Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (505)

Search Parameters:
Keywords = energy price forecasting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6667 KB  
Article
Data-Driven Forecasting of Electricity Prices in Chile Using Machine Learning
by Ricardo León, Guillermo Ramírez, Camilo Cifuentes, Samuel Vergara, Roberto Aedo-García, Francisco Ramis Lanyon and Rodrigo J. Villalobos San Martin
Appl. Sci. 2026, 16(3), 1318; https://doi.org/10.3390/app16031318 - 28 Jan 2026
Abstract
This study proposes and evaluates a data-driven framework for short-term System Marginal Price (SMP) forecasting in the Chilean National Electric System (NES), a power system characterized by high penetration of variable renewable generation and persistent transmission congestion. Using publicly available hourly operational data [...] Read more.
This study proposes and evaluates a data-driven framework for short-term System Marginal Price (SMP) forecasting in the Chilean National Electric System (NES), a power system characterized by high penetration of variable renewable generation and persistent transmission congestion. Using publicly available hourly operational data for 2024, multiple machine learning regressors including Linear Regression (base case), Bayesian Ridge, Automatic Relevance Determination, Decision Trees, Random Forests, and Support Vector Regression are implemented under a node-specific modeling strategy. Two alternative approaches for predictor selection are compared: a system-wide methodology that exploits lagged SMP information from all network nodes; and a spatially filtered methodology that restricts SMP inputs to correlated subsystems identified through nodal correlation analysis. Model robustness is explicitly assessed by reserving January and July as out-of-sample test periods, capturing contrasting summer and winter operating conditions. Forecasting performance is analyzed for representative nodes located in the northern, central, and southern zones of the NES, which exhibit markedly different congestion levels and generation mixes. Results indicate that non-linear and ensemble models, particularly Random Forest and Support Vector Regression, provide the most accurate forecasts in well-connected areas, achieving mean absolute errors close to 10 USD/MWh. In contrast, forecast errors increase substantially in highly congested southern zones, reflecting the structural influence of transmission constraints on price formation. While average performance differences between M1 and M2 are modest, a paired Wilcoxon signed-rank test reveals statistically significant improvements with M2 in highly congested zones, where M2 yields lower absolute errors for most models, despite relying on fewer inputs. These findings highlight the importance of congestion-aware feature selection for reliable price forecasting in renewable-intensive systems. Full article
(This article belongs to the Special Issue New Trends in Renewable Energy and Power Systems)
Show Figures

Figure 1

28 pages, 5265 KB  
Article
Research on Energy Futures Hedging Strategies for Electricity Retailers’ Risk Based on Monthly Electricity Price Forecasting
by Weiqing Sun and Chenxi Wu
Energies 2026, 19(2), 552; https://doi.org/10.3390/en19020552 - 22 Jan 2026
Viewed by 77
Abstract
The widespread adoption of electricity market trading platforms has enhanced the standardization and transparency of trading processes. As markets become more liberalized, regulatory policies are phasing out protective electricity pricing mechanisms, leaving retailers exposed to price volatility risks. In response, demand for risk [...] Read more.
The widespread adoption of electricity market trading platforms has enhanced the standardization and transparency of trading processes. As markets become more liberalized, regulatory policies are phasing out protective electricity pricing mechanisms, leaving retailers exposed to price volatility risks. In response, demand for risk management tools has grown significantly. Futures contracts serve as a core instrument for managing risks in the energy sector. This paper proposes a futures-based risk hedging model grounded in electricity price forecasting. A price prediction model is constructed using historical data from electricity markets and energy futures, with SHAP values used to analyze the transmission effects of energy futures prices on monthly electricity trading prices. The Monte Carlo simulation method, combined with a t-GARCH model, is applied to calculate CVaR and determine optimal portfolio weights for futures products. This approach captures the volatility clustering and fat-tailed characteristics typical of energy futures returns. To validate the model’s effectiveness, an empirical analysis is conducted using actual market data. By forecasting electricity price trends and formulating futures strategies, the study evaluates the hedging and profitability performance of futures trading under different market conditions. Results show that the proposed model effectively mitigates risks in volatile market environments. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

26 pages, 2118 KB  
Article
A Hybrid HAR-LSTM-GARCH Model for Forecasting Volatility in Energy Markets
by Wiem Ben Romdhane and Heni Boubaker
J. Risk Financial Manag. 2026, 19(1), 77; https://doi.org/10.3390/jrfm19010077 - 17 Jan 2026
Viewed by 410
Abstract
Accurate volatility forecasting in energy markets is paramount for risk management, derivative pricing, and strategic policy planning. Traditional econometric models like the Heterogeneous Auto-regressive (HAR) model effectively capture the long-memory and multi-component nature of volatility but often fail to account for non-linearities and [...] Read more.
Accurate volatility forecasting in energy markets is paramount for risk management, derivative pricing, and strategic policy planning. Traditional econometric models like the Heterogeneous Auto-regressive (HAR) model effectively capture the long-memory and multi-component nature of volatility but often fail to account for non-linearities and complex, unseen dependencies. Deep learning models, particularly Long Short-Term Memory (LSTM) networks, excel at capturing these non-linear patterns but can be data-hungry and prone to overfitting, especially in noisy financial datasets. This paper proposes a novel hybrid model, HAR-LSTM-GARCH, which synergistically combines the strengths of the HAR model, an LSTM network, and a GARCH model to forecast the realized volatility of crude oil futures. The HAR component captures the persistent, multi-scale volatility dynamics, the LSTM network learns the non-linear residual patterns, and the GARCH component models the time-varying volatility of the residuals themselves. Using high-frequency data on Brent Crude futures, we compute daily Realized Volatility (RV). Our empirical results demonstrate that the proposed HAR-LSTM-GARCH model significantly outperforms the benchmark HAR, GARCH(1,1), and standalone LSTM models in both statistical accuracy and economic significance, offering a robust framework for volatility forecasting in the complex energy sector. Full article
(This article belongs to the Special Issue Mathematical Modelling in Economics and Finance)
Show Figures

Figure 1

24 pages, 3395 KB  
Article
Bi-Objective Intraday Coordinated Optimization of a VPP’s Reliability and Cost Based on a Dual-Swarm Particle Swarm Algorithm
by Jun Zhan, Xiaojia Sun, Yang Li, Wenjing Sun, Jiamei Jiang and Yang Gao
Energies 2026, 19(2), 473; https://doi.org/10.3390/en19020473 - 17 Jan 2026
Viewed by 249
Abstract
With the increasing penetration of renewable energy, power systems are facing greater uncertainty and volatility, which poses significant challenges for Virtual Power Plant scheduling. Existing research mainly focuses on optimizing economic efficiency but often overlooks system reliability and the impact of forecasting deviations [...] Read more.
With the increasing penetration of renewable energy, power systems are facing greater uncertainty and volatility, which poses significant challenges for Virtual Power Plant scheduling. Existing research mainly focuses on optimizing economic efficiency but often overlooks system reliability and the impact of forecasting deviations on scheduling, leading to suboptimal performance. Thus, this paper presents a reliability-cost bi-objective cooperative optimization model based on a dual-swarm particle swarm algorithm: it introduces positive and negative imbalance price penalty factors to explicitly describe the economic costs of forecast deviations, constructs a reliability evaluation system covering PV, EVs, air-conditioning loads, electrolytic aluminum loads, and energy storage, and solves the multi-objective model via algorithm design of “sub-swarms specializing in single objectives + periodic information exchange”. Simulation results show that the method ensures stable intraday operation of VPPs, achieving 6.8% total cost reduction, 12.5% system reliability improvement, and 14.8% power deviation reduction, verifying its practical value and application prospects. Full article
Show Figures

Figure 1

25 pages, 2812 KB  
Article
Field-Scale Techno-Economic Assessment and Real Options Valuation of Carbon Capture Utilization and Storage—Enhanced Oil Recovery Project Under Market Uncertainty
by Chang Liu, Cai-Shuai Li and Xiao-Qiang Zheng
Sustainability 2026, 18(2), 805; https://doi.org/10.3390/su18020805 - 13 Jan 2026
Viewed by 251
Abstract
This study develops a field-based techno-economic model and decision framework for a CO2-enhanced oil recovery and storage project under joint market uncertainty. Historical drilling and completion expenditures calibrate investment cost functions, and three years of production data are fitted with segmented [...] Read more.
This study develops a field-based techno-economic model and decision framework for a CO2-enhanced oil recovery and storage project under joint market uncertainty. Historical drilling and completion expenditures calibrate investment cost functions, and three years of production data are fitted with segmented hyperbolic Arps curves to forecast 20-year oil output. Markov-chain models jointly generate internally consistent pathways for crude oil, ETA, and purchased CO2 prices, which are embedded in a Monte Carlo valuation. The framework outputs probability distributions of NPV and deferral option value; under the mid scenario, their mean values are USD 18.1M and USD 2.0M, respectively. PRCC-based global sensitivity analysis identifies the dominant value drivers as oil price, CO2 price, utilization factor, oil density, pipeline length, and injection volume. Techno-economic boundary maps in the joint oil and CO2 price space then delineate feasible regions and break-even thresholds for key design parameters. Results indicate that CCUS-EOR viability cannot be inferred from oil price or any single cost factor alone, but requires coordinated consideration of subsurface constraints, engineering configuration, and multi-market dynamics, including the value of waiting in unfavorable regimes, contributing to low-carbon development and sustainable energy transition objectives. Full article
Show Figures

Figure 1

22 pages, 2454 KB  
Article
Less Is More: Data-Driven Day-Ahead Electricity Price Forecasting with Short Training Windows
by Vasilis Michalakopoulos, Christoforos Menos-Aikateriniadis, Elissaios Sarmas, Antonis Zakynthinos, Pavlos S. Georgilakis and Dimitris Askounis
Energies 2026, 19(2), 376; https://doi.org/10.3390/en19020376 - 13 Jan 2026
Viewed by 254
Abstract
Volatility in the modern world and electricity Day-Ahead Markets (DAMs) usually makes long-term historical data irrelevant or even detrimental for accurate forecasting. This study directly addresses this challenge by proposing a novel forecasting paradigm centered on extremely short training windows, ranging from 7 [...] Read more.
Volatility in the modern world and electricity Day-Ahead Markets (DAMs) usually makes long-term historical data irrelevant or even detrimental for accurate forecasting. This study directly addresses this challenge by proposing a novel forecasting paradigm centered on extremely short training windows, ranging from 7 to 90 days, to maximize responsiveness to recent market dynamics. This volatility-driven approach intentionally creates a data-scarce environment where the suitability of deep learning models is limited. Building on the hypothesis that shallow machine learning models, and more specifically boosting trees, are better adapted to this reality, we evaluate four models, namely LSTM with feed-forward error correction, XGBoost, LightGBM, and CatBoost, across three European energy markets (Greece, Belgium, Ireland) using feature sets derived from ENTSO-E forecast data. Results consistently demonstrate that LightGBM provides superior forecasting accuracy and robustness, particularly when trained on 45–60 day windows, which strike an optimal balance between temporal relevance and learning depth. Furthermore, a stronger capability in detecting seasonal effects and peak price events is exhibited. These findings validate that a short-window training strategy, combined with computationally efficient shallow models, is a highly effective and practical approach for navigating the volatility and data constraints of modern DAM forecasting. Full article
Show Figures

Figure 1

31 pages, 3343 KB  
Article
GridFM: A Physics-Informed Foundation Model for Multi-Task Energy Forecasting Using Real-Time NYISO Data
by Ali Sayghe, Mohammed Ahmed Mousa, Salem Batiyah, Abdulrahman Husawi and Mansour Almuwallad
Energies 2026, 19(2), 357; https://doi.org/10.3390/en19020357 - 11 Jan 2026
Viewed by 218
Abstract
The rapid integration of renewable energy sources and increasing complexity of modern power grids demand advanced forecasting tools capable of simultaneously predicting multiple interconnected variables. While time series foundation models (TSFMs) have demonstrated remarkable zero-shot forecasting capabilities across diverse domains, their application in [...] Read more.
The rapid integration of renewable energy sources and increasing complexity of modern power grids demand advanced forecasting tools capable of simultaneously predicting multiple interconnected variables. While time series foundation models (TSFMs) have demonstrated remarkable zero-shot forecasting capabilities across diverse domains, their application in power grid operations remains limited due to complex coupling relationships between load, price, emissions, and renewable generation. This paper proposes GridFM, a novel physics-informed foundation model specifically designed for multi-task energy forecasting in power systems. GridFM introduces four key innovations: (1) a FreqMixer adaptation layer that transforms pre-trained foundation model representations to power-grid-specific patterns through frequency domain mixing without modifying base weights; (2) a physics-informed constraint module embedding power balance equations and zonal grid topology using graph neural networks; (3) a multi-task learning framework enabling joint forecasting of load demand, locational-based marginal prices (LBMP), carbon emissions, and renewable generation with uncertainty-weighted loss functions; and (4) an explainability module utilizing SHAP values and attention visualization for interpretable predictions. We validate GridFM using over 10 years of real-time data from the New York Independent System Operator (NYISO) at 5 min resolution, comprising more than 10 million data points across 11 load zones. Comprehensive experiments demonstrate that GridFM achieves state-of-the-art performance with an 18.5% improvement in load forecasting MAPE (achieving 2.14%), a 23.2% improvement in price forecasting (achieving 7.8% MAPE), and a 21.7% improvement in emission prediction compared to existing TSFMs including Chronos, TimesFM, and Moirai-MoE. Ablation studies confirm the contribution of each proposed component. The physics-informed constraints reduce physically inconsistent predictions by 67%, while the multi-task framework improves individual task performance by exploiting inter-variable correlations. The proposed model provides interpretable predictions supporting the Climate Leadership and Community Protection Act (CLCPA) 2030/2040 compliance objectives, enabling grid operators to make informed decisions for sustainable energy transition and carbon reduction strategies. Full article
Show Figures

Figure 1

31 pages, 2487 KB  
Article
Enhancing Predictive Performance of LSTM–Attention Models for Investment Risk Forecasting
by Amina Ladhari and Heni Boubaker
Risks 2026, 14(1), 13; https://doi.org/10.3390/risks14010013 - 5 Jan 2026
Viewed by 287
Abstract
For many decades, time-series forecasting has been applied to different problems by scientists and industries. Many models have been introduced for the purpose of forecasting. These advancements have significantly improved the accuracy and reliability of predictions, especially in complex scenarios where traditional methods [...] Read more.
For many decades, time-series forecasting has been applied to different problems by scientists and industries. Many models have been introduced for the purpose of forecasting. These advancements have significantly improved the accuracy and reliability of predictions, especially in complex scenarios where traditional methods struggled. As data availability continues to expand, the integration of machine learning techniques is likely to further enhance forecasting capabilities across various fields. Today, hybrid techniques are gaining popularity, as they combine the advantages of different approaches to deliver improved predictive performance and more advanced visualization analytics for decision support. These hybrid approaches can provide better prediction, and at the same time, they can develop a more sophisticated set of visualization analytics for decision support. Recently, the integration of cross-entropy, fuzzy logic, and attention mechanisms in hybrid forecasting models has enhanced their ability to capture complex and uncertain patterns in financial and energy markets. In this study, we propose a hybrid ANN–LSTM deep learning model optimized with cross-entropy, fuzzy logic, and an attention mechanism to enhance the forecasting of financial and energy time series, specifically Ethereum and natural gas prices. Our models combine the feature extraction strength of ANN with the temporal learning of LSTM, while cross-entropy improves convergence, fuzzy logic handles uncertainty, and attention refines feature weighting. Since inaccurate forecasts can lead to greater estimation uncertainty and increased financial and operational risk, improving predictive reliability is essential for effective risk mitigation. These techniques prove effective not only in improving estimation accuracy but also in minimizing financial risks and supporting more informed investment decisions. Full article
(This article belongs to the Special Issue Artificial Intelligence Risk Management)
Show Figures

Figure 1

35 pages, 7939 KB  
Article
Techno-Enviro-Economic Assessment of Long-Term Strategic Capacity Expansion for Dubai’s Clean Energy Future Using PLEXOS
by Ahmed Yousry and Mutasim Nour
Energies 2026, 19(1), 173; https://doi.org/10.3390/en19010173 - 28 Dec 2025
Viewed by 574
Abstract
With global energy systems shifting toward sustainable solutions, Dubai faces the challenge of meeting rising energy needs while minimizing environmental impacts. This study explores long-term (LT) strategic planning for Dubai’s power sector through a techno-environmental–economic lens. Using PLEXOS® modelling software (Version 9.20.0001) [...] Read more.
With global energy systems shifting toward sustainable solutions, Dubai faces the challenge of meeting rising energy needs while minimizing environmental impacts. This study explores long-term (LT) strategic planning for Dubai’s power sector through a techno-environmental–economic lens. Using PLEXOS® modelling software (Version 9.20.0001) and official data from Dubai’s main utility provider, a comprehensive model examines medium- and LT energy pathways. The analysis identifies solar photovoltaic (PV) technology as central to achieving Dubai’s goal of 100% clean energy by 2050. It also highlights the need to cut emissions from natural gas (NG) infrastructure, targeting a goal of 14.5% retirement of NG energy generation capacities by the mid-century. Achieving zero-emission goals will require complementary technologies such as carbon capture (CC), nuclear energy, and energy storage as part of a broader decarbonization strategy. This study further assesses the economic effects of climate policy, showing that moderate carbon pricing could increase the Levelized Cost of Energy (LCOE) by an average of 6% across the forecast horizon. These findings offer valuable guidance for decision-makers and stakeholders, particularly the Dubai Electricity and Water Authority (DEWA), in advancing a carbon-neutral energy system. By 2050, Dubai’s total installed generation capacity is projected to reach 53.3 GW, reflecting the scale of transformation needed to meet its clean energy ambitions. Full article
(This article belongs to the Special Issue Policy and Economic Analysis of Energy Systems: 2nd Edition)
Show Figures

Figure 1

28 pages, 6383 KB  
Article
Learning the Grid: Transformer Architectures for Electricity Price Forecasting in the Australian National Market
by Mark Sinclair, Andrew J. Shepley and Farshid Hajati
Appl. Sci. 2026, 16(1), 75; https://doi.org/10.3390/app16010075 - 21 Dec 2025
Viewed by 394
Abstract
The increasing adoption of highly variable renewable energy has introduced unprecedented volatility into the National Electricity Market (NEM), rendering traditional linear price forecasting models insufficient. The Australian Energy Market Operator (AEMO) spot price forecasts often struggle during periods of volatile demand, renewable variability, [...] Read more.
The increasing adoption of highly variable renewable energy has introduced unprecedented volatility into the National Electricity Market (NEM), rendering traditional linear price forecasting models insufficient. The Australian Energy Market Operator (AEMO) spot price forecasts often struggle during periods of volatile demand, renewable variability, and strategic rebidding. This study evaluates whether transformer architectures can improve intraday NEM price forecasting. Using 34 months of market data and weather conditions, several transformer variants, including encoder–decoder, decoder-only, and encoder-only, were compared against the AEMO’s operational forecast, a two-layer LSTM baseline, the Temporal Fusion Transformer, PatchTST, and TimesFM. The decoder-only transformer achieved the best accuracy across the 2–16 h horizons in NSW, with nMAPE values of 33.6–39.2%, outperforming both AEMO and all baseline models. Retraining in Victoria and Queensland produced similarly strong results, demonstrating robust regional generalisation. A feature importance analysis showed that future-facing predispatch and forecast covariates dominate model importance, explaining why a decoder-only transformer variant performed so competitively. While magnitude estimation for extreme price spikes remains challenging, the transformer models demonstrated superior capability in delivering statistically significant improvements in forecast accuracy. An API providing real-time forecasts using the small encoder–decoder transformer model is available. Full article
(This article belongs to the Special Issue Artificial Intelligence (AI) for Energy Systems)
Show Figures

Figure 1

20 pages, 2847 KB  
Article
Explaining Mexico’s Energy–Economy Linkages Under Limited Information: VAR-Based IRF and FEVD Evidence
by Juan A. Moreno-Hernández, Margarita De la Portilla-Reynoso, Roberto Carlos Moreno-Hernández, Claudia del C. Gutiérrez-Torres, Juan G. Barbosa-Saldaña, Didier Samayoa and José A. Jiménez-Bernal
Economies 2025, 13(12), 370; https://doi.org/10.3390/economies13120370 - 18 Dec 2025
Viewed by 432
Abstract
This study examines the short- and medium-run linkages within Mexico’s energy–economy system under conditions of limited information. The analysis is motivated by the structural relevance of hydrocarbons for fiscal stability and by the growing need to understand how energy shocks propagate through economic [...] Read more.
This study examines the short- and medium-run linkages within Mexico’s energy–economy system under conditions of limited information. The analysis is motivated by the structural relevance of hydrocarbons for fiscal stability and by the growing need to understand how energy shocks propagate through economic and environmental subsystems. Using a vector autoregression (VAR) framework, nine interdependent macroeconomic and energy variables are jointly evaluated after harmonizing mixed-frequency data, standardizing series, and ensuring stationarity through ADF and KPSS tests. Dynamic responses are assessed through impulse response functions (IRFs), generalized IRFs (GIRFs), and forecast error variance decomposition (FEVD), complemented by Granger causality tests. Results show that oil rents exert a persistent and positive influence on GDP and public expenditure, while shocks to coal-fired generation and oil prices consistently reduce economic activity and increase emissions. Renewable capacity expands pro-cyclically but displays limited autonomous effects. Overall, the evidence reveals a fiscally and environmentally constrained system dominated by hydrocarbons, underscoring the importance of improving PEMEX’s operational efficiency, accelerating fiscal diversification, and strengthening institutional conditions for renewable investment. Full article
(This article belongs to the Section Macroeconomics, Monetary Economics, and Financial Markets)
Show Figures

Figure 1

26 pages, 3486 KB  
Article
Optimal Operation Strategy of Virtual Power Plant Using Electric Vehicle Agent-Based Model Considering Operational Profitability
by Hwanmin Jeong and Jinho Kim
Sustainability 2025, 17(24), 11291; https://doi.org/10.3390/su172411291 - 16 Dec 2025
Viewed by 324
Abstract
Growing EV adoption is reshaping how Distributed Energy Resources (DERs) interact with the grid, playing a pivotal role in global decarbonization efforts and the transition towards a sustainable energy future. This study built a Virtual Power Plant (VPP) operation framework centered on EV [...] Read more.
Growing EV adoption is reshaping how Distributed Energy Resources (DERs) interact with the grid, playing a pivotal role in global decarbonization efforts and the transition towards a sustainable energy future. This study built a Virtual Power Plant (VPP) operation framework centered on EV behavioral dynamics, connecting individual driving and charging behaviors with the physical and economic layers of energy management. The EV behavioral dynamic model quantifies the stochastic travel, parking, and charging behaviors of individual EVs through an Agent-Based Trip and Charging Chain (AB-TCC) simulation, producing a Behavioral Flexibility Trace (BFT) that represents time-resolved EV availability and flexibility. The Forecasting Model employs a Bi-directional Long Short-Term Memory (Bi-LSTM) network trained on historical meteorological data to predict short-term renewable generation and represent physical variability. The two-stage optimization model integrates behavioral and physical information with market price signals to coordinate day-ahead scheduling and real-time operation, minimizing procurement costs and mitigating imbalance penalties. Simulation results indicate that the proposed framework yielded an approximately 15% increase in revenue over 7 days through EV-based flexibility utilization. These findings demonstrate that the proposed approach effectively leverages EV flexibility to manage renewable generation variability, thereby enhancing both the profitability and operational reliability of VPPs in local distribution systems. This facilitates greater penetration of intermittent renewable energy sources, accelerating the transition to a low-carbon energy system. Full article
(This article belongs to the Special Issue Sustainable Innovations in Electric Vehicle Technology)
Show Figures

Figure 1

33 pages, 4409 KB  
Article
An Integrated Framework for Electricity Price Analysis and Forecasting Based on DROI Framework: Application to Spanish Power Markets
by Nuo Chen, Caishan Gao, Luqi Yuan, Jiani Heng and Jianwei Fan
Sustainability 2025, 17(24), 11210; https://doi.org/10.3390/su172411210 - 15 Dec 2025
Viewed by 269
Abstract
Against the backdrop of electricity market liberalization and deregulation, accurate electricity price forecasting is critical for optimizing power dispatch and promoting the low-carbon transition of energy structures. However, electricity prices exhibit inherent complexities such as seasonality, high volatility, and non-stationarity, which undermine the [...] Read more.
Against the backdrop of electricity market liberalization and deregulation, accurate electricity price forecasting is critical for optimizing power dispatch and promoting the low-carbon transition of energy structures. However, electricity prices exhibit inherent complexities such as seasonality, high volatility, and non-stationarity, which undermine the efficacy of traditional forecasting methodologies. To address these challenges, this study proposes a four-stage Decomposition-Reconstruction-Optimization-Integration (DROI) framework, coupled with an econometric breakpoint test, to evaluate forecasting performance across distinct time segments of Spanish electricity price data. The framework employs CEEMDAN for signal decomposition, decomposing complex price sequences into intrinsic mode functions to retain essential features while mitigating noise, followed by frequency-based data reconstruction; integrates the Improved Sparrow Search Algorithm (ISSA) to optimize initial model parameters, minimizing errors induced by subjective factors; and leverages Convolutional Neural Networks (CNN) for frequency-domain feature extraction, enhanced by an attention mechanism to weight channels and prioritize critical attributes, paired with Long Short-Term Memory (LSTMs) for temporal sequence forecasting. Experimental results validate the method’s robustness in both interval forecasting (IPCP = 100% and IPNAW is the smallest, Experiment 1.3) and point forecasting tasks (MAPE = 1.3758%, Experiment 1.1), outperforming naive approaches in processing stationary sequence clusters and demonstrating substantial economic utility to inform sustainable power system management. Full article
(This article belongs to the Special Issue Energy Price Forecasting and Sustainability on Energy Transition)
Show Figures

Figure 1

28 pages, 3961 KB  
Article
Electricity Price Volatility and the Performance of Machine Learning Forecasting Models in European Energy Markets
by Alicja Ganczarek-Gamrot, Anna Gorczyca-Goraj, Karol Pilot and Krzysztof Kania
Energies 2025, 18(24), 6535; https://doi.org/10.3390/en18246535 - 13 Dec 2025
Viewed by 594
Abstract
Electricity is fundamental to the functioning of modern economies, yet its price volatility presents significant challenges for both long-term investment planning and short-term operational decision-making. In this study we examine electricity price dynamics across seven diverse European bidding zones, selected through principal component [...] Read more.
Electricity is fundamental to the functioning of modern economies, yet its price volatility presents significant challenges for both long-term investment planning and short-term operational decision-making. In this study we examine electricity price dynamics across seven diverse European bidding zones, selected through principal component analysis to reflect a broad spectrum of energy mix characteristics. The analysis explores the relationship between the structure of national energy mixes—classified according to the controllability of generation sources—and the volatility and predictability of electricity prices during 2023–2024. Using ENTSO-E data, adaptive machine learning models were developed to forecast day-ahead electricity prices, with the Random Forest algorithm consistently achieving the highest predictive accuracy. The results indicate that bidding zones dominated by low-controllability renewable generation exhibit greater price volatility and reduced forecast accuracy, whereas zones with a higher share of controllable sources, such as natural gas, demonstrate more stable prices and improved model performance. These findings underscore the crucial role of the energy mix composition in shaping market dynamics and highlight the necessity of adopting adaptive, mix-sensitive forecasting methodologies in increasingly diversified electricity systems. Full article
Show Figures

Figure 1

17 pages, 984 KB  
Article
A Multi-Agent Closed-Loop Decision-Making Framework for Joint Forecasting and Bidding in Electricity Spot Markets
by Shicheng Zhang, Wangli Deng, Yuqin Zhang, Zhijun Jing, Ning Guo, Jianyu Yu, Bo Wang and Mei Liao
Energies 2025, 18(24), 6486; https://doi.org/10.3390/en18246486 - 11 Dec 2025
Viewed by 308
Abstract
With increasing renewable energy integration, electricity spot markets exhibit high volatility and uncertainty, making it difficult to balance profit and risk. To address this challenge, this paper proposes Joint (Version 1.0), a multi-agent closed-loop framework that integrates forecasting, strategy, and feedback for coordinated [...] Read more.
With increasing renewable energy integration, electricity spot markets exhibit high volatility and uncertainty, making it difficult to balance profit and risk. To address this challenge, this paper proposes Joint (Version 1.0), a multi-agent closed-loop framework that integrates forecasting, strategy, and feedback for coordinated decision-making. The Prediction Agent learns statistical patterns of price spreads to generate distributional forecasts, directional probabilities, and extreme-value indicators; the Strategy Agent adaptively maps these signals into executable bidding ratios through a hybrid mechanism; and the Feedback Agent incorporates settlement results for performance evaluation, CVaR-based risk control, and preference-driven optimization. These agents form a dynamic “forecast–strategy–feedback” loop enabling self-improving trading. Experimental results show that Joint achieves a monthly profit of 146,933.46 CNY with strong classification performance (Precision = 53.25%, Recall = 40.45%, AA = 56.05%, SWA = 57.36%), and the complete model in ablation experiments reaches 157,746.64 CNY, demonstrating the indispensable contributions of each component and confirming its robustness and practical value in volatile electricity spot markets. Full article
Show Figures

Figure 1

Back to TopTop