Fermentative Characteristics, Nutritional Aspects, Aerobic Stability, and Microbial Populations of Total Mixed Ration Silages Based on Relocated Sorghum Silage and Cactus Pear for Sheep Diets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location
2.2. Preparation of Total Mixed Ration (TMR) Silages
2.3. Chemical Composition
2.4. Determination of Density, Fermentative Losses, and Fermentative Profile of Silages
2.5. Aerobic Stability
2.6. Carbon Dioxide Quantification
2.7. Microbial Populations
2.8. Carbohydrate and Protein Fractions
2.9. Statistical Analysis
3. Results
3.1. Fermentation Profile, Fermentative Losses, and Physical Characteristics
3.2. Dynamics of DM and CO2 Production
3.3. Microbial Populations
3.4. Chemical Composition
3.5. Carbohydrate and Protein Fractionation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muck, R.E.; Kung, L., Jr.; Collins, M. Silage Production. Chapter 42. In Forages: The Science of Grassland Agriculture, 7th ed.; Moore, K.J., Collins, M., Nelson, J.C., Redfearn, D.D., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 767–787. [Google Scholar] [CrossRef]
- Bueno, A.V.I.; Gustavo Lazzari, G.; Jobim, C.C.; Daniel, J.L.P. Ensiling Total Mixed Ration for Ruminants: A Review. Agronomy 2020, 10, 879. [Google Scholar] [CrossRef]
- Schingoethe, D.J. A 100-Year Review: Total mixed ration feeding of dairy cows. J. Dairy Sci. 2017, 100, 10143–10150. [Google Scholar] [CrossRef]
- Pereira, D.M.; Oliveira, J.S.; Ramos, J.P.F.; Cavalcante, I.T.R.; Santos, F.N.S.; Silva, E.S.; Perazzo, A.F.; Macêdo, A.J.S.; Tôrres Júnior, P.C.; Santos, E.M. Total mixed ration silage based on cactus pear and cottonseed cake in the feeding of feedlot finished lambs. Trop. Anim. Health Prod. 2025, 57, 50. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.A.; Santana, H.E.P.; Jesus, M.S.; Torquato, I.A.; Santos, J.; Pires, P.; Ruzene, D.S.; Silva, D.P. Progress and trends in forage cactus silage research: A bibliometric perspective. Fermentation 2024, 10, 531. [Google Scholar] [CrossRef]
- Medeiros, V.P.B.; Oliveira, K.Á.R.; Queiroga, T.S.; Souza, E.L. Development and application of mucilage and bioactive compounds from cactaceae to formulate novel and sustainable edible films and coatings to preserve fruits and vegetables—A review. Foods 2024, 13, 3613. [Google Scholar] [CrossRef] [PubMed]
- Macêdo, A.J.S.; Santos, E.M.; Araújo, G.G.L.; Edvan, R.L.; Oliveira, J.S.; Perazzo, A.F.; Sá, W.C.C.S.; Pereira, D.M. Silages in the form of diet based on spineless cactus and buffelgrass. Afr. J. Range Forage Sci. 2018, 35, 121–129. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J.; Lu, S.; Chaudhry, A.S.; Tarla, D.; Khanaki, H.; Raja, I.H.; Shan, A. Effects of sweet and forge sorghum silages compared to maize silage without additional grain supplement on lactation performance and digestibility of lactating dairy cows. Animals 2024, 14, 1702. [Google Scholar] [CrossRef]
- Costa, C.S.; Rodrigues, R.C.; Araújo, R.A.; Santos, F.N.S.; Sousa, G.O.C.; Lima, J.R.L.; Rodrigues, M.M.; Silva, I.R.; Jesus, A.P.R.; Miranda, B.E.C. Nutritional composition of ‘Ponta Negra’ forage sorghum silage enriched with dried Leucaena leucocephala forage. Semin. Ciênc. Agrár. 2019, 40, 2397–2406. [Google Scholar] [CrossRef]
- Behling Neto, A.; Reis, R.H.P.; Cabral, L.S.; Abreu, J.G.; Sousa, D.P.; Sousa, F.G. Nutritional value of sorghum silage of different purposes. Ciênc. Agrotecnol. 2017, 41, 288–299. [Google Scholar] [CrossRef]
- Anjos, G.V.S.; Gonçalves, L.C.; Rodrigues, J.A.S.; Keller, K.M.; Coelho, M.M.; Michel, P.H.F.; Jayme, D.G. Effect of re-ensiling on the quality of sorghum silage. J. Dairy Sci. 2018, 101, 6047–6054. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.O.; Lino, A.A.; Sanches, L.A.; Brito, V.M.; Santos-Araujo, S.N.; Sant’Anna, M.A.C.; Araujo, L.C. Quality of re-ensiled sorghum silages after prolonged periods of environmental exposure. Semin. Ciênc. Agrár. 2020, 41, 357–362. [Google Scholar] [CrossRef]
- Michel, P.H.F.; Gonçalves, L.C.; Rodrigues, J.A.S.; Keller, K.M.; Raposo, V.S.; Lima, E.M.; Santos, F.P.C.; Jayme, D.G. Re-ensiling and inoculant application with Lactobacillus plantarum and Propionibacterium acidipropionici on sorghum silages. Grass Forage Sci. 2017, 72, 432–440. [Google Scholar] [CrossRef]
- Santos, F.P.C.; Oliveira, A.F.; Souza, F.A.; Rodrigues, J.A.S.; Gonçalves, L.C.; Silva, R.R.; Lana, A.M.Q.; Jayme, D.G. Re-ensiling effects on sorghum silage quality, methane emission and sheep efficiency in tropical climate. Grass Forage Sci. 2021, 76, 440–450. [Google Scholar] [CrossRef]
- Muck, R.E. Silage microbiology and its control through additives. Rev. Bras. Zootec. 2010, 39, 183–191. [Google Scholar] [CrossRef]
- Pahlow, G.; Muck, R.E.; Driehuis, F.; Elferink, S.J.W.H.; Spoelstra, S.F. Microbiology of ensiling. Silage Sci. Technol. 2003, 42, 31–93. [Google Scholar] [CrossRef]
- Restelatto, R.; Novinski, C.O.; Pereira, L.M.; Silva, E.P.A.; Volpi, D.; Zopollatto, M.; Schmidt, P.; Faciola, A.P. Chemical composition, fermentative losses, and microbial counts of total mixed ration silages inoculated with different Lactobacillus species. J. Anim. Sci. 2019, 97, 1634–1644. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Pitacas, F.I.; Reis, C.M.G.; Blasco, M. Nutritional value of Opuntia ficus-indica cladodes from portuguese ecotypes. Bulg. J. Agric. Sci. 2016, 22, 40–45. [Google Scholar]
- NRC. National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids, 7th ed.; National Academy Press: Washington, DC, USA, 2007; 384p. [Google Scholar]
- AOAC. Official Methods of Analysis, 20th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2016; 3100p. [Google Scholar]
- AOCS. Official Methods and Recommended Practices, 18th ed.; American Oil Chemist Society: Champaign, IL, USA, 2017. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Senger, C.C.D.; Kozloski, G.V.; Sanchez, L.M.B.; Mesquita, F.R.; Alves, T.P.; Castagnino, D.S. Evaluation of autoclave procedures for fibre analysis in forage and concentrate feedstuffs. Anim. Feed. Sci. Technol. 2008, 146, 169–174. [Google Scholar] [CrossRef]
- Sniffen, C.J.; O’Connor, J.D.; Van Soest, P.J. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef]
- Hall, M.B. Challenges with non-fiber carbohydrate methods. J. Anim. Sci. 2003, 81, 3226–3232. [Google Scholar] [CrossRef] [PubMed]
- Weiss, W.P.; Conrad, H.R.; St. Pierre, N.R. A Theoretically-based model for predicting total digestible nutrient values of forages and concentrates. Anim. Feed. Sci. Technol. 1992, 39, 95–110. [Google Scholar] [CrossRef]
- NRC. National Research Council. Nutrient Requirements Dairy Cattle, 6th ed.; National Academy Press: Washington, DC, USA, 2001; 232p. [Google Scholar]
- Zanine, A.M.; Santos, E.M.; Dórea, J.R.R.; Dantas, P.A.S.; Silva, T.C.; Pereira, O.G. Evaluation of elephant grass with addition of cassava scrapings. Rev. Bras. Zootec. 2010, 39, 2611–2616. [Google Scholar] [CrossRef]
- Richard, T.L.; Veeken, A.H.M.; Wilde, V.; Hamelers, H.V.M. Air-filled porosity and permeability relationships during solid-state fermentation. Biotechnol. Prog. 2004, 20, 1372–1381. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.G. The permeability and porosity of grass silage as affected by dry matter. J. Agric. Eng. Res. 1994, 59, 133–140. [Google Scholar] [CrossRef]
- Silva, D.J.; Queiroz, A.C. Análise de Alimentos: Métodos Químicos e Biológicos, 3rd ed.; Editora UFV: Viçosa, Brazil, 2006. [Google Scholar]
- Bolsen, K.K.; Lin, C.; Brent, B.E.; Feyerherm, A.M.; Urban, J.E.; Aimutis, W.R. Effect of silage additives on the microbial succession and fermentation process of alfalfa and corn silages. J. Dairy Sci. 1992, 75, 3066–3083. [Google Scholar] [CrossRef]
- Playne, M.J.; McDonald, P. The buffering constituents of herbage and of silage. J. Sci. Food Agric. 1966, 17, 264–268. [Google Scholar] [CrossRef]
- Taylor, C.C.; Kung, L. The Effect of Lactobacillus buchneri 40788 on the fermentation and aerobic stability of high moisture corn in laboratory silos. J. Dairy Sci. 2002, 85, 1526–1532. [Google Scholar] [CrossRef]
- Ashbell, G.; Weiberg, Z.G.; Azrieli, A. A simple system to study the aerobic determination of silages. Can. Agric. Eng. 1991, 34, 171–175. [Google Scholar]
- González, G.A. Effect of storage method on fermentation characteristics, aerobic stability, and forage intake of tropical grasses ensiled in round bales. J. Dairy Sci. 2003, 86, 926–933. [Google Scholar] [CrossRef]
- Valente, T.N.P.; Detmann, E.; Queiroz, A.C.; Valadares Filho, S.C.; Gomes, D.I.; Figueiras, J.F. Evaluation of ruminal degradation profiles of forages using bags made from different textiles. Rev. Bras. Zootec. 2011, 40, 2565–2573. [Google Scholar] [CrossRef]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fracionation of ruminant feed. Anim. Feed. Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- SAS University Edition. SAS/STAT®14.1 User’s Guide: High-Performance Procedures; SAS Institute Inc.: Cary, NC, USA, 2015. [Google Scholar]
- Monção, F.P.; Rocha Júnior, V.R.; Leal, D.B.; Rigueira, J.P.S.; Caldeira, L.A.; Silva, R.K.O.J.; Antunes, A.B.; Carvalho, C.C.S.; Santos, A.S.; D’Angelo, M.F.S.V. Impact of mixed forage silage with BRS Capiaçu grass, ground corn, and varying forage palm levels on aerobic stability, fermentation profile, chemical composition, and digestibility. Rev. Bras. Zootec. 2024, 53, e20240122. [Google Scholar] [CrossRef]
- Sobral, G.C.; Oliveira, J.S.; Santos, E.M.; Araújo, G.G.L.; Santos, F.N.S.; Campos, F.S.; Cavalcanti, H.S.; Vieira, D.S.; Leite, G.M.; Coelho, D.F.O.; et al. Optimizing silage quality in drylands: Corn stover and forage cactus mixture on nutritive value, microbial activity, and aerobic stability. J. Arid. Environ. 2024, 220, 105123. [Google Scholar] [CrossRef]
- Schmithausen, A.J.; Deeken, H.F.; Gerlach, K.; Trimborn, M.; Weiß, K.; Büscher, W.; Maack, G.C. Greenhouse gas formation during the ensiling process of grass and lucerne silage. J. Environ. Manag. 2022, 304, 114142. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.F.; Pires, D.A.A.; Moura, M.M.A.; Sales, E.C.J.; Rodrigues, J.A.S.; Rigueira, J.P.S. Agronomic characteristics of sorghum genotypes and nutri-tional values of silage. Acta Sci. Anim. Sci. 2016, 38, 127–133. [Google Scholar] [CrossRef]
- Souza-Melo, D.A.; Pinheiro-Leite, A.C.; Silva-Lima, R.; Rodrigues, J.M.C.S.; Almeida-Araújo, C.; Sousa- Cunha, D.; Pinheiro-Costa, C.; Sá, M.K.N.; Magalhães, A.L.R.; Sena-Campos, F. The inclusion of cactus pear changes the fermentation process, chemical composition and aerobic stability of arboreal cotton silages. J. Prof. Assoc. Cactus Dev. 2022, 24, 70–82. [Google Scholar] [CrossRef]
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. Biochemistry of Silage, 2nd ed.; Marlow: Chalcombe, UK, 1991; 340p. [Google Scholar]
- Saute, J.M.; Tres, T.T.; Osmari, M.P.; Silva, S.L.; Daniel, J.L.P.; Jobim, C.C. Nutritional value, total dry matter losses, effluent production and pollutant potential in Brachiaria brizantha cv. Paiaguás grass. Arq. Bras. Med. Vet. Zootec. 2021, 73, 675–683. [Google Scholar] [CrossRef]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage review: Factors affecting dry matter and quality losses in silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef] [PubMed]
- Randby, A.T.; Halvorsen, H.N.; Bakken, A.K. Losses and grass silage quality in bunker silos compacted by tractor versus wheel loader. Anim. Feed. Sci. Technol. 2020, 266, 114523. [Google Scholar] [CrossRef]
- Lima, E.M.; Jayme, D.G.; Silva, F.C.O.; Michel, P.H.F.; Côrtes, I.H.G.; Anjos, G.V.S.; Silva, N.T.A.; Ottoni, D. Deterioração aeróbia de silagens. Rev. Eletrônica Nutr. 2015, 12, 3996–4003. [Google Scholar]
- Amaral, R.C.; Bernardes, T.F.; Siqueira, C.R.; Reis, R.A. Estabilidade aeróbia de silagens do capim-marandu submetidas a diferentes intensidades de compactação na ensilagem. Rev. Bras. Zootec. 2008, 37, 977–983. [Google Scholar] [CrossRef]
- Irawan, A.; Sofyan, A.; Ridwan, R.; Hassim, H.A.; Respati, A.N.; Wardani, W.W.; Sardaman; Astuti, W.D.; Jayanegara, A. Effects of different lactic acid bacteria groups and fibrolytic enzymes as additives on silage quality: A meta-analysis. Bioresour. Technol. Rep. 2021, 14, 100654. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994; 476p. [Google Scholar]
- Silva, C.S.; Miranda, A.S.; Novaes, J.J.S.; Araújo, C.A.; Macedo, A.; Araújo, J.S.; Lima, D.O.; Emerenciano Neto, J.V.; Gois, G.C.; Araújo, G.G.L.; et al. Fermentation profile, nutritional value and aerobic stability of mixed elephant grass and butterfly pea silages. Ciênc. Anim. Bras. 2024, 25, e76994. [Google Scholar] [CrossRef]
- Hawu, O.; Ravhuhali, K.E.; Mokoboki, H.K.; Lebopa, C.K.; Sipango, N. Sustainable use of legume residues: Effect on nutritive value and ensiling characteristics of maize straw silage. Sustainability 2022, 14, 6743. [Google Scholar] [CrossRef]
- Silva, M.D.A.; Carneiro, M.S.S.; Pinto, A.P.; Pompeu, R.C.F.F.; Silva, D.S.; Coutinho, M.J.F.; Fontenele, R.M. Avaliação da composição químico-bromatológica das silagens de forrageiras lenhosas do semiárido brasileiro. Sem. Ciênc. Agrár. 2015, 36, 571–578. [Google Scholar] [CrossRef]
- Donato, L.M.S.; Andrade Junior, V.C.; Brito, O.G.; Fialho, C.M.T.; Silva, A.J.M.; Azevedo, A.M. The use of the sweet potato branches in the hay production. Ciênc. Anim. Bras. 2020, 21, e53493. [Google Scholar] [CrossRef]
- Seo, J.K.; Yang, J.; Kim, H.J.; Upadhaya, S.D.; Cho, W.M.; Ha, J.K. Effects of synchronization of carbohydrate and protein supply on ruminal fermentation, nitrogen metabolism and microbial protein synthesis in Holstein Steers. Asian-Australas. J. Anim. Sci. 2010, 23, 1455–1461. [Google Scholar] [CrossRef]
- NRC. National Research Council. Nutrient Requeriments of Dairy Cattle, 8th ed.; National Academy Press: Washinton, DC, USA, 2021; 502p. [Google Scholar]
- Santos, C.B.; Costa, K.A.P.; Souza, W.F.; Costa e Silva, V.; Epifanio, P.S.; Santos, H.S. Protein and carbohydrates fractionation in Paiaguas palisadegrass intercropped with grain sorghum in pasture recovery. Acta Sci. Anim. Sci. 2019, 41, e42693. [Google Scholar] [CrossRef]
- Godoi, P.F.A.; Magalhaes, A.L.R.; Araujo, G.G.L.; Melo, A.A.S.; Silva, T.S.; Gois, G.C.; Santos, K.C.; Nascimento, D.B.; Silva, P.B.; Oliveira, J.S.; et al. Chemical properties, ruminal fermentation, gas production and digestibility of silages composed of spineless cactus and tropical forage plants for sheep feeding. Animals 2024, 14, 552. [Google Scholar] [CrossRef]
- Silva, S.P.; Silva, M.M.C. Fractionation of carbohydrate and protein by CNCPS system. Vet. Not. 2013, 19, 95–108. [Google Scholar]
- Viana, P.T.; Pires, A.J.V.; Oliveira, L.B.; Carvalho, G.G.P.; Ribeiro, L.S.O.; Chagas, D.M.T.; Nascimento Filho, C.S.; Carvalho, A.O. Fractioning of carbohydrates and protein of silages of different forages. Rev. Bras. Zootec. 2012, 41, 292–297. [Google Scholar] [CrossRef]
- Ribeiro, L.S.O.; Pires, A.J.V.; Carvalho, G.G.P.; Pereira, M.L.A.; Santos, A.B.; Rocha, L.C. Fermentation characteristics, chemical composition and fractionation of carbohydrates and crude protein of silage of elephant grass wilted or with addition of castor bean meal. Semin. Ciênc. Agrár. 2014, 35, 1447–1462. [Google Scholar] [CrossRef]
Variables (g/kg Dry Matter) | Cactus Pear | Sorghum Silage | Soybean Meal | Corn Meal |
---|---|---|---|---|
Dry matter * | 100.51 | 274.21 | 929.12 | 910.03 |
Ash | 142.50 | 87.57 | 64.00 | 14.06 |
Organic matter | 857.50 | 912.43 | 936.00 | 985.94 |
Crude protein | 74.31 | 78.96 | 519.56 | 86.41 |
Ether extract | 15.20 | 24.04 | 39.77 | 53.92 |
Neutral detergent fiber | 242.77 | 550.76 | 165.88 | 99.62 |
Acid detergent fiber | 137.40 | 337.35 | 77.40 | 33.55 |
Hemicellulose | 11.10 | 21.65 | 15.57 | 6.61 |
Total carbohydrates | 767.98 | 809.43 | 376.67 | 845.61 |
Non-fibrous carbohydrates | 525.22 | 258.67 | 210.79 | 745.99 |
Ingredients | Relocated Sorghum Silage (% Dry Matter) | ||||
---|---|---|---|---|---|
0 | 15 | 25 | 30 | 35 | |
Cactus pear | 52.75 | 37.83 | 27.83 | 22.77 | 17.77 |
Relocated sorghum silage | 0.00 | 14.99 | 24.99 | 29.99 | 34.99 |
Soybean meal | 15.41 | 31.23 | 31.24 | 31.24 | 31.24 |
Corn meal | 31.23 | 15.44 | 15.48 | 15.59 | 15.62 |
Urea | 0.56 | 0.46 | 0.42 | 0.37 | 0.35 |
Ammonium sulfate | 0.06 | 0.05 | 0.05 | 0.04 | 0.04 |
Chemical composition (g/kg dry matter) | |||||
Dry matter * | 196.40 | 241.15 | 280.01 | 299.47 | 299.93 |
Ash | 88.17 | 88.22 | 78.36 | 65.00 | 67.58 |
Organic matter | 911.83 | 911.78 | 921.64 | 935.00 | 932.42 |
Crude protein | 178.10 | 179.78 | 180.21 | 178.27 | 178.72 |
Ether extract | 23.79 | 24.28 | 27.19 | 28.64 | 29.83 |
Neutral detergent fiber | 187.61 | 208.63 | 313.30 | 284.45 | 312.91 |
Acid detergent fiber | 94.48 | 137.85 | 162.28 | 169.90 | 183.80 |
Hemicellulose | 9.47 | 5.93 | 14.30 | 10.81 | 11.53 |
Total carbohydrates | 735.68 | 706.88 | 738.51 | 764.96 | 757.54 |
Non-fibrous carbohydrates | 548.07 | 498.26 | 425.21 | 480.52 | 444.63 |
Total digestible nutrients | 812.26 | 781.90 | 764.80 | 759.47 | 749.74 |
Metabolizable Energy (Mcal/kg DM) | 2.94 | 2.83 | 2.77 | 2.75 | 2.71 |
Variables | Relocated Sorghum Silage (% Dry Matter) | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 15 | 25 | 30 | 35 | L | Q | ||
pH | 3.98 ±0.03 | 3.83 ±0.01 | 3.81 ±0.02 | 3.89 ±0.07 | 3.78 ±0.08 | 0.03 | 0.001 | 0.003 |
T | 28.70 ±0.03 | 28.70 ±0.05 | 28.50 ±0.30 | 28.50 ±0.17 | 20.50 ±0.71 | 0.13 | 0.140 | 0.825 |
D | 414.97 ±24.33 | 528.95 ±20.64 | 756.71 ±13.24 | 743.77 ±12.49 | 704.05 ±16.71 | 12.60 | 0.003 | 0.036 |
GL | 31.26 ±1.08 | 20.65 ±0.30 | 13.23 ±0.42 | 13.20 ±0.17 | 12.42 ±1.09 | 0.77 | <0.001 | <0.001 |
EL | 76.44 ±1.84 | 52.69 ±1.73 | 20.49 ±1.09 | 17.27 ±1.31 | 11.48 ±0.79 | 7.76 | 0.001 | 0.266 |
DMR | 77.73 ±2.26 | 78.18 ±1.42 | 87.56 ±1.34 | 86.29 ±1.40 | 93.70 ±1.04 | 1.42 | <0.001 | 0.005 |
K | 961.78 ±7.53 | 1043.71 ±32.33 | 1220.18 ±58.55 | 1194.08 ±50.45 | 1131.99 ±50.62 | 12.83 | 0.003 | 0.020 |
POR | 82.03 ±6.06 | 78.83 ±1.81 | 73.71 ±2.13 | 72.39 ±1.86 | 70.15 ±1.05 | 0.36 | 0.008 | 0.388 |
NH3-N | 22.63 ±0.79 | 16.62 ±0.02 | 19.35 ±3.07 | 12.70 ±0.40 | 14.64 ±0.81 | 0.53 | <0.001 | 0.242 |
BC | 1043.78 ±56.57 | 996.08 ±18.70 | 954.10 ±28.11 | 919.09 ±17.46 | 677.96 ±7.85 | 16.31 | <0.001 | <0.001 |
AS | >120.0 | >120.0 | >120.0 | >120.0 | >120.0 | 0.00 | 0.998 | 0.998 |
Times (Hours) | Relocated Sorghum Silage (% Dry Matter) | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
0 | 15 | 25 | 30 | 35 | L | Q | RSS × T | ||
Dry matter (g/kg fresh matter) | |||||||||
24 | 169.17 b ±2.89 | 223.12 ±6.19 | 223.72 a ±3.82 | 244.37 ±2.89 | 217.83 b ±6.29 | 3.08 | <0.001 | <0.001 | <0.001 |
48 | 184.20 a ±3.99 | 225.13 ±10.44 | 226.96 a ±7.10 | 254.28 ±3.05 | 235.60 ab ±10.26 | 5.34 | <0.001 | 0.020 | |
72 | 176.21 b ±4.21 | 214.42 ±7.17 | 214.94 ab ±7.60 | 262.43 ±1.42 | 255.46 a ±14.93 | 5.41 | <0.001 | 0.454 | |
96 | 170.09 a ±2.46 | 219.68 ±5.80 | 215.09 ab ±6.37 | 256.69 ±7.52 | 233.58 ab ±8.76 | 4.29 | <0.001 | 0.006 | |
120 | 177.64 b ±0.99 | 214.95 ±2.11 | 204.81 b ±3.13 | 260.44 ±4.35 | 244.43 ab ±5.59 | 4.93 | <0.001 | 0.625 | |
SEM | 2.21 | 4.73 | 3.94 | 5.04 | 6.46 | - | - | - | |
p-value | 0.001 | 0.428 | 0.010 | 0.153 | 0.012 | - | - | - | |
Carbon dioxide (g/kg dry matter) | |||||||||
24 | 32.84 a ±2.88 | 29.50 a ±3.60 | 12.81 b ±1.22 | 11.09 d ±2.05 | 31.43 a ±2.62 | 2.34 | 0.001 | 0.001 | <0.001 |
48 | 31.12 a ±3.754 | 23.29 b ±1.760 | 22.29 a ±1.41 | 23.15 a ±2.24 | 15.68 b ±2.11 | 0.93 | <0.001 | 0.830 | |
72 | 27.61 ab ±0.80 | 22.42 b ±2.03 | 21.18 a ±2.67 | 17.78 b ±1.72 | 18.11 b ±1.26 | 1.26 | <0.001 | 0.673 | |
96 | 31.13 a ±1.24 | 22.01 b ±1.01 | 21.86 a ±1.50 | 16.29 bc ±1.64 | 14.19 b ±1.49 | 2.44 | <0.001 | 0.996 | |
120 | 19.02 b ±2.25 | 24.33 b ±1.21 | 21.45 a ±1.63 | 13.19 c ±1.47 | 19.99 b ±1.72 | 0.73 | 0.009 | <0.001 | |
SEM | 2.28 | 0.92 | 0.90 | 1.04 | 2.55 | - | - | - | |
p-value | 0.004 | 0.001 | <0.001 | <0.001 | 0.002 | - | - | - |
Variables (g/kg) | Relocated Sorghum Silage (% Dry Matter) | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 15 | 25 | 30 | 35 | L | Q | ||
DM | 179.63 ±4.07 | 211.65 ±4.49 | 265.36 ±9.16 | 276.07 ±2.80 | 298.51 ±10.82 | 4.05 | <0.001 | 0.014 |
Ash | 98.06 ±1.02 | 87.11 ±3.56 | 88.68 ±3.35 | 75.21 ±6.57 | 74.83 ±3.22 | 2.36 | <0.001 | 0.370 |
OM | 901.94 ±1.02 | 912.89 ±3.56 | 911.32 ±3.35 | 924.79 ±6.57 | 925.17 ±3.22 | 2.36 | <0.001 | 0.370 |
CP | 197.49 ±5.31 | 195.98 ±8.87 | 172.14 ±5.44 | 174.55 ±5.61 | 180.44 ±4.22 | 3.67 | <0.001 | 0.635 |
EE | 38.73 ±2.39 | 38.73 ±2.57 | 32.64 ±1.08 | 33.13 ±2.93 | 35.17 ±3.65 | 1.19 | <0.001 | 0.678 |
NDF | 245.24 ±11.50 | 316.17 ±8.41 | 348.50 ±9.35 | 359.84 ±6.50 | 390.17 ±3.90 | 4.86 | <0.001 | 0.315 |
ADF | 124.22 ±3.01 | 176.24 ±6.28 | 191.42 ±6.85 | 204.73 ±3.84 | 219.83 ±4.44 | 2.92 | <0.001 | 0.050 |
Lignin | 1.40 ±0.59 | 1.99 ±0.62 | 1.56 ±0.25 | 1.83 ±0.54 | 1.80 ±0.56 | 0.27 | 0.410 | 0.467 |
HEM | 122.44 ±8.88 | 137.39 ±9.11 | 158.59 ±13.61 | 160.40 ±8.10 | 173.83 ±3.75 | 5.31 | <0.001 | 0.407 |
CEL | 122.82 ±2.97 | 174.44 ±4.75 | 188.37 ±6.49 | 197.61 ±6.26 | 214.58 ±6.11 | 3.27 | <0.001 | 0.039 |
CHOT | 673.14 ±48.80 | 688.39 ±136.88 | 711.68 ±48.72 | 633.89 ±98.46 | 622.30 ±92.26 | 5.18 | <0.001 | <0.001 |
NFC | 465.36 ±94.34 | 414.12 ±163.80 | 404.36 ±46.09 | 310.56 ±139.78 | 274.22 ±102.06 | 6.45 | <0.001 | <0.001 |
Variables | Relocated Sorghum Silage (% Dry Matter) | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 15 | 25 | 30 | 35 | L | Q | ||
Carbohydrate fractionation (g/kg CHOT) | ||||||||
A + B1 | 691.28 ±9.68 | 601.37 ±11.70 | 568.20 ±6.68 | 489.58 ±14.79 | 440.41 ±10.55 | 6.39 | <0.001 | <0.001 |
B2 | 207.93 ±23.01 | 270.64 ±10.70 | 302.19 ±20.44 | 376.16 ±47.84 | 400.60 ±24.35 | 16.38 | <0.001 | 0.097 |
C | 100.79 ±82.17 | 127.99 ±3.94 | 129.61 ±18.92 | 134.26 ±38.43 | 158.99 ±27.77 | 14.40 | 0.015 | 0.794 |
Protein fractionation (g/kg CP) | ||||||||
A | 24.54 ±1.74 | 29.77 ±1.33 | 23.56 ±0.52 | 23.25 ±0.51 | 23.08 ±0.65 | 0.57 | <0.001 | <0.001 |
B1 + B2 | 958.02 ±1.12 | 958.76 ±1.26 | 962.47 ±1.70 | 963.39 ±0.73 | 964.47 ±0.78 | 0.79 | <0.001 | <0.001 |
B3 | 6.78 ±0.62 | 5.43 ±1.06 | 3.37 ±1.82 | 2.89 ±0.91 | 1.15 ±0.71 | 0.63 | <0.001 | 0.184 |
C* | 10.66 ±0.02 | 10.05 ±0.68 | 10.61 ±0.49 | 10.46 ±0.60 | 11.29 ±0.04 | 0.30 | 0.236 | 0.029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, C.d.S.; Araújo, G.G.L.d.; Santos, E.M.; Oliveira, J.S.d.; Silva, T.G.F.d.; Araújo, C.d.A.; Novaes, J.J.d.S.; de Macedo, A.; de Araújo, J.S.; Lima, D.O.; et al. Fermentative Characteristics, Nutritional Aspects, Aerobic Stability, and Microbial Populations of Total Mixed Ration Silages Based on Relocated Sorghum Silage and Cactus Pear for Sheep Diets. Agronomy 2025, 15, 506. https://doi.org/10.3390/agronomy15020506
Silva CdS, Araújo GGLd, Santos EM, Oliveira JSd, Silva TGFd, Araújo CdA, Novaes JJdS, de Macedo A, de Araújo JS, Lima DO, et al. Fermentative Characteristics, Nutritional Aspects, Aerobic Stability, and Microbial Populations of Total Mixed Ration Silages Based on Relocated Sorghum Silage and Cactus Pear for Sheep Diets. Agronomy. 2025; 15(2):506. https://doi.org/10.3390/agronomy15020506
Chicago/Turabian StyleSilva, Crislane de Souza, Gherman Garcia Leal de Araújo, Edson Mauro Santos, Juliana Silva de Oliveira, Thieres George Freire da Silva, Cleyton de Almeida Araújo, Judicael Janderson da Silva Novaes, Amélia de Macedo, Janiele Santos de Araújo, Deneson Oliveira Lima, and et al. 2025. "Fermentative Characteristics, Nutritional Aspects, Aerobic Stability, and Microbial Populations of Total Mixed Ration Silages Based on Relocated Sorghum Silage and Cactus Pear for Sheep Diets" Agronomy 15, no. 2: 506. https://doi.org/10.3390/agronomy15020506
APA StyleSilva, C. d. S., Araújo, G. G. L. d., Santos, E. M., Oliveira, J. S. d., Silva, T. G. F. d., Araújo, C. d. A., Novaes, J. J. d. S., de Macedo, A., de Araújo, J. S., Lima, D. O., Santos, F. N. d. S., Campos, F. S., & Gois, G. C. (2025). Fermentative Characteristics, Nutritional Aspects, Aerobic Stability, and Microbial Populations of Total Mixed Ration Silages Based on Relocated Sorghum Silage and Cactus Pear for Sheep Diets. Agronomy, 15(2), 506. https://doi.org/10.3390/agronomy15020506