaptability. However, the dough-stage triricale has higher dry matter and starch content but lower water-soluble carbohydrate levels than earlier stages, posing fermentation challenges that [...] Read more.
Triticale (Triticosecale Wittmack) is a versatile forage crop valued for its high yield, balanced nutrition, and environmental adaptability. However, the dough-stage triricale has higher dry matter and starch content but lower water-soluble carbohydrate levels than earlier stages, posing fermentation challenges that may impair silage quality. This study aimed to investigate the effects of lactic acid bacteria inoculation on the fermentation quality, bacterial community, and metabolome of whole-plant triticale silage at the dough stage. Fresh triticale was ensiled for 30 days without or with an inoculant containing Lactiplantibacillus plantarum and Streptococcus bovis. Fermentation quality, bacterial succession, and metabolic profiles were analyzed at multiple time points. Inoculation significantly improved fermentation quality, characterized by a rapid pH drop, increased lactic acid production, and better preservation of fiber components. Microbial analysis revealed that inoculation successfully established Lactobacillus as the dominant genus while suppressing spoilage bacteria like Enterobacter and Clostridium. Metabolomic analysis on day 30 identified numerous differential metabolites, indicating that inoculation primarily altered pathways related to amino acid and purine metabolism. In conclusion, inoculating dough-stage triticale with this LAB combination effectively directs the fermentation trajectory. It enhances silage quality not only by optimizing organic acid profiles and microbial succession but also by modulating key metabolic pathways, ultimately leading to improved nutrient preservation. Full article
(This article belongs to the Special Issue Beneficial Microorganisms and Antimicrobials: 2nd Edition)
Show Figures

Figure 1

12 pages, 921 KiB  
Article
Mixed Ensiling Increases Degradation Without Altering Attached Microbiota Through In Situ Ruminal Incubation Technique
by Xuanxuan Pu, Min Zhang, Jianjun Zhang, Xiumin Zhang, Shizhe Zhang, Bo Lin, Tianwei Wang, Zhiliang Tan and Min Wang
Animals 2025, 15(14), 2131; https://doi.org/10.3390/ani15142131 - 18 Jul 2025
Viewed by 197
Abstract
Mixed silage can disrupt the girder structure of rape straw, and thus facilitate ruminal degradation. Further investigation is warranted to validate this observation in vivo. The objective of this study was to investigate the degradation kinetics and bacterial colonization of mixed silage during [...] Read more.
Mixed silage can disrupt the girder structure of rape straw, and thus facilitate ruminal degradation. Further investigation is warranted to validate this observation in vivo. The objective of this study was to investigate the degradation kinetics and bacterial colonization of mixed silage during digestion using an in situ ruminal incubation technique. The experiment comprised two treatments: a mixture of rape straw and corn silage (control), and a mixed silage treatment of rape straw and whole crop corn (mixed silage). Three ruminally cannulated Holstein bulls were employed. Substrates were incubated for varying durations (4, 12, 24, 48, 72, 96, 120 and 216 h) to assess substrate degradation kinetics. Bacterial colonization were analyzed after 4- and 48-h incubation time. Mixed ensiling disrupted the fiber structure of rape straw, and thus had lower fiber content compared to the control, as NDF and ADF content ‌decreased by 55 g/kg (678 vs. 623 g/kg) and 27 g/kg (440 vs. 413 g/kg), respectively. Compared to the control group, ruminal DM disappearance of mixed silage significantly (p ≤ 0.05) increased from 315 to 366 g/kg (+16.2%) at an incubation time of 4 h, 552 to 638 g/kg (+15.6%) at 120 h, and 563 to 651 g/kg (+15.6%) at 216 h. Similarly, compared to the control group, NDF disappearance of mixed silage significantly (p ≤ 0.05) rose from 112 to 201 g/kg (+79.5%) at 4 h, 405 to 517 g/kg (+27.7%) at 120 h, and 429 to 532 g/kg (+24.0%) at 216 h. Compared to the control group, soluble and washout nutrient fractions (a) of DM or NDF fraction in mixed silage significantly (p ≤ 0.05) rose from 289 to 340 g/kg (+17.6%), potentially degradable fractions (b) of NDF increased from 310 to 370 g/kg (+19.4%), and the undegraded fraction of NDF (μNDF) decreased from 582 to 471 g/kg (−19.1%). Incubation time, apart from in the mixed ensiling treatment, altered the bacterial community. The study highlights that higher total potentially degradable fractions account for enhanced ruminal substrate degradation of mixed silage. Full article
Show Figures

Figure 1

18 pages, 2211 KiB  
Article
Early Fermentation Dynamics and Aerobic Stability of Maize Silage Improved by Dual-Strain Lactic Acid Bacteria Inoculation
by Jonas Jatkauskas, Rafael Camargo do Amaral, Kristian Lybek Witt, Jens Noesgaard Joergensen, Ivan Eisner and Vilma Vrotniakiene
Fermentation 2025, 11(5), 293; https://doi.org/10.3390/fermentation11050293 - 21 May 2025
Viewed by 652
Abstract
This study aimed to provide deeper insights into fermentation dynamics, aerobic stability, and bacterial community composition during the short-term ensiling of maize forage with lactic acid bacteria-based inoculants. A 50:50 combination of Lentilactobacillus buchneri DSM2250 and Lactococcus lactis DSM11037 (LBL target application: 150,000 [...] Read more.
This study aimed to provide deeper insights into fermentation dynamics, aerobic stability, and bacterial community composition during the short-term ensiling of maize forage with lactic acid bacteria-based inoculants. A 50:50 combination of Lentilactobacillus buchneri DSM2250 and Lactococcus lactis DSM11037 (LBL target application: 150,000 CFU per 1 g forage) was tested alongside an untreated control (C) over fermentation periods of 2, 4, 8, 16, and 32 days. A total of 50 3 L mini-silos were filled with 2 kg of fresh maize each and stored at 20 °C. The pH, dry matter, nutrient profiles, volatile fatty acids, lactic acid, alcohols, ammonia-N, microbiological counts (yeast and mold), and aerobic stability of all samples were analyzed after seven days of air exposure. LBL silage showed higher average dry matter content (DMc) and crude protein (CP) levels by 1.5%, p < 0.001, and 10.8%, p < 0.001, respectively, as well as reduced average dry matter (DM) losses by half (p < 0.001) compared to pure silage. The beneficial effects of inoculation became more pronounced with prolonged storage, particularly by day 32 of fermentation. LBL silage showed increased production of lactic and acetic acids by an average of 55.5% and 5.0%, respectively, (p < 0.01) and significantly reduced butyric acid formation by approximately 14 times. Ethanol and ammonia-N concentrations were also reduced by 55.4% and 25.6%, respectively (p < 0.001), while the pH value remained 0.17 units lower (p < 0.001) compared to the control. The combination of the two strains improved silage aerobic stability by 2.4 days (p < 0.001) and extended shelf life by reducing yeast counts (8.02 vs. 7.35 log10CFU g−1 FM, p < 0.001), while maintaining the pH value close to its initial level. Therefore, compared to the untreated control, the inoculated silage exhibited higher nutritional value, reduced fermentation losses, and suppressed undesirable microbial activity. The positive effects of inoculation became increasingly evident over time, particularly by day 32, highlighting the synergistic benefits of using mixed-strain lactic acid bacteria. These findings support the use of LBL inoculants as an effective strategy to enhance short-term silage quality and stability. Full article
Show Figures

Figure 1

11 pages, 797 KiB  
Article
Comparison of In Vitro Fermentation Characteristics Among Five Maize Varieties
by Fabio Zicarelli, Serena Calabrò, Piera Iommelli, Micaela Grossi, Federico Infascelli and Raffaella Tudisco
Fermentation 2025, 11(5), 285; https://doi.org/10.3390/fermentation11050285 - 15 May 2025
Viewed by 602
Abstract
Maize (Zea mays L.) silage in the irrigated and flat areas of Italy represents the most important large ruminant feed crop due to the high dry matter yield and nutritive value per hectare. The aim of the investigation was to evaluate the [...] Read more.
Maize (Zea mays L.) silage in the irrigated and flat areas of Italy represents the most important large ruminant feed crop due to the high dry matter yield and nutritive value per hectare. The aim of the investigation was to evaluate the chemical composition and the in vitro fermentation patterns of five maize varieties (Tiesto, R700 1, MAS 78.T, DKC 7074 and KWS Kantico) freshly chopped and preserved via ensiling. The results indicated that the chemical composition was not significantly different among varieties. The substrates were incubated for 72 h with buffered rumen fluid collected from cow. The ensiling process slightly reduced gas production and fermentation kinetics, likely due to the consumption of soluble sugars during fermentation. Organic matter loss (OM loss) differed significantly (p < 0.01) among varieties in ensiled maize, correlating with their neutral detergent fiber (NDF) content. While total volatile fatty acid (VFA) production showed no significant differences between varieties, the buffer capacity ratio (BCR), an indicator of protein degradation, varied significantly. Ammonia production (NH3) was significantly higher in ensiled samples, supporting previous findings that ensiling increases non-protein nitrogen (NPN) due to microbial proteolysis and plant enzyme activity. The gas production profiles and fermentation rates over time showed minor differences between fresh and ensiled samples, with fresh material exhibiting faster fermentation kinetics due to the presence of soluble sugars. These findings highlight the importance of evaluating maize silage quality to optimize ruminant nutrition and feed efficiency. Full article
(This article belongs to the Special Issue Ruminal Fermentation)
Show Figures

Figure 1

21 pages, 4404 KiB  
Article
Potential of Baled Silage to Preserve White Grape Pomace for Ruminant Feeding
by Marina Galvez-Lopez, Alfonso Navarro, Raquel Muelas, Amparo Roca, Cristofol Peris, Gema Romero and José Ramón Díaz
Agriculture 2025, 15(9), 974; https://doi.org/10.3390/agriculture15090974 - 30 Apr 2025
Cited by 1 | Viewed by 705
Abstract
The use of agro-industrial by-products in animal feed represents a useful alternative to enhance the sustainability of the agri-food chain. Grape pomace represents an environmental problem mainly for wine-producing countries. Because of the high water content and the seasonality of this feedstuff, ensiling [...] Read more.
The use of agro-industrial by-products in animal feed represents a useful alternative to enhance the sustainability of the agri-food chain. Grape pomace represents an environmental problem mainly for wine-producing countries. Because of the high water content and the seasonality of this feedstuff, ensiling might be a technology to preserve its nutritional quality for a long time, and this must be considered and studied on a commercial scale. This study aimed to characterise the ensiling process of white grape pomace, evaluate its suitability for inclusion in the ruminant diet and compare its shelf life to untreated storage conditions. White grape pomace silos were made with baled silage (300 kg approx.). Samples were analysed at days 0, 7, 14, 35, 60 and 180 of conservation to determine microbial populations, fermentation metabolites, nutritional components and bioactive properties. The collected data were analysed using a general linear model, considering the effect of the treatment, sampling days and their interaction (Proc. GLM, SAS v9.4). White grape pomace showed good suitability for ensiling, and stabilisation was achieved on day 35. The microbial populations and fermentative components observed in silage treatments adhered to the expected standards for high-quality ensiling processes. There were no significant losses of dry matter, and no significant differences were observed in the nutritional composition for ruminant feeding. A small reduction in antioxidant potential was observed and considered irrelevant in terms of the bioactive properties of the silages. Additionally, the cost analysis demonstrated that white grape pomace silage could serve as a more economical feedstuff compared to conventional forages, considering its nutritional value. So, the ensiling of white grape pomace in baled silage is a suitable and cost-effective technique that allows its preservation over a long period. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

18 pages, 2050 KiB  
Article
Influence of Epiphytic Microorganisms on Silage Quality and Aerobic Exposure Characteristics of Grass Pastures
by Qi Yan, Hao Ding, Chenghuan Qin, Qichao Gu, Xin Gao, Yongqi Tan, Deshuang Wei, Yiqiang Li, Nanji Zhang, Ruizhanghui Wang, Bo Lin and Caixia Zou
Agriculture 2025, 15(8), 890; https://doi.org/10.3390/agriculture15080890 - 19 Apr 2025
Viewed by 464
Abstract
In this study, we investigated whether epiphytic microorganisms of fresh forage affect silage quality and aerobic exposure of silage by determining the changes in chemical composition, fermentation characteristics and microbial population of two grass forages (sugarcane tops and corn stover) under aerobic exposure [...] Read more.
In this study, we investigated whether epiphytic microorganisms of fresh forage affect silage quality and aerobic exposure of silage by determining the changes in chemical composition, fermentation characteristics and microbial population of two grass forages (sugarcane tops and corn stover) under aerobic exposure treatments (fresh, end-of-storage and aerobic exposure periods). There were nine replicates for each of the two forage silages. The total silage time was 60 days, after which the cellar was opened for a 12-day period for aerobic exposure measurements. At the end of ensiling, the lactic acid content of corn stover silage (116.78 g/kg DM) was significantly higher than that of sugarcane top silage (16.07 g/kg DM; p < 0.01), and the corn stover (3.53) had a significantly lower pH than sugarcane tops (4.46) (p < 0.01). Weissella was the most abundant epiphytic lactic acid bacteria (LAB) in sugarcane tops and corn stover (19.08% and 11.15%, respectively). The relative abundance of epiphytic Pediococcus was higher in sugarcane tops (0.17%) than in corn stover (0.09%; p < 0.05). The relative abundance of Pediococcus was significantly higher in sugarcane top silage (2.24%) than in corn stover silage during the aerobic exposure period (p < 0.01). The acetic acid content of corn stover silage was significantly reduced during aerobic exposure (p < 0.01) due to the abundance of Paenibacillus (62.38%). The fungal genus Candida affected the aerobic exposure of sugarcane top (37.88%) and corn stover silage (73.52%). In summary, Weissella was the genus of lactic acid bacteria present in the highest abundance in sugarcane tops and corn stover, favoring early and rapid acidification. In addition, Candiada, which consumes organic acids in large numbers, was the fungal genus that influenced the aerobic exposure of sugarcane top silage versus corn stover silage. Full article
Show Figures

Graphical abstract

18 pages, 4936 KiB  
Article
Bacterial Diversity, Chemical Composition, and Fermentation Quality of Alfalfa-Based Total Mixed Ration Silage Inoculated with Lactobacillus reuteri and Lentilactobacillus buchneri
by Anum Hanif, Fuhou Li, Samaila Usman, Neha Sheoran and Xusheng Guo
Fermentation 2025, 11(4), 164; https://doi.org/10.3390/fermentation11040164 - 23 Mar 2025
Cited by 1 | Viewed by 614
Abstract
This study examined the effects of lactic acid bacteria (LAB) from extremely cold environments on the bacterial diversity, chemical composition, and fermentation quality of alfalfa-based TMR silage. The TMR was treated with Lactobacillus reuteri A4-2 (Lr A4-2) and Lentilactobacillus buchneri 9-2 (Lb 9-2) [...] Read more.
This study examined the effects of lactic acid bacteria (LAB) from extremely cold environments on the bacterial diversity, chemical composition, and fermentation quality of alfalfa-based TMR silage. The TMR was treated with Lactobacillus reuteri A4-2 (Lr A4-2) and Lentilactobacillus buchneri 9-2 (Lb 9-2) at an application rate of 1.0 × 105 cfu/g fresh material, respectively, and the control received the same volume of distilled water. The TMR was ensiled for 7, 15, 30, 60, and 210 days. The Lr A4-2 treatment produced higher lactic acid (62.53 g/kg DM at 210 days) and maintained a diverse bacterial community throughout the ensiling compared with the control and Lb 9-2 treatment. The Lb 9-2 treatment increased acetic acid (51.42 g/kg DM at 210 days) and formed a distinct bacterial community profile. The 16S rRNA sequencing revealed a shift from initial Weissella dominance to Lactobacillus-dominated communities across the treatments by day 210. Alpha diversity indices decreased over time, with Lr A4-2 treatment maintaining higher diversity. Principal coordinate analysis demonstrated significant temporal shifts in bacterial community composition among treatments (p < 0.01). The results suggest that different heterofermentative LAB strains modulated the fermentation and microbial balance in alfalfa-based TMR silage in different ways. Full article
Show Figures

Figure 1

17 pages, 712 KiB  
Article
Fermentative Characteristics, Nutritional Aspects, Aerobic Stability, and Microbial Populations of Total Mixed Ration Silages Based on Relocated Sorghum Silage and Cactus Pear for Sheep Diets
by Crislane de Souza Silva, Gherman Garcia Leal de Araújo, Edson Mauro Santos, Juliana Silva de Oliveira, Thieres George Freire da Silva, Cleyton de Almeida Araújo, Judicael Janderson da Silva Novaes, Amélia de Macedo, Janiele Santos de Araújo, Deneson Oliveira Lima, Francisco Naysson de Sousa Santos, Fleming Sena Campos and Glayciane Costa Gois
Agronomy 2025, 15(2), 506; https://doi.org/10.3390/agronomy15020506 - 19 Feb 2025
Cited by 1 | Viewed by 942
Abstract
Total mixed ration silage has been used as a strategy to optimize the use of dry and wet feed in ruminant feeding. Another promising technique is silage reallocation, which allows producers to divide the ensiled material in large silos into smaller units that [...] Read more.
Total mixed ration silage has been used as a strategy to optimize the use of dry and wet feed in ruminant feeding. Another promising technique is silage reallocation, which allows producers to divide the ensiled material in large silos into smaller units that can be easily transported and marketed. Thus, this study aimed to improve food preservation through the development of total mixed rations (TMRs) based on relocated sorghum silage (RSS) and cactus pear for sheep diets. A completely randomized design was used with five treatments (0, 15, 25, 30, and 35% RSS inclusion on a dry matter basis) and five replicates. Ninety days after ensiling, the silos were opened. The fermentation characteristics, nutritional aspects, aerobic stability, and microbial populations of TMR silages were evaluated. The inclusion of RSS showed a quadratic effect on pH, density, permeability, lactic acid bacteria and yeast counts, and total carbohydrates (p < 0.05). It reduced gas and effluent losses, porosity, ammonia nitrogen, buffer capacity, ash, crude protein, ether extract, and non-fibrous carbohydrates (p < 0.05) while increasing dry matter, neutral and acid detergent fiber, hemicellulose, and cellulose contents (p < 0.05). There was an interaction effect between the levels of RSS inclusion and exposure times to air on CO2 and dry matter content (p < 0.05). Regarding carbohydrate fractionation, there was a reduction in fraction A + B1 (non-fibrous carbohydrates) and an increase in fractions B2 (fibrous carbohydrates from the cell wall and of slow ruminal availability, susceptible to the effects of the passage rate) and C (indigestible neutral detergent fiber) (p < 0.05). For protein fractionation, a quadratic effect was observed for fractions A (non-protein nitrogen) and C (insoluble protein, indigestible in the rumen and intestine), an increase in fraction B1 (soluble protein rapidly degraded in the rumen) + B2 (insoluble protein with intermediate degradation rate in the rumen), and a reduction in fraction B3 (insoluble protein with slow degradation rate in the rumen) (p < 0.05) as RSS levels increased. Under the experimental conditions, it is recommended to include up to 30% RSS in the total mixed ration silage to improve microbiological characteristics, reduce gas and effluent losses, and increase dry matter recovery and nutritional aspects of silage when associated with cactus pear. Full article
Show Figures

Figure 1

16 pages, 4487 KiB  
Article
Identification and Correlation Analysis of Key Clostridia and LAB Species in Alfalfa Silages Prepared with Different Cultivars and Additives
by Mingli Zheng, Qin Li, Peichun Mao, Xiaoxia Tian, Yuxia Guo and Lin Meng
Agriculture 2024, 14(11), 1963; https://doi.org/10.3390/agriculture14111963 - 1 Nov 2024
Cited by 2 | Viewed by 906
Abstract
Clostridial fermentation is the determining process causing the spoilage of direct-cut alfalfa silage, and the application of lactic acid bacteria (LAB) inoculant is considered as the most promising technology for inhibiting clostridial fermentation. In order to screen target-based LAB strains, identification and correlation [...] Read more.
Clostridial fermentation is the determining process causing the spoilage of direct-cut alfalfa silage, and the application of lactic acid bacteria (LAB) inoculant is considered as the most promising technology for inhibiting clostridial fermentation. In order to screen target-based LAB strains, identification and correlation analysis of key Clostridia and LAB species in alfalfa silage were conducted in this study. Three alfalfa cultivars (Sanditi, SD; Celsius, CE; SW5909, SW) were harvested at the early bloom stage and ensiled without (CK) or with LAB inoculant (LB) and sucrose (SC) for 60 d. Single-molecule real-time sequencing was used to identify dominant Clostridia and LAB species, and LAB with significant inhibitory effects on dominant Clostridia was screened via correlation network analysis. The results showed that silages CK and LB encountered severe clostridial fermentation as indicated by large amounts of butyric acid (BA) and ammoniacal nitrogen (NH3-N) production. Compared to silages CK and LB, SC treatment decreased (p < 0.05) BA and NH3-N concentrations, as well as decreasing (p < 0.05) the bacterial community indexes of Shannon and Chao1. Lactiplantibacillus pentosus was the first dominant LAB in silage CK of alfalfa SD and CE. The first dominant LAB in silage LB was also identified as L. pentosus, rather than Lentilactobacillus buchneri and Lactiplantibacillus plantarum in the used inoculant. L. buchneri became more abundant in silage SC of alfalfa SD and CE, accounting for the high fermentation quality of these silages. Clostridium tyrobutyricum, Clostridium luticellarii, Garciella sp._GK3, Clostridium sporogenes, Clostridium perfringens, and Clostridium sp._BTY5 were the most dominant Clostridia species in alfalfa silage. Furthermore, Enterococcus faecalis, L. buchneri, and L. pentosus exhibited significant (p < 0.05) inhibitory effects on C. tyrobutyricum, C. luticellarii, and Garciella sp._GK3, respectively, which were the top three Clostridia species associated with clostridial fermentation. In conclusion, E. faecalis, L. buchneri, and L. pentosus were screened and can be used as potential LAB inoculants for the targeted inhibition of clostridial fermentation. Full article
(This article belongs to the Special Issue Silage Preparation, Processing and Efficient Utilization)
Show Figures

Figure 1

16 pages, 1563 KiB  
Article
The Influence of Silage Additives Supplementation on Chemical Composition, Aerobic Stability, and In Vitro Digestibility in Silage Mixed with Pennisetum giganteum and Rice Straw
by Jian Ma, Lu Lin, Yuezhang Lu, Beiyu Weng, Yaochang Feng, Chunmei Du, Chen Wei, Rui Gao and Shangquan Gan
Agriculture 2024, 14(11), 1953; https://doi.org/10.3390/agriculture14111953 - 31 Oct 2024
Cited by 1 | Viewed by 1253
Abstract
The purpose of the current research was to evaluate the influence of lactic acid bacteria and cellulase supplementation on the chemical composition, fermentation parameters, aerobic stability, microbial count, and in vitro nutrients digestibility of silage prepared with Pennisetum giganteum and rice straw. This [...] Read more.
The purpose of the current research was to evaluate the influence of lactic acid bacteria and cellulase supplementation on the chemical composition, fermentation parameters, aerobic stability, microbial count, and in vitro nutrients digestibility of silage prepared with Pennisetum giganteum and rice straw. This study consisted of four treatments: a control group with no additive supplementation (CON), a lactic acid bacteria supplementation group (LAB), a cellulase supplementation group (CEL), and a combined supplementation group (LAC). After ensiling for 60 d, the chemical composition, fermentation parameters, microbial count, and aerobic stability were determined. Additionally, ruminal fermentation characteristics were evaluated by an in vitro incubation technique. Compared with CON silage, the quality of LAB and CEL silages was enhanced to a certain degree. Combined supplementation with lactic acid bacteria and cellulase in mixed silage of Pennisetum giganteum and rice straw noticeably increased (p < 0.05) the dry matter, crude protein, and lactic acid contents, whereas it reduced (p < 0.05) the pH and ammonia nitrogen/total nitrogen as well as the neutral detergent fiber and acid detergent fiber concentrations. The lactic acid bacteria count in LAC silage was higher (p < 0.05) than that of CON silage, whereas an opposite trend of yeast, aerobic bacteria, and mold was observed between the two groups. The aerobic stability time, in vitro crude protein, and neutral detergent fiber digestibility in LAC silage were significantly increased (p < 0.05) compared with those in CON silage. Moreover, the in vitro ruminal ammonia nitrogen content was reduced (p < 0.05), and the microbial protein and propionic acid concentrations were increased (p < 0.05) in silage after combined inoculation with additives. Taken together, the quality of Pennisetum giganteum and rice straw mixed silage can be improved by inoculation with lactic acid bacteria and cellulase, and combined supplementation shows the greatest improvement in silage quality. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

22 pages, 1722 KiB  
Article
Ensiling of Willow and Poplar Biomass Is Improved by Ensiling Additives
by Søren Ugilt Larsen, Helle Hestbjerg, Uffe Jørgensen and Anne Grete Kongsted
Agriculture 2024, 14(10), 1853; https://doi.org/10.3390/agriculture14101853 - 21 Oct 2024
Viewed by 1171
Abstract
Biomass from willow and poplar harvested for feed during the growing season may be preserved by ensiling; however, little research has focused on ensiling of these biomasses. This study focuses on the use of ensiling additives to reduce the pH to around 4.0 [...] Read more.
Biomass from willow and poplar harvested for feed during the growing season may be preserved by ensiling; however, little research has focused on ensiling of these biomasses. This study focuses on the use of ensiling additives to reduce the pH to around 4.0 to secure stable storage. Lab-scale ensiling experiments were conducted with different willow and poplar clones, shoot ages, and harvest times (June or September). Ensiling without additives often resulted in limited pH reduction. The pH could be reduced in the biomass of both species by adding formic acid, and the required dose to reduce the pH to 4.0 (buffering capacity, BC) ranged significantly between biomass types but was in the range of 2–5 kg formic acid (78%) per ton fresh weight. BC decreased with increasing dry matter (DM) content and decreasing crude protein content. The pH could also be reduced during ensiling by applying molasses and/or lactic acid bacteria, although not sufficiently in poplar. Willow biomass was ensiled effectively at the pilot scale with less than 7% DM loss by adding formic acid or by mixing with grass biomass. Comparable pH results were obtained at the lab scale and pilot scale. The study demonstrates how willow and poplar can be ensiled; however, more research is needed on quality changes during ensiling. Full article
(This article belongs to the Special Issue Silage Preparation, Processing and Efficient Utilization)
Show Figures

Figure 1

17 pages, 3809 KiB  
Article
Dynamic Analysis of Fermentation Quality, Microbial Community, and Metabolome in the Whole Plant Soybean Silage
by He Meng, Yan Jiang, Lin Wang, Yuanming Li, Sui Wang, Xiaohong Tong and Shaodong Wang
Fermentation 2024, 10(10), 535; https://doi.org/10.3390/fermentation10100535 - 21 Oct 2024
Cited by 8 | Viewed by 1989
Abstract
Soybean (Glycine max (L.) Merr.) is an important oilseed crop, known for its rich nutritional content and high-quality protein. To address the shortage of feed protein resources and better utilize soybeans as a raw material, this study investigated the feasibility of using [...] Read more.
Soybean (Glycine max (L.) Merr.) is an important oilseed crop, known for its rich nutritional content and high-quality protein. To address the shortage of feed protein resources and better utilize soybeans as a raw material, this study investigated the feasibility of using whole-plant soybean (WPS) as silage. As the ensiling period is a critical fermentation parameter, identifying the optimal fermentation duration was a key objective. The research involves fermenting WPS for silage production, conducted over five fermentation durations: 7, 15, 30, 60, and 90 days. The fermentation quality, microbial community, and metabolome of WPS silage were analyzed across these different time points. WPS silage fermented for 30 days exhibited optimal fermentation characteristics, with the highest lactic acid (LA) content observed at 30 days (p < 0.05), while butyric acid (BA) was detected only at 60 and 90 days. At 30 days, Enterococcus genera reached its peak relative abundance and was identified as the dominant genus. Random forest analysis highlighted Pantoea genera as the most influential biomarker. Metabolomic analysis revealed that the metabolic pathways involved in the biosynthesis of essential amino acids valine, leucine, and isoleucine were significantly enhanced during the later stages of fermentation compared to the earlier stages. Under natural fermentation conditions, the optimal fermentation period for WPS silage is approximately 30 days. These findings provide a theoretical basis for the utilization of WPS and the subsequent optimization of fermentation quality. Full article
(This article belongs to the Special Issue Application of Fermentation Technology in Animal Nutrition)
Show Figures

Figure 1

21 pages, 2365 KiB  
Review
Progress and Trends in Forage Cactus Silage Research: A Bibliometric Perspective
by Stéfani A. Santos, Hortência E. P. Santana, Meirielly S. Jesus, Iran Alves Torquato, Joana Santos, Preciosa Pires, Denise Santos Ruzene and Daniel Pereira Silva
Fermentation 2024, 10(10), 531; https://doi.org/10.3390/fermentation10100531 - 19 Oct 2024
Cited by 1 | Viewed by 1780
Abstract
Opuntia spp. (forage cactus or spineless cactus) is a plant native to Mexico that is commonly used as alternative nutrient-rich fodder in semi-arid regions. Due to its resistance to drought, forage cactus has become an important least-cost ingredient for formulating balanced rations for [...] Read more.
Opuntia spp. (forage cactus or spineless cactus) is a plant native to Mexico that is commonly used as alternative nutrient-rich fodder in semi-arid regions. Due to its resistance to drought, forage cactus has become an important least-cost ingredient for formulating balanced rations for ruminants during times of scarcity. In addition, ensiling, an anaerobic fermentation process, is also a strategy used to allow a supply of bulky food all year round, since it conserves forage and maintains its nutritional value. In this sense, using the Scopus database and the visualization tool VOSviewer, the present work proposes a bibliometric analysis of forage cactus silage to track and map the evolution and main issues in the research field, current trends, and future directions. The results revealed that the first publication was in 2013; and since 2020, the number of publications has been growing. Brazil was highlighted, by far, as the most relevant country on the topic, and the top institutions were from northeast Brazil, which has been working on co-authored articles. The current hot research topics are focusing on the mixed silage of forage cactus and other forages such as gliricidia, maniçoba, and sorghum biomass, as well as evaluating the fermentative performance and chemical characteristics for improving ruminal diets, especially for goats and sheep. This study provides important information for researchers to identify gaps and direct their studies to better use the whole potential of forage cactus as an alternative roughage source. Full article
(This article belongs to the Special Issue Feature Review Papers in Industrial Fermentation, 2nd Edition)
Show Figures

Figure 1

Back to TopTop