Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (851)

Search Parameters:
Keywords = energy of graphs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 438 KiB  
Article
Analytic Solutions and Conservation Laws of a 2D Generalized Fifth-Order KdV Equation with Power Law Nonlinearity Describing Motions in Shallow Water Under a Gravity Field of Long Waves
by Chaudry Masood Khalique and Boikanyo Pretty Sebogodi
AppliedMath 2025, 5(3), 96; https://doi.org/10.3390/appliedmath5030096 (registering DOI) - 31 Jul 2025
Abstract
The Korteweg–de Vries (KdV) equation is a nonlinear evolution equation that reflects a wide variety of dispersive wave occurrences with limited amplitude. It has also been used to describe a range of major physical phenomena, such as shallow water waves that interact weakly [...] Read more.
The Korteweg–de Vries (KdV) equation is a nonlinear evolution equation that reflects a wide variety of dispersive wave occurrences with limited amplitude. It has also been used to describe a range of major physical phenomena, such as shallow water waves that interact weakly and nonlinearly, acoustic waves on a crystal lattice, lengthy internal waves in density-graded oceans, and ion acoustic waves in plasma. The KdV equation is one of the most well-known soliton models, and it provides a good platform for further research into other equations. The KdV equation has several forms. The aim of this study is to introduce and investigate a (2+1)-dimensional generalized fifth-order KdV equation with power law nonlinearity (gFKdVp). The research methodology employed is the Lie group analysis. Using the point symmetries of the gFKdVp equation, we transform this equation into several nonlinear ordinary differential equations (ODEs), which we solve by employing different strategies that include Kudryashov’s method, the (G/G) expansion method, and the power series expansion method. To demonstrate the physical behavior of the equation, 3D, density, and 2D graphs of the obtained solutions are presented. Finally, utilizing the multiplier technique and Ibragimov’s method, we derive conserved vectors of the gFKdVp equation. These include the conservation of energy and momentum. Thus, the major conclusion of the study is that analytic solutions and conservation laws of the gFKdVp equation are determined. Full article
Show Figures

Figure 1

17 pages, 424 KiB  
Article
HyMePre: A Spatial–Temporal Pretraining Framework with Hypergraph Neural Networks for Short-Term Weather Forecasting
by Fei Wang, Dawei Lin, Baojun Chen, Guodong Jing, Yi Geng, Xudong Ge, Daoming Wei and Ning Zhang
Appl. Sci. 2025, 15(15), 8324; https://doi.org/10.3390/app15158324 (registering DOI) - 26 Jul 2025
Viewed by 217
Abstract
Accurate short-term weather forecasting plays a vital role in disaster response, agriculture, and energy management, where timely and reliable predictions are essential for decision-making. Graph neural networks (GNNs), known for their ability to model complex spatial structures and relational data, have achieved remarkable [...] Read more.
Accurate short-term weather forecasting plays a vital role in disaster response, agriculture, and energy management, where timely and reliable predictions are essential for decision-making. Graph neural networks (GNNs), known for their ability to model complex spatial structures and relational data, have achieved remarkable success in meteorological forecasting by effectively capturing spatial dependencies among distributed weather stations. However, most existing GNN-based approaches rely on pairwise station connections, limiting their capacity to represent higher-order spatial interactions. Moreover, their dependence on supervised learning makes them vulnerable to spatial heterogeneity and temporal non-stationarity. This paper introduces a novel spatial–temporal pretraining framework, Hypergraph-enhanced Meteorological Pretraining (HyMePre), which combines hypergraph neural networks with self-supervised learning to model high-order spatial dependencies and improve generalization across diverse climate regimes. HyMePre employs a two-stage masking strategy, applying spatial and temporal masking separately, to learn disentangled representations from unlabeled meteorological time series. During forecasting, dynamic hypergraphs group stations based on meteorological similarity, explicitly capturing high-order dependencies. Extensive experiments on large-scale reanalysis datasets show that HyMePre outperforms conventional GNN models in predicting temperature, humidity, and wind speed. The integration of pretraining and hypergraph modeling enhances robustness to noisy data and improves generalization to unseen climate patterns, offering a scalable and effective solution for operational weather forecasting. Full article
Show Figures

Figure 1

37 pages, 1895 KiB  
Review
A Review of Artificial Intelligence and Deep Learning Approaches for Resource Management in Smart Buildings
by Bibars Amangeldy, Timur Imankulov, Nurdaulet Tasmurzayev, Gulmira Dikhanbayeva and Yedil Nurakhov
Buildings 2025, 15(15), 2631; https://doi.org/10.3390/buildings15152631 - 25 Jul 2025
Viewed by 455
Abstract
This comprehensive review maps the fast-evolving landscape in which artificial intelligence (AI) and deep-learning (DL) techniques converge with the Internet of Things (IoT) to manage energy, comfort, and sustainability across smart environments. A PRISMA-guided search of four databases retrieved 1358 records; after applying [...] Read more.
This comprehensive review maps the fast-evolving landscape in which artificial intelligence (AI) and deep-learning (DL) techniques converge with the Internet of Things (IoT) to manage energy, comfort, and sustainability across smart environments. A PRISMA-guided search of four databases retrieved 1358 records; after applying inclusion criteria, 143 peer-reviewed studies published between January 2019 and April 2025 were analyzed. This review shows that AI-driven controllers—especially deep-reinforcement-learning agents—deliver median energy savings of 18–35% for HVAC and other major loads, consistently outperforming rule-based and model-predictive baselines. The evidence further reveals a rapid diversification of methods: graph-neural-network models now capture spatial interdependencies in dense sensor grids, federated-learning pilots address data-privacy constraints, and early integrations of large language models hint at natural-language analytics and control interfaces for heterogeneous IoT devices. Yet large-scale deployment remains hindered by fragmented and proprietary datasets, unresolved privacy and cybersecurity risks associated with continuous IoT telemetry, the growing carbon and compute footprints of ever-larger models, and poor interoperability among legacy equipment and modern edge nodes. The authors of researches therefore converges on several priorities: open, high-fidelity benchmarks that marry multivariate IoT sensor data with standardized metadata and occupant feedback; energy-aware, edge-optimized architectures that lower latency and power draw; privacy-centric learning frameworks that satisfy tightening regulations; hybrid physics-informed and explainable models that shorten commissioning time; and digital-twin platforms enriched by language-model reasoning to translate raw telemetry into actionable insights for facility managers and end users. Addressing these gaps will be pivotal to transforming isolated pilots into ubiquitous, trustworthy, and human-centered IoT ecosystems capable of delivering measurable gains in efficiency, resilience, and occupant wellbeing at scale. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

19 pages, 2893 KiB  
Article
Reactive Power Optimization of a Distribution Network Based on Graph Security Reinforcement Learning
by Xu Zhang, Xiaolin Gui, Pei Sun, Xing Li, Yuan Zhang, Xiaoyu Wang, Chaoliang Dang and Xinghua Liu
Appl. Sci. 2025, 15(15), 8209; https://doi.org/10.3390/app15158209 - 23 Jul 2025
Viewed by 190
Abstract
With the increasing integration of renewable energy, the secure operation of distribution networks faces significant challenges, such as voltage limit violations and increased power losses. To address the issue of reactive power and voltage security under renewable generation uncertainty, this paper proposes a [...] Read more.
With the increasing integration of renewable energy, the secure operation of distribution networks faces significant challenges, such as voltage limit violations and increased power losses. To address the issue of reactive power and voltage security under renewable generation uncertainty, this paper proposes a graph-based security reinforcement learning method. First, a graph-enhanced neural network is designed, to extract both topological and node-level features from the distribution network. Then, a primal-dual approach is introduced to incorporate voltage security constraints into the agent’s critic network, by constructing a cost critic to guide safe policy learning. Finally, a dual-critic framework is adopted to train the actor network and derive an optimal policy. Experiments conducted on real load profiles demonstrated that the proposed method reduced the voltage violation rate to 0%, compared to 4.92% with the Deep Deterministic Policy Gradient (DDPG) algorithm and 5.14% with the Twin Delayed DDPG (TD3) algorithm. Moreover, the average node voltage deviation was effectively controlled within 0.0073 per unit. Full article
(This article belongs to the Special Issue IoT Technology and Information Security)
Show Figures

Figure 1

29 pages, 9145 KiB  
Article
Ultra-Short-Term Forecasting-Based Optimization for Proactive Home Energy Management
by Siqi Liu, Zhiyuan Xie, Zhengwei Hu, Kaisa Zhang, Weidong Gao and Xuewen Liu
Energies 2025, 18(15), 3936; https://doi.org/10.3390/en18153936 - 23 Jul 2025
Viewed by 180
Abstract
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy [...] Read more.
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy that integrates advanced forecasting models with multi-objective scheduling algorithms. By leveraging deep learning techniques like Graph Attention Network (GAT) architectures, the system predicts ultra-short-term household load profiles with high accuracy, addressing the volatility of residential energy use. Then, based on the predicted data, a comprehensive consideration of electricity costs, user comfort, carbon emission pricing, and grid load balance indicators is undertaken. This study proposes an enhanced mixed-integer optimization algorithm to collaboratively optimize multiple objective functions, thereby refining appliance scheduling, energy storage utilization, and grid interaction. Case studies demonstrate that integrating photovoltaic (PV) power generation forecasting and load forecasting models into a home energy management system, and adjusting the original power usage schedule based on predicted PV output and water heater demand, can effectively reduce electricity costs and carbon emissions without compromising user engagement in optimization. This approach helps promote energy-saving and low-carbon electricity consumption habits among users. Full article
Show Figures

Figure 1

20 pages, 1901 KiB  
Article
Inverse Sum Indeg Spectrum of q-Broom-like Graphs and Applications
by Fareeha Jamal, Nafaa Chbili and Muhammad Imran
Mathematics 2025, 13(15), 2346; https://doi.org/10.3390/math13152346 - 23 Jul 2025
Viewed by 123
Abstract
A graph with q(a+t) vertices is known as a q-broom-like graph KqB(a;t), which is produced by the hierarchical product of the complete graph Kq by the rooted [...] Read more.
A graph with q(a+t) vertices is known as a q-broom-like graph KqB(a;t), which is produced by the hierarchical product of the complete graph Kq by the rooted broom B(a;t), where q3,a1 and t1. A numerical quantity associated with graph structure is called a topological index. The inverse sum indeg index (shortened to ISI index) is a topological index defined as ISI(G)=vivjE(G)dvidvjdvi+dvj, where dvi is the degree of the vertex vi. In this paper, we take into consideration the ISI index for q-broom-like graphs and perform a thorough analysis of it. We find the ISI spectrum of q-broom-like graphs and derive the closed formulas for their ISI index and ISI energy. We also characterize extremal graphs and arrange them according to their ISI index and ISI energy, respectively. Further, a quantitative structure–property relationship is used to predict six physicochemical properties of sixteen alkaloid structures using ISI index and ISI energy. Both graph invariants have significant correlation values, indicating the accuracy and utility of the findings. The conclusions made in this article can help chemists and pharmacists research alkaloids’ structures for applications in industry, pharmacy, agriculture, and daily life. Full article
(This article belongs to the Special Issue Advances in Combinatorics, Discrete Mathematics and Graph Theory)
Show Figures

Figure 1

16 pages, 3775 KiB  
Article
Optimizing Energy Efficiency in Last-Mile Delivery: A Collaborative Approach with Public Transportation System and Drones
by Pierre Romet, Charbel Hage, El-Hassane Aglzim, Tonino Sophy and Franck Gechter
Drones 2025, 9(8), 513; https://doi.org/10.3390/drones9080513 - 22 Jul 2025
Viewed by 300
Abstract
Accurately estimating the energy consumption of unmanned aerial vehicles (UAVs) in real-world delivery scenarios remains a critical challenge, particularly when UAVs operate in complex urban environments and are coupled with public transportation systems. Most existing models rely on oversimplified assumptions or static mission [...] Read more.
Accurately estimating the energy consumption of unmanned aerial vehicles (UAVs) in real-world delivery scenarios remains a critical challenge, particularly when UAVs operate in complex urban environments and are coupled with public transportation systems. Most existing models rely on oversimplified assumptions or static mission profiles, limiting their applicability to realistic, scalable drone-based logistics. In this paper, we propose a physically-grounded and scenario-aware energy sizing methodology for UAVs operating as part of a last-mile delivery system integrated with a city’s bus network. The model incorporates detailed physical dynamics—including lift, drag, thrust, and payload variations—and considers real-time mission constraints such as delivery execution windows and infrastructure interactions. To enhance the realism of the energy estimation, we integrate computational fluid dynamics (CFD) simulations that quantify the impact of surrounding structures and moving buses on UAV thrust efficiency. Four mission scenarios of increasing complexity are defined to evaluate the effects of delivery delays, obstacle-induced aerodynamic perturbations, and early return strategies on energy consumption. The methodology is applied to a real-world transport network in Belfort, France, using a graph-based digital twin. Results show that environmental and operational constraints can lead to up to 16% additional energy consumption compared to idealized mission models. The proposed framework provides a robust foundation for UAV battery sizing, mission planning, and sustainable integration of aerial delivery into multimodal urban transport systems. Full article
(This article belongs to the Special Issue Urban Air Mobility Solutions: UAVs for Smarter Cities)
Show Figures

Figure 1

21 pages, 1910 KiB  
Article
Optimizing Residential Electricity Demand with Bipartite Models for Enhanced Demand Response
by Jonathan Campoverde, Marcelo Garcia Torres and Luis Tipan
Energies 2025, 18(14), 3819; https://doi.org/10.3390/en18143819 - 17 Jul 2025
Cited by 1 | Viewed by 285
Abstract
This study presents an advanced energy demand management approach within residential microgrids using bipartite models for optimal demand response. The methodology relies on linear programming, specifically the Simplex algorithm, to optimize power distribution while minimizing costs. The model aims to reduce residential energy [...] Read more.
This study presents an advanced energy demand management approach within residential microgrids using bipartite models for optimal demand response. The methodology relies on linear programming, specifically the Simplex algorithm, to optimize power distribution while minimizing costs. The model aims to reduce residential energy consumption by flattening the demand curve through demand response programs. Additionally, the Internet of Things (IoT) is integrated as a communication channel to ensure efficient energy management without compromising user comfort. The research evaluates energy resource allocation using bipartite graphs, modeling the generation of energy from renewable and conventional high-efficiency sources. Various case studies analyze scenarios with and without market constraints, assessing the impact of demand response at different levels (5%, 10%, 15%, and 20%). Results demonstrate a significant reduction in reliance on external grids, with optimized energy distribution leading to potential cost savings for consumers. The findings suggest that intelligent demand response strategies can enhance microgrid efficiency, supporting sustainability and reducing carbon footprints. Full article
Show Figures

Figure 1

23 pages, 6122 KiB  
Article
Theoretical DFT Analysis of a Polyacrylamide/Amylose Copolymer for the Removal of Cd(II), Hg(II), and Pb(II) from Aqueous Solutions
by Joaquin Hernandez-Fernandez, Yuly Maldonado-Morales, Rafael Gonzalez-Cuello, Ángel Villabona-Ortíz and Rodrigo Ortega-Toro
Polymers 2025, 17(14), 1943; https://doi.org/10.3390/polym17141943 - 16 Jul 2025
Viewed by 330
Abstract
This study theoretically investigates the potential of a polyacrylamide copolymerized with amylose, a primary component of starch, to evaluate its efficiency in removing heavy metals from industrial wastewater. This material concept seeks to combine the high adsorption capacity of polyacrylamide with the low [...] Read more.
This study theoretically investigates the potential of a polyacrylamide copolymerized with amylose, a primary component of starch, to evaluate its efficiency in removing heavy metals from industrial wastewater. This material concept seeks to combine the high adsorption capacity of polyacrylamide with the low cost and biodegradability of starch, ultimately aiming to offer an economical, efficient, and sustainable alternative for wastewater treatment. To this end, a computational model based on density functional theory (DFT) was developed, utilizing the B3LYP functional with the 6-311++G(d,p) basis set, a widely recognized combination that strikes a balance between accuracy and computational cost. The interactions between an acrylamide-amylose (AM/Amy) polymer matrix, as well as the individual polymers (AM and Amy), and the metal ions Pb, Hg, and Cd in their hexahydrated form (M·6H2O) were analyzed. This modeling approach, where M represents any of these metals, simulates a realistic aqueous environment around the metal ion. Molecular geometries were optimized, and key parameters such as total energy, dipole moment, frontier molecular orbital (HOMO-LUMO) energy levels, and Density of States (DOS) graphs were calculated to characterize the stability and electronic reactivity of the molecules. The results indicate that this proposed copolymer, through its favorable electronic properties, exhibits a high adsorption capacity for metal ions such as Pb and Cd, positioning it as a promising material for environmental applications. Full article
(This article belongs to the Special Issue Functional Polymer Materials for Efficient Adsorption of Pollutants)
Show Figures

Figure 1

27 pages, 2276 KiB  
Review
Fault Detection of Li–Ion Batteries in Electric Vehicles: A Comprehensive Review
by Heng Li, Hamza Shaukat, Ren Zhu, Muaaz Bin Kaleem and Yue Wu
Sustainability 2025, 17(14), 6322; https://doi.org/10.3390/su17146322 - 10 Jul 2025
Viewed by 700
Abstract
Lithium–ion (Li–ion) batteries are fundamental for advancing intelligent and sustainable transportation, particularly in electric vehicles, due to their long lifespan, high energy density, and strong power efficiency. Ensuring the safety and reliability of EV batteries remains a critical challenge, as undetected faults can [...] Read more.
Lithium–ion (Li–ion) batteries are fundamental for advancing intelligent and sustainable transportation, particularly in electric vehicles, due to their long lifespan, high energy density, and strong power efficiency. Ensuring the safety and reliability of EV batteries remains a critical challenge, as undetected faults can lead to hazardous failures or gradual performance degradation. While numerous studies have addressed battery fault detection, most existing reviews adopt isolated perspectives, often overlooking interdisciplinary and intelligent approaches. This paper presents a comprehensive review of advanced battery fault detection using modern machine learning, deep learning, and hybrid methods. It also discusses the pressing challenges in the field, including limited fault data, real-time processing constraints, model adaptability across battery types, and the need for explainable AI. Furthermore, emerging AI approaches such as transformers, graph neural networks, physics-informed models, edge computing, and large language models present new opportunities for intelligent and scalable battery fault detection. Looking ahead, these frameworks, combined with AI-driven strategies, can enhance diagnostic precision, extend battery life, and strengthen safety while enabling proactive fault prevention and building trust in EV systems. Full article
Show Figures

Figure 1

17 pages, 4316 KiB  
Article
A Coverage Path Planning Method with Energy Optimization for UAV Monitoring Tasks
by Zhengqiang Xiong, Chang Han, Xiaoliang Wang and Li Gao
J. Low Power Electron. Appl. 2025, 15(3), 39; https://doi.org/10.3390/jlpea15030039 - 9 Jul 2025
Viewed by 265
Abstract
Coverage path planning solves the problem of moving an effector over all points within a specific region with effective routes. Most existing studies focus on geometric constraints, often overlooking robot-specific features, like the available energy, weight, maximum speed, sensor resolution, etc. This paper [...] Read more.
Coverage path planning solves the problem of moving an effector over all points within a specific region with effective routes. Most existing studies focus on geometric constraints, often overlooking robot-specific features, like the available energy, weight, maximum speed, sensor resolution, etc. This paper proposes a coverage path planning algorithm for Unmanned Aerial Vehicles (UAVs) that minimizes energy consumption while satisfying a set of other requirements, such as coverage and observation resolution. To deal with these issues, we propose a novel energy-optimal coverage path planning framework for monitoring tasks. Firstly, the 3D terrain’s spatial characteristics are digitized through a combination of parametric modeling and meshing techniques. To accurately estimate actual energy expenditure along a segmented trajectory, a power estimation module is introduced, which integrates dynamic feasibility constraints into the energy computation. Utilizing a Digital Surface Model (DSM), a global energy consumption map is generated by constructing a weighted directed graph over the terrain. Subsequently, an energy-optimal coverage path is derived by applying a Genetic Algorithm (GA) to traverse this map. Extensive simulation results validate the superiority of the proposed approach compared to existing methods. Full article
Show Figures

Figure 1

24 pages, 3113 KiB  
Article
Optimization of Airflow Distribution in Mine Ventilation Networks Using the MOBWO Algorithm
by Qian Sun and Yi Wang
Processes 2025, 13(7), 2193; https://doi.org/10.3390/pr13072193 - 9 Jul 2025
Viewed by 322
Abstract
With the increasing complexity of mine ventilation networks, the difficulty of regulating ventilation systems has significantly increased. Lagging regulatory responses are prone to causing problems such as airflow turbulence and insufficient air supply in air-required areas, which seriously threaten the safety of underground [...] Read more.
With the increasing complexity of mine ventilation networks, the difficulty of regulating ventilation systems has significantly increased. Lagging regulatory responses are prone to causing problems such as airflow turbulence and insufficient air supply in air-required areas, which seriously threaten the safety of underground operations. To address this challenge, this paper introduces the MOBWO algorithm into the field of ventilation system air volume optimization and proposes a mine air volume optimization and regulation method based on MOBWO. This paper constructs a multi-objective air volume optimization model with the total power of ventilators and the complexity of air pressure regulation as the optimization objectives. Using indicators such as GD and IGD, it compares the performance of the MOBWO algorithm with mainstream optimization algorithms such as NSGA-II and MOPSO and verifies the practicality of the optimization method with the case of the Jinhua Palace Mine. The results show that the MOBWO algorithm has significant advantages over other algorithms in terms of convergence and distribution performance. When applied to the Jinhua Palace Mine, the air volume optimization and regulation using MOBWO can reduce the power of ventilators by 10.3–21.1% compared with that before optimization while reducing the complexity of air volume regulation and the time loss during air volume regulation. This method not only reduces the energy consumption of ventilators but also shortens the regulation timeliness of the ventilation system, which is of great significance for reducing the probability of accidents and ensuring the safety of personnel’s lives and property. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

14 pages, 590 KiB  
Article
Detection and Identification of Degradation Root Causes in a Photovoltaic Cell Based on Physical Modeling and Deep Learning
by Mohand Djeziri, Ndricim Ferko, Marc Bendahan, Hiba Al Sheikh and Nazih Moubayed
Appl. Sci. 2025, 15(14), 7684; https://doi.org/10.3390/app15147684 - 9 Jul 2025
Viewed by 275
Abstract
Photovoltaic (PV) systems are key renewable energy sources due to their ease of implementation, scalability, and global solar availability. Enhancing their lifespan and performance is vital for wider adoption. Identifying degradation root causes is essential for improving PV design and maintenance, thus extending [...] Read more.
Photovoltaic (PV) systems are key renewable energy sources due to their ease of implementation, scalability, and global solar availability. Enhancing their lifespan and performance is vital for wider adoption. Identifying degradation root causes is essential for improving PV design and maintenance, thus extending lifespan. This paper proposes a hybrid fault diagnosis method combining a bond graph-based PV cell model with empirical degradation models to simulate faults, and a deep learning approach for root-cause detection. The experimentally validated model simulates degradation effects on measurable variables (voltage, current, ambient, and cell temperatures). The resulting dataset trains an Optimized Feed-Forward Neural Network (OFFNN), achieving 75.43% accuracy in multi-class classification, which effectively identifies degradation processes. Full article
Show Figures

Figure 1

17 pages, 4414 KiB  
Article
Mechanical Characteristics of 26H2MF and St12T Steels Under Torsion at Elevated Temperatures
by Waldemar Dudda
Materials 2025, 18(13), 3204; https://doi.org/10.3390/ma18133204 - 7 Jul 2025
Viewed by 263
Abstract
The concept of “material effort” appears in continuum mechanics wherever the response of a material to the currently existing state of loads and boundary conditions loses its previous, predictable character. However, within the material, which still descriptively remains a continuous medium, new physical [...] Read more.
The concept of “material effort” appears in continuum mechanics wherever the response of a material to the currently existing state of loads and boundary conditions loses its previous, predictable character. However, within the material, which still descriptively remains a continuous medium, new physical structures appear and new previously unused physical features of the continuum are activated. The literature is dominated by a simplified way of thinking, which assumes that all these states can be characterized and described by one and the same measure of effort—for metals it is the Huber–Mises–Hencky equivalent stress. Quantitatively, perhaps 90% of the literature is dedicated to this equivalent stress. The remaining authors, as well as the author of this paper, assume that there is no single universal measure of effort that would “fit” all operating conditions of materials. Each state of the structure’s operation may have its own autonomous measure of effort, which expresses the degree of threat from a specific destruction mechanism. In the current energy sector, we are increasingly dealing with “low-cycle thermal fatigue states”. This is related to the fact that large, difficult-to-predict renewable energy sources have been added. Professional energy based on coal and gas units must perform many (even about 100 per year) starts and stops, and this applies not only to the hot state, but often also to the cold state. The question arises as to the allowable shortening of start and stop times that would not to lead to dangerous material effort, and whether there are necessary data and strength characteristics for heat-resistant steels that allow their effort to be determined not only in simple states, but also in complex stress states. Do these data allow for the description of the material’s yield surface? In a previous publication, the author presented the results of tension and compression tests at elevated temperatures for two heat-resistant steels: St12T and 26H2MF. The aim of the current work is to determine the properties and strength characteristics of these steels in a pure torsion test at elevated temperatures. This allows for the analysis of the strength of power turbine components operating primarily on torsion and for determining which of the two tested steels is more resistant to high temperatures. In addition, the properties determined in all three tests (tension, compression, torsion) will allow the determination of the yield surface of these steels at elevated temperatures. They are necessary for the strength analysis of turbine elements in start-up and shutdown cycles, in states changing from cold to hot and vice versa. A modified testing machine was used for pure torsion tests. It allowed for the determination of the sample’s torsion moment as a function of its torsion angle. The experiments were carried out at temperatures of 20 °C, 200 °C, 400 °C, 600 °C, and 800 °C for St12T steel and at temperatures of 20 °C, 200 °C, 400 °C, 550 °C, and 800 °C for 26H2MF steel. Characteristics were drawn up for each sample and compared on a common graph corresponding to the given steel. Based on the methods and relationships from the theory of strength, the yield stress and torsional strength were determined. The yield stress of St12T steel at 600 °C was 319.3 MPa and the torsional strength was 394.4 MPa. For 26H2MH steel at 550 °C, the yield stress was 311.4 and the torsional strength was 382.8 MPa. St12T steel was therefore more resistant to high temperatures than 26H2MF. The combined data from the tension, compression, and torsion tests allowed us to determine the asymmetry and plasticity coefficients, which allowed us to model the yield surface according to the Burzyński criterion as a function of temperature. The obtained results also allowed us to determine the parameters of the Drucker-Prager model and two of the three parameters of the Willam-Warnke and Menetrey-Willam models. The research results are a valuable contribution to the design and diagnostics of power turbine components. Full article
Show Figures

Figure 1

17 pages, 4198 KiB  
Article
Integrated Operational Planning of Battery Storage Systems for Improved Efficiency in Residential Community Energy Management Using Multistage Stochastic Dual Dynamic Programming: A Finnish Case Study
by Pattanun Chanpiwat, Fabricio Oliveira and Steven A. Gabriel
Energies 2025, 18(13), 3560; https://doi.org/10.3390/en18133560 - 6 Jul 2025
Viewed by 718
Abstract
This study introduces a novel approach for optimizing residential energy systems by combining linear policy graphs with stochastic dual dynamic programming (SDDP) algorithms. Our method optimizes residential solar power generation and battery storage systems, reducing costs through strategic charging and discharging patterns. Using [...] Read more.
This study introduces a novel approach for optimizing residential energy systems by combining linear policy graphs with stochastic dual dynamic programming (SDDP) algorithms. Our method optimizes residential solar power generation and battery storage systems, reducing costs through strategic charging and discharging patterns. Using stylized test data, we evaluate battery storage optimization strategies by comparing various SDDP model configurations against a linear programming (LP) benchmark model. The SDDP optimization framework demonstrates robust performance in battery operation management, efficiently handling diverse pricing scenarios while maintaining computational efficiency. Our analysis reveals that the SDDP model achieves positive financial returns with small-scale battery installations, even in scenarios with limited photovoltaic generation capacity. The results confirm both the economic viability and environmental benefits of residential solar–battery systems through two key strategies: aligning battery charging with renewable energy availability and shifting energy consumption away from peak periods. The SDDP framework proves effective in managing battery operations across dynamic pricing scenarios, achieving performance comparable to LP methods while handling uncertainties in PV generation, consumption, and pricing. Full article
Show Figures

Figure 1

Back to TopTop