Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (762)

Search Parameters:
Keywords = energy-intensive industrial production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1541 KiB  
Communication
Effect of Non-Thermal Treatments of Clear Apple Juice on Exogenous Pectinases
by Alberto Zavarise, Alema Puzović, Andres Felipe Moreno Barreto, Dario Pavon Vargas, Manfred Goessinger, Maja Mikulič Petkovšek, Massimiliano Rinaldi, Christian Haselmair-Gosch, Luca Cattani and Heidi Halbwirth
Beverages 2025, 11(4), 113; https://doi.org/10.3390/beverages11040113 - 6 Aug 2025
Abstract
Pulsed electric field (PEF) and high-pressure processing (HPP) are non-thermal treatments, developed to ensure preservation of food products whilst maintaining taste and valuable nutrients. In this study, we investigated their potential for the inactivation of 3 commercial exogenous pectinases (polygalacturonase, pectin transeliminase, pectin [...] Read more.
Pulsed electric field (PEF) and high-pressure processing (HPP) are non-thermal treatments, developed to ensure preservation of food products whilst maintaining taste and valuable nutrients. In this study, we investigated their potential for the inactivation of 3 commercial exogenous pectinases (polygalacturonase, pectin transeliminase, pectin esterase) commonly used in juice processing for clarification of juices. The inactivation of these enzymes after processing is mandatory by European law. Clear apple juice was treated with both non-thermal processing methods, as well as with thermal pasteurization as the standard method. For HPP, 3 pressures (250, 450, and 600 MPa) and different holding times (from 2 to 12 min) were tested. For PEF, 3 electric field intensities (10, 13, and 15 kV/cm) and different specific energy values (from 121 to 417 kJ/kg). Standard thermal pasteurization resulted in a complete inactivation of all tested pectinases. HPP treatment only showed marginal effects on polygalacturonase and pectin transeliminase at the highest pressure and holding times, which are beyond levels used in industrial settings. For PEF, dependence upon high electric field strength and specific energy values was evident; however, here too, the effect was only moderate at the levels attainable within the scope of this study. Assuming a continued linear relationship, usable results could be achieved in an industrial setting, albeit under more extreme conditions. Full article
(This article belongs to the Section Beverage Technology Fermentation and Microbiology)
Show Figures

Graphical abstract

14 pages, 1310 KiB  
Article
Enhancing Energy Efficiency of Electric Grade Isopropyl Alcohol Production Process by Using Noble Thermally Coupled Distillation Technology
by Neha Agarwal, Nguyen Nhu Nga, Le Cao Nhien, Raisa Aulia Hanifah, Minkyu Kim and Moonyong Lee
Energies 2025, 18(15), 4159; https://doi.org/10.3390/en18154159 - 5 Aug 2025
Abstract
This study presents a comprehensive design, optimization, and intensification approach for enhancing the energy efficiency of electric grade isopropyl alcohol (IPA) production, a typical energy-intensive chemical process. The process entails preconcentration and dehydration steps, with the intensity of separation formulated from a multicomponent [...] Read more.
This study presents a comprehensive design, optimization, and intensification approach for enhancing the energy efficiency of electric grade isopropyl alcohol (IPA) production, a typical energy-intensive chemical process. The process entails preconcentration and dehydration steps, with the intensity of separation formulated from a multicomponent feed that consists of IPA and water, along with other impurities. Modeling and energy optimization were performed for a conventional distillation train as a base case by using the rigorous process simulator Aspen Plus V12.1. To improve energy efficiency, various options for intensifying distillation were examined. The side-stream preconcentration column was subsequently replaced by a dividing wall column (DWC) with two side streams, i.e., a Kaibel column, reducing the total energy consumption of corresponding distillation columns by 9.1% compared to the base case. Further strengthening was achieved by combining two columns in the preconcentration process into a single Kaibel column, resulting in a 22.8% reduction in reboiler duty compared to the base case. Optimization using the response surface methodology identified key operating parameters, such as side-draw positions and stage design, which significantly influence both energy efficiency and separation quality. The intensified Kaibel setup offers significant energy efficiencies and simplified column design, suggesting enormous potential for process intensification in energy-intensive distillation processes at the industrial level, including the IPA purification process. Full article
Show Figures

Figure 1

21 pages, 1353 KiB  
Article
Hydrogen Cost and Carbon Analysis in Hollow Glass Manufacturing
by Dario Atzori, Claudia Bassano, Edoardo Rossi, Simone Tiozzo, Sandra Corasaniti and Angelo Spena
Energies 2025, 18(15), 4105; https://doi.org/10.3390/en18154105 - 2 Aug 2025
Viewed by 198
Abstract
The European Union promotes decarbonization in energy-intensive industries like glass manufacturing. Collaboration between industry and researchers focuses on reducing CO2 emissions through hydrogen (H2) integration as a natural gas substitute. However, to the best of the authors’ knowledge, no updated [...] Read more.
The European Union promotes decarbonization in energy-intensive industries like glass manufacturing. Collaboration between industry and researchers focuses on reducing CO2 emissions through hydrogen (H2) integration as a natural gas substitute. However, to the best of the authors’ knowledge, no updated real-world case studies are available in the literature that consider the on-site implementation of an electrolyzer for autonomous hydrogen production capable of meeting the needs of a glass manufacturing plant within current technological constraints. This study examines a representative hollow glass plant and develops various decarbonization scenarios through detailed process simulations in Aspen Plus. The models provide consistent mass and energy balances, enabling the quantification of energy demand and key cost drivers associated with H2 integration. These results form the basis for a scenario-specific techno-economic assessment, including both on-grid and off-grid configurations. Subsequently, the analysis estimates the levelized costs of hydrogen (LCOH) for each scenario and compares them to current and projected benchmarks. The study also highlights ongoing research projects and technological advancements in the transition from natural gas to H2 in the glass sector. Finally, potential barriers to large-scale implementation are discussed, along with policy and infrastructure recommendations to foster industrial adoption. These findings suggest that hybrid configurations represent the most promising path toward industrial H2 adoption in glass manufacturing. Full article
(This article belongs to the Special Issue Techno-Economic Evaluation of Hydrogen Energy)
Show Figures

Figure 1

27 pages, 5196 KiB  
Article
Impact of Hydrogen Release on Accidental Consequences in Deep-Sea Floating Photovoltaic Hydrogen Production Platforms
by Kan Wang, Jiahui Mi, Hao Wang, Xiaolei Liu and Tingting Shi
Hydrogen 2025, 6(3), 52; https://doi.org/10.3390/hydrogen6030052 - 29 Jul 2025
Viewed by 259
Abstract
Hydrogen is a potential key component of a carbon-neutral energy carrier and an input to marine industrial processes. This study examines the consequences of coupled hydrogen release and marine environmental factors during floating photovoltaic hydrogen production (FPHP) system failures. A validated three-dimensional numerical [...] Read more.
Hydrogen is a potential key component of a carbon-neutral energy carrier and an input to marine industrial processes. This study examines the consequences of coupled hydrogen release and marine environmental factors during floating photovoltaic hydrogen production (FPHP) system failures. A validated three-dimensional numerical model of FPHP comprehensively characterizes hydrogen leakage dynamics under varied rupture diameters (25, 50, 100 mm), transient release duration, dispersion patterns, and wind intensity effects (0–20 m/s sea-level velocities) on hydrogen–air vapor clouds. FLACS-generated data establish the concentration–dispersion distance relationship, with numerical validation confirming predictive accuracy for hydrogen storage tank failures. The results indicate that the wind velocity and rupture size significantly influence the explosion risk; 100 mm ruptures elevate the explosion risk, producing vapor clouds that are 40–65% larger than 25 mm and 50 mm cases. Meanwhile, increased wind velocities (>10 m/s) accelerate hydrogen dilution, reducing the high-concentration cloud volume by 70–84%. Hydrogen jet orientation governs the spatial overpressure distribution in unconfined spaces, leading to considerable shockwave consequence variability. Photovoltaic modules and inverters of FPHP demonstrate maximum vulnerability to overpressure effects; these key findings can be used in the design of offshore platform safety. This study reveals fundamental accident characteristics for FPHP reliability assessment and provides critical insights for safety reinforcement strategies in maritime hydrogen applications. Full article
Show Figures

Figure 1

17 pages, 319 KiB  
Article
Research on Pathways to Improve Carbon Emission Efficiency of Chinese Airlines
by Liukun Zhang and Jiani Zhao
Sustainability 2025, 17(15), 6826; https://doi.org/10.3390/su17156826 - 27 Jul 2025
Viewed by 282
Abstract
As an energy-intensive industry, the aviation sector’s carbon emissions have drawn significant attention. Against the backdrop of the “dual carbon” goals, how to enhance the carbon emission efficiency of airlines has become an urgent issue to be addressed for both industry development and [...] Read more.
As an energy-intensive industry, the aviation sector’s carbon emissions have drawn significant attention. Against the backdrop of the “dual carbon” goals, how to enhance the carbon emission efficiency of airlines has become an urgent issue to be addressed for both industry development and low-carbon targets. This paper constructs an evaluation system for the carbon emission efficiency of airlines and uses the SBM-DDF model under the global production possibility set, combined with the bootstrap-DEA method, to calculate the efficiency values. On this basis, the fuzzy-set qualitative comparative analysis method is employed to analyze the synergistic effects of multiple influencing factors in three dimensions: economic benefits, transportation benefits, and energy consumption on improving carbon emission efficiency. The research findings reveal that, first, a single influencing factor does not constitute a necessary condition for achieving high carbon emission efficiency; second, there are four combinations that enhance carbon emission efficiency: “load volume-driven type”, “scale revenue-driven type”, “high ticket price + technology-driven type”, and “passenger and cargo synergy mixed type”. These discoveries are of great significance for promoting the construction of a carbon emission efficiency system by Chinese airlines and achieving high-quality development in the aviation industry. Full article
Show Figures

Figure 1

43 pages, 1282 KiB  
Review
Process Intensification Strategies for Esterification: Kinetic Modeling, Reactor Design, and Sustainable Applications
by Kim Leonie Hoff and Matthias Eisenacher
Int. J. Mol. Sci. 2025, 26(15), 7214; https://doi.org/10.3390/ijms26157214 - 25 Jul 2025
Viewed by 699
Abstract
Esterification is a key transformation in the production of lubricants, pharmaceuticals, and fine chemicals. Conventional processes employing homogeneous acid catalysts suffer from limitations such as corrosive byproducts, energy-intensive separation, and poor catalyst reusability. This review provides a comprehensive overview of heterogeneous catalytic systems, [...] Read more.
Esterification is a key transformation in the production of lubricants, pharmaceuticals, and fine chemicals. Conventional processes employing homogeneous acid catalysts suffer from limitations such as corrosive byproducts, energy-intensive separation, and poor catalyst reusability. This review provides a comprehensive overview of heterogeneous catalytic systems, including ion exchange resins, zeolites, metal oxides, mesoporous materials, and others, for improved ester synthesis. Recent advances in membrane-integrated reactors, such as pervaporation and nanofiltration, which enable continuous water removal, shifting equilibrium and increasing conversion under milder conditions, are reviewed. Dual-functional membranes that combine catalytic activity with selective separation further enhance process efficiency and reduce energy consumption. Enzymatic systems using immobilized lipases present additional opportunities for mild and selective reactions. Future directions emphasize the integration of pervaporation membranes, hybrid catalyst systems combining biocatalysts and metals, and real-time optimization through artificial intelligence. Modular plug-and-play reactor designs are identified as a promising approach to flexible, scalable, and sustainable esterification. Overall, the interaction of catalyst development, membrane technology, and digital process control offers a transformative platform for next-generation ester synthesis aligned with green chemistry and industrial scalability. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

34 pages, 2842 KiB  
Review
Systematic Analysis of the Hydrogen Value Chain from Production to Utilization
by Miguel Simão Coelho, Guilherme Gaspar, Elena Surra, Pedro Jorge Coelho and Ana Filipa Ferreira
Appl. Sci. 2025, 15(15), 8242; https://doi.org/10.3390/app15158242 - 24 Jul 2025
Viewed by 450
Abstract
Hydrogen produced from renewable sources has the potential to tackle various energy challenges, from allowing cost-effective transportation of renewable energy from production to consumption regions to decarbonizing intensive energy consumption industries. Due to its application versatility and non-greenhouse gaseous emissions characteristics, it is [...] Read more.
Hydrogen produced from renewable sources has the potential to tackle various energy challenges, from allowing cost-effective transportation of renewable energy from production to consumption regions to decarbonizing intensive energy consumption industries. Due to its application versatility and non-greenhouse gaseous emissions characteristics, it is expected that hydrogen will play an important role in the decarbonization strategies set out for 2050. Currently, there are some barriers and challenges that need to be addressed to fully take advantage of the opportunities associated with hydrogen. The present work aims to characterize the state of the art of different hydrogen production, storage, transport, and distribution technologies, which compose the hydrogen value chain. Based on the information collected it was possible to conclude the following: (i) Electrolysis is the frontrunner to produce green hydrogen at a large scale (efficiency up to 80%) since some of the production technologies under this category have already achieved a commercially available state; (ii) in the storage phase, various technologies may be suitable based on specific conditions and purposes. Technologies of the physical-based type are the ones mostly used in real applications; (iii) transportation and distribution options should be viewed as complementary rather than competitive, as the most suitable option varies based on transportation distance and hydrogen quantity; and (iv) a single value chain configuration cannot be universally applied. Therefore, each case requires a comprehensive analysis of the entire value chain. Methodologies, like life cycle assessment, should be utilized to support the decision-making process. Full article
(This article belongs to the Special Issue The Present and the Future of Hydrogen Energy)
Show Figures

Figure 1

48 pages, 4145 KiB  
Review
A Review on the State-of-the-Art and Commercial Status of Carbon Capture Technologies
by Md Hujjatul Islam and Shashank Reddy Patlolla
Energies 2025, 18(15), 3937; https://doi.org/10.3390/en18153937 - 23 Jul 2025
Viewed by 402
Abstract
Carbon capture technologies are largely considered to play a crucial role in meeting the climate change and global warming target set by Net Zero Emission (NZE) 2050. These technologies can contribute to clean energy transitions and emissions reduction by decarbonizing the power sector [...] Read more.
Carbon capture technologies are largely considered to play a crucial role in meeting the climate change and global warming target set by Net Zero Emission (NZE) 2050. These technologies can contribute to clean energy transitions and emissions reduction by decarbonizing the power sector and other CO2 intensive industries such as iron and steel production, natural gas processing oil refining and cement production where there is no obvious alternative to carbon capture technologies. While the progress of carbon capture technologies has fallen behind expectations in the past, in recent years there has been substantial growth in this area, with over 700 projects at various stages of development. Moreover, there are around 45 commercial carbon capture facilities already in operation around the world in different industrial processes, fuel transformation and power generation. Carbon capture technologies including pre/post-combustion, oxyfuel and chemical looping combustion have been widely exploited in the recent years at different Technology Readiness level (TRL). Although, a large number of review studies are available addressing different carbon capture strategies, however, studies related to the commercial status of the carbon capture technologies are yet to be conducted. In this review article, we summarize the state-of-the-art of different carbon capture technologies applied to different emission sources, focusing on emission reduction, net-zero emission, and negative emission. We also highlight the commercial status of the different carbon capture technologies including economics, opportunities, and challenges. Full article
Show Figures

Graphical abstract

36 pages, 5042 KiB  
Review
The Fungus Among Us: Innovations and Applications of Mycelium-Based Composites
by Zahra Parhizi, John Dearnaley, Kate Kauter, Deirdre Mikkelsen, Priya Pal, Tristan Shelley and Paulomi (Polly) Burey
J. Fungi 2025, 11(8), 549; https://doi.org/10.3390/jof11080549 - 23 Jul 2025
Viewed by 580
Abstract
Mycelium-based composites (MBCs) are an emerging category of cost-effective and environmentally sustainable materials that are attracting significant research and commercial interest across various industries, including construction, manufacturing, agriculture, and biomedicine. These materials harness the natural growth of fungi as a low-energy bio-fabrication method, [...] Read more.
Mycelium-based composites (MBCs) are an emerging category of cost-effective and environmentally sustainable materials that are attracting significant research and commercial interest across various industries, including construction, manufacturing, agriculture, and biomedicine. These materials harness the natural growth of fungi as a low-energy bio-fabrication method, converting abundant agricultural by-products and waste into sustainable alternatives to energy-intensive synthetic construction materials. Their affordability and eco-friendly characteristics make them attractive for both research and commercialisation. Currently, mycelium-based foams and sandwich composites are being actively developed for applications in construction. These materials offer exceptional thermal insulation, excellent acoustic absorption, and superior fire safety compared to conventional building materials like synthetic foams and engineered wood. As a result, MBCs show great potential for applications in thermal and acoustic insulation. However, their foam-like mechanical properties, high water absorption, and limited documentation of material properties restrict their use to non- or semi-structural roles, such as insulation, panelling, and furniture. This paper presents a comprehensive review of the fabrication process and the factors affecting the production and performance properties of MBCs. It addresses key elements such as fungal species selection, substrate choice, optimal growth conditions, dehydration methods, post-processing techniques, mechanical and physical properties, termite resistance, cost comparison, and life cycle assessment. Full article
Show Figures

Figure 1

24 pages, 3016 KiB  
Article
Industrial Off-Gas Fermentation for Acetic Acid Production: A Carbon Footprint Assessment in the Context of Energy Transition
by Marta Pacheco, Adrien Brac de la Perrière, Patrícia Moura and Carla Silva
C 2025, 11(3), 54; https://doi.org/10.3390/c11030054 - 23 Jul 2025
Viewed by 482
Abstract
Most industrial processes depend on heat, electricity, demineralized water, and chemical inputs, which themselves are produced through energy- and resource-intensive industrial activities. In this work, acetic acid (AA) production from syngas (CO, CO2, and H2) fermentation is explored and [...] Read more.
Most industrial processes depend on heat, electricity, demineralized water, and chemical inputs, which themselves are produced through energy- and resource-intensive industrial activities. In this work, acetic acid (AA) production from syngas (CO, CO2, and H2) fermentation is explored and compared against a thermochemical fossil benchmark and other thermochemical/biological processes across four main Key Performance Indicators (KPI)—electricity use, heat use, water consumption, and carbon footprint (CF)—for the years 2023 and 2050 in Portugal and France. CF was evaluated through transparent and public inventories for all the processes involved in chemical production and utilities. Spreadsheet-traceable matrices for hotspot identification were also developed. The fossil benchmark, with all the necessary cascade processes, was 0.64 kg CO2-eq/kg AA, 1.53 kWh/kg AA, 22.02 MJ/kg AA, and 1.62 L water/kg AA for the Portuguese 2023 energy mix, with a reduction of 162% of the CO2-eq in the 2050 energy transition context. The results demonstrated that industrial practices would benefit greatly from the transition from fossil to renewable energy and from more sustainable chemical sources. For carbon-intensive sectors like steel or cement, the acetogenic syngas fermentation appears as a scalable bridge technology, converting the flue gas waste stream into marketable products and accelerating the transition towards a circular economy. Full article
(This article belongs to the Section Carbon Cycle, Capture and Storage)
Show Figures

Graphical abstract

32 pages, 1432 KiB  
Article
From Carbon to Capability: How Corporate Green and Low-Carbon Transitions Foster New Quality Productive Forces in China
by Lili Teng, Yukun Luo and Shuwen Wei
Sustainability 2025, 17(15), 6657; https://doi.org/10.3390/su17156657 - 22 Jul 2025
Viewed by 423
Abstract
China’s national strategies emphasize both achieving carbon peaking and neutrality (“dual carbon” objectives) and fostering high-quality economic development. This dual focus highlights the critical importance of the Green and Low-Carbon Transition (GLCT) of the economy and the development of New Quality Productive Forces [...] Read more.
China’s national strategies emphasize both achieving carbon peaking and neutrality (“dual carbon” objectives) and fostering high-quality economic development. This dual focus highlights the critical importance of the Green and Low-Carbon Transition (GLCT) of the economy and the development of New Quality Productive Forces (NQPF). Firms are central actors in this transformation, prompting the core research question: How does corporate engagement in GLCT contribute to the formation of NQPF? We investigate this relationship using panel data comprising 33,768 firm-year observations for A-share listed companies across diverse industries in China from 2012 to 2022. Corporate GLCT is measured via textual analysis of annual reports, while an NQPF index, incorporating both tangible and intangible dimensions, is constructed using the entropy method. Our empirical analysis relies primarily on fixed-effects regressions, supplemented by various robustness checks and alternative econometric specifications. The results demonstrate a significantly positive relationship: corporate GLCT robustly promotes the development of NQPF, with dynamic lag structures suggesting delayed productivity realization. Mechanism analysis reveals that this effect operates through three primary channels: improved access to financing, stimulated collaborative innovation and enhanced resource-allocation efficiency. Heterogeneity analysis indicates that the positive impact of GLCT on NQPF is more pronounced for state-owned enterprises (SOEs), firms operating in high-emission sectors, those in energy-efficient or environmentally friendly industries, technology-intensive sectors, non-heavily polluting industries and companies situated in China’s eastern regions. Overall, our findings suggest that corporate GLCT enhances NQPF by improving resource-utilization efficiency and fostering innovation, with these effects amplified by specific regional advantages and firm characteristics. This study offers implications for corporate strategy, highlighting how aligning GLCT initiatives with core business objectives can drive NQPF, and provides evidence relevant for policymakers aiming to optimize environmental governance and foster sustainable economic pathways. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

23 pages, 1562 KiB  
Article
Decomposition of Industrial Carbon Emission Drivers and Exploration of Peak Pathways: Empirical Evidence from China
by Yuling Hou, Xinyu Zhang, Kaiwen Geng and Yang Li
Sustainability 2025, 17(14), 6479; https://doi.org/10.3390/su17146479 - 15 Jul 2025
Viewed by 308
Abstract
Against the backdrop of increasing extreme weather events associated with global climate change, regulating carbon dioxide emissions, a primary contributor to atmospheric warming, has emerged as a pressing global challenge. Focusing on China as a representative case study of major developing economies, this [...] Read more.
Against the backdrop of increasing extreme weather events associated with global climate change, regulating carbon dioxide emissions, a primary contributor to atmospheric warming, has emerged as a pressing global challenge. Focusing on China as a representative case study of major developing economies, this research examines industrial carbon emission patterns during 2001–2022. Methodologically, it introduces an innovative analytical framework that integrates the Generalized Divisia Index Method (GDIM) with the Low Emissions Analysis Platform (LEAP) to both decompose industrial emission drivers and project future trajectories through 2040. Key findings reveal that:the following: (1) Carbon intensity in China’s industrial sector has been substantially decreasing under green technological advancements and policy interventions. (2) Industrial restructuring demonstrates constraining effects on carbon output, while productivity gains show untapped potential for emission abatement. Notably, the dual mechanisms of enhanced energy efficiency and cleaner energy transitions emerge as pivotal mitigation levers. (3) Scenario analyses indicate that coordinated policies addressing energy mix optimization, efficiency gains, and economic restructuring could facilitate achieving industrial carbon peaking before 2030. These results offer substantive insights for designing phased decarbonization roadmaps, while contributing empirical evidence to international climate policy discourse. The integrated methodology also presents a transferable analytical paradigm for emission studies in other industrializing economies. Full article
Show Figures

Figure 1

20 pages, 17185 KiB  
Article
Spatiotemporal Variations and Driving Factors of Carbon Emissions Related to Energy Consumption in the Construction Industry of China
by Yue Zhang, Min Li, Jiazhen Sun, Jie Liu, Yinsheng Wang, Li Li and Xin Xiong
Energies 2025, 18(14), 3700; https://doi.org/10.3390/en18143700 - 14 Jul 2025
Viewed by 232
Abstract
As a major contributor to energy consumption and carbon emissions, the low-carbon transformation of the construction industry is crucial for China to achieve its established carbon-emission reduction targets. Therefore, a systematic analysis of the spatial and temporal evolution trends and key drivers of [...] Read more.
As a major contributor to energy consumption and carbon emissions, the low-carbon transformation of the construction industry is crucial for China to achieve its established carbon-emission reduction targets. Therefore, a systematic analysis of the spatial and temporal evolution trends and key drivers of carbon emissions in the construction industry is an important reference for the formulation of emission reduction policies in the industry and the promotion of green and low-carbon development. This study first estimated carbon emissions from direct and indirect energy consumption in China’s construction industry. Spatial and temporal variations in emissions were then analyzed using spatial autocorrelation and kernel density methods. Furthermore, an improved logarithmic mean Divisia index decomposition model, tailored to the characteristics of the construction industry, was applied to quantify the key driving factors. The results reveal that total carbon emissions follow an inverted U-shaped trend, with indirect carbon emissions—mainly from the production of cement and steel—being the dominant contributors. Emissions display a spatially uneven pattern: high in the east and south, low in the west and north, with the high-emission zone gradually expanding from the east to the central regions. Marked regional differences also exist in the evolution of emission intensity. Output intensity and energy intensity are identified as primary drivers of emissions, with their impact particularly prominent in the eastern region. These findings provide a quantitative basis and theoretical support for developing region-specific emission reduction policies, advancing the green and high-quality development of China’s construction industry. Full article
(This article belongs to the Special Issue Low-Carbon Development, Energiewende and Digitalization)
Show Figures

Figure 1

36 pages, 1973 KiB  
Article
A Comparative Life Cycle Assessment of an Electric and a Conventional Mid-Segment Car: Evaluating the Role of Critical Raw Materials in Potential Abiotic Resource Depletion
by Andrea Cappelli, Nicola Stefano Trimarchi, Simone Marzeddu, Riccardo Paoli and Francesco Romagnoli
Energies 2025, 18(14), 3698; https://doi.org/10.3390/en18143698 - 13 Jul 2025
Viewed by 613
Abstract
Electric passenger vehicles are set to dominate the European car market, driven by EU climate policies and the 2035 ban on internal combustion engine production. This study assesses the sustainability of this transition, focusing on global warming potential and Critical Raw Material (CRM) [...] Read more.
Electric passenger vehicles are set to dominate the European car market, driven by EU climate policies and the 2035 ban on internal combustion engine production. This study assesses the sustainability of this transition, focusing on global warming potential and Critical Raw Material (CRM) extraction throughout its life cycle. The intensive use of CRMs raises environmental, economic, social, and geopolitical concerns. These materials are scarce and are concentrated in a few politically sensitive regions, leaving the EU highly dependent on external suppliers. The extraction, transport, and refining of CRMs and battery production are high-emission processes that contribute to climate change and pose risks to ecosystems and human health. A Life Cycle Assessment (LCA) was conducted, using OpenLCA software and the Ecoinvent 3.10 database, comparing a Peugeot 308 in its diesel and electric versions. This study adopts a cradle-to-grave approach, analyzing three phases: production, utilization, and end-of-life treatment. Key indicators included Global Warming Potential (GWP100) and Abiotic Resource Depletion Potential (ADP) to assess CO2 emissions and mineral resource consumption. Technological advancements could mitigate mineral depletion concerns. Li-ion battery recycling is still underdeveloped, but has high recovery potential, with the sector expected to expand significantly. Moreover, repurposing used Li-ion batteries for stationary energy storage in renewable energy systems can extend their lifespan by over a decade, decreasing the demand for new batteries. Such innovations underscore the potential for a more sustainable electric vehicle industry. Full article
Show Figures

Figure 1

34 pages, 2697 KiB  
Article
Pricing and Emission Reduction Strategies of Heterogeneous Automakers Under the “Dual-Credit + Carbon Cap-and-Trade” Policy Scenario
by Chenxu Wu, Yuxiang Zhang, Junwei Zhao, Chao Wang and Weide Chun
Mathematics 2025, 13(14), 2262; https://doi.org/10.3390/math13142262 - 13 Jul 2025
Viewed by 299
Abstract
Against the backdrop of increasingly severe global climate change, the automotive industry, as a carbon-intensive sector, has found its low-carbon transformation crucial for achieving the “double carbon” goals. This paper constructs manufacturer decision-making models under an oligopolistic market scenario for the single dual-credit [...] Read more.
Against the backdrop of increasingly severe global climate change, the automotive industry, as a carbon-intensive sector, has found its low-carbon transformation crucial for achieving the “double carbon” goals. This paper constructs manufacturer decision-making models under an oligopolistic market scenario for the single dual-credit policy and the “dual-credit + carbon cap-and-trade” policy, revealing the nonlinear impacts of new energy vehicle (NEV) credit trading prices, carbon trading prices, and credit ratio requirements on manufacturers’ pricing, emission reduction effort levels, and profits. The results indicate the following: (1) Under the “carbon cap-and-trade + dual-credit” policy, manufacturers can balance emission reduction costs and NEV production via the carbon trading market to maximize profits, with lower emission reduction effort levels than under the single dual-credit policy. (2) A rise in credit trading prices prompts hybrid manufacturers (producing both fuel vehicles and NEVs) to increase NEV production and reduce fuel vehicle output; higher NEV credit ratio requirements raise fuel vehicle production costs and prices, suppressing consumer demand. (3) An increase in carbon trading prices raises production costs for both fuel vehicles and NEVs, leading to decreased market demand; hybrid manufacturers reduce emission reduction efforts, while others transfer costs through price hikes to boost profits. (4) Hybrid manufacturers face high carbon emission costs due to excessive actual fuel consumption, driving them to enhance emission reduction efforts and promote low-carbon technological innovation. Full article
Show Figures

Figure 1

Back to TopTop