Detection and Identification of Degradation Root Causes in a Photovoltaic Cell Based on Physical Modeling and Deep Learning
Abstract
1. Introduction
2. Modeling and Degradation Simulation
2.1. Elementary Cell Model
2.2. Model Validation
2.3. Degradation Models
2.4. Simulation Assumptions and Reproducibility
3. Root-Cause Detection and Identification Algorithm
3.1. Classification Pipeline
3.2. Implementation and Training Details
4. Results and Discussion
4.1. Overall Classification Performance
4.2. Class-Wise Performance, Dataset Limitations, and Interpretability
4.3. Comparison with Related Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PV | Photovoltaic |
LID | Light Induced Degradation |
EVA | Ethylene-Vinyl Acetate |
OFFNN | Optimized Feed-Forward Neural Network |
PCA | Principal Component Analysis |
SVM | Support Vector Machine |
PID | Potential Induced Degradation |
GA | Genetic Algorithm |
Appendix A. Bond Graph Methodology
- Behavior Elements:
- -
- R-element (resistance): Models dissipative effects (e.g., thermal resistance, electrical resistors).
- -
- C-element (capacitance): Represents storage (e.g., thermal mass, capacitance).
- -
- I-element (inertia): Captures inertial effects (rare in PV modeling here).
- Junction Elements:
- -
- 0-junction: Enforces equal effort (e.g., voltage in parallel circuits), summing flows (e.g., currents).
- -
- 1-junction: Enforces equal flow (e.g., current in series), summing efforts (e.g., voltages).
- -
- (transformer), (gyrator): Convert energy between domains.
Appendix B. Supporting Material: Detailed Models
Appendix B.1. Thermal Model Equations
Appendix B.2. Electro-Thermal Model Equations
Appendix B.3. Degradation Models
References
- Li, B.; Delpha, C.; Migan-Dubois, A.; Diallo, D. Fault diagnosis of photovoltaic panels using full I–V characteristics and machine learning techniques. Energy Convers. Manag. 2021, 248, 114785. [Google Scholar]
- Lu, X.; Lina, P.; Cheng, S.; Fang, G.; He, X.; Chen, Z.; Wu, L. Fault diagnosis model for photovoltaic array using a dual-channels convolutional neural network with a feature selection structure. Energy Convers. Manag. 2021, 248, 114777. [Google Scholar]
- Hong, Y.-Y.; Pula, R.A. Methods of photovoltaic fault detection and classification: A review. Energy Rep. 2022, 8, 5898–5929. [Google Scholar]
- Li, B.; Delpha, C.; Diallo, D.; Migan-Dubois, A. Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review. Renew. Sustain. Energy Rev. 2021, 138, 110512. [Google Scholar]
- Hajji, M.; Harkat, M.-F.; Kouadri, A.; Abodayeh, K.; Mansouri, M.; Nounou, H.; Nounou, M. Multivariate feature extraction based supervised machine learning for fault detection and diagnosis in photovoltaic systems. Eur. J. Control 2021, 59, 313–321. [Google Scholar]
- Sopori, B.; Basnyat, P.; Devayajanam, S.; Shet, S.; Mehta, V.; Binns, J.; Appel, J. Understanding light-induced degradation of c-Si solar cells. In Proceedings of the 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 3–8 June 2012; pp. 587–615. [Google Scholar]
- Damiani, B.; Nakayashiki, K.; Kim, D.S.; Yelundur, V.; Ostapenko, S.; Tarasov, I.; Rohatgi, A. Light induced degradation in promising multi-crystalline silicon materials for solar cell fabrication. In Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 11–18 May 2003; pp. 1483–1510. [Google Scholar]
- Fuentes-Morales, R.F.; Diaz-Ponce, A.; Cruz, M.I.P.; Rodrigo, P.M.; Valentin-Coronado, L.M.; Martell-Chavez, F.; Pineda-Arellano, C.A. Control algorithms applied to active solar tracking systems: A review. Sol. Energy 2020, 212, 203–219. [Google Scholar]
- Logerais, P.-O.; Riou, O.; Doumane, R.; Balistrou, M.; Durastanti, J.-F. Étude par simulation de l’influence du vieillissement et des conditions climatiques sur la production électrique d’un module photovoltaïque. In Proceedings of the JiTH 2013, Marrakesh, Morocco, 13–15 November 2013. [Google Scholar]
- Pern, F.J. Factors that affect the EVA encapsulant discoloration rate upon accelerated exposure. Sol. Energy Mater. Sol. Cells 1996, 41–42, 587–615. [Google Scholar]
- Braisaz, B.; Duchayne, C.; Van Iseghem, M.; Khalid, R. PV aging model applied to several meteorological conditions. In Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC 2014), Amsterdam, The Netherlands, 22–26 September 2014. [Google Scholar]
- Papargyri, L.; Papanastasiou, P.; Georghiou, G.E. Effect of materials and design on PV cracking under mechanical loading. Renew. Energy 2022, 199, 433–444. [Google Scholar]
- Karnopp, D.; Margolis, D.; Rosenberg, R. System Dynamics: Modeling, Simulation, and Control of Mechatronic Systems, 5th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Kononenko, I. Estimating attributes: Analysis and extensions of RELIEF. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1994; pp. 171–182. [Google Scholar]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar]
- Ciulla, G.; Brano, V.L.; Di Dio, V.; Cipriani, G. A comparison of different one-diode models for the representation of I–V characteristic of a PV cell. Renew. Sustain. Energy Rev. 2014, 32, 684–696. [Google Scholar]
- Tina, G.M.; Scandura, P.F. Case study of a grid connected with a battery photovoltaic system: V-trough concentration vs. single-axis tracking. Energy Convers. Manag. 2012, 64, 569–578. [Google Scholar]
- Rosa-Clot, M.; Rosa-Clot, P.; Tina, G.M.; Scandura, P.F. Submerged photovoltaic solar panel: SP2. Renew. Energy 2010, 35, 1862–1865. [Google Scholar]
- Tina, G.M.; Scavo, F.B.; Merlo, L.; Bizzarri, F. Comparative analysis of monofacial and bifacial photovoltaic modules for floating power plants. Appl. Energy 2021, 281, 116084. [Google Scholar]
- Le, P.-T.; Tsai, H.-L.; Le, P.-L. Development and Performance Evaluation of Photovoltaic (PV) Evaluation and Fault Detection System Using Hardware-in-the-Loop Simulation for PV Applications. Micromachines 2023, 14, 674. [Google Scholar] [CrossRef]
- Paggi, M.; Corrado, M.; Rodriguez, M.A. A multi-physics and multi-scale numerical approach to microcracking and power-loss in photovoltaic modules. Compos. Struct. 2013, 95, 630–638. [Google Scholar]
- Katayama, N.; Osawa, S.; Matsumoto, S.; Nakano, T.; Sugiyama, M. Degradation and fault diagnosis of photovoltaic cells using impedance spectroscopy. Sol. Energy Mater. Sol. Cells 2019, 194, 130–136. [Google Scholar]
- Al Mahdi, H.; Leahy, P.G.; Alghoul, M.; Morrison, A.P. A Review of Photovoltaic Module Failure and Degradation Mechanisms: Causes and Detection Techniques. Solar 2024, 4, 43–82. [Google Scholar] [CrossRef]
- Buda, M.; Maki, A.; Mazurowski, M.A. A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 2018, 106, 249–259. [Google Scholar]
- Djeziri, M.A.; Djedidi, O.; Morati, N.; Seguin, J.L.; Bendahan, M.; Contaret, T. A temporal-based SVM approach for the detection and identification of pollutant gases in a gas mixture. Appl. Intell. 2022, 52, 6065–6078. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning (ICML’15), Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Urbanowicz, R.J.; Olson, R.S.; Schmitt, P.; Meeker, M.; Moore, J.H. Benchmarking relief-based feature selection methods for bioinformatics data mining. J. Biomed. Inform. 2018, 85, 168–188. [Google Scholar] [CrossRef]
- Real, E.; Moore, S.; Selle, A.; Saxena, S.; Suematsu, Y.L.; Tan, J.; Le, Q.V.; Kurakin, A. Regularized Evolution for Image Classifier Architecture Search. Proc. Aaai Conf. Artif. Intell. 2019, 33, 4780–4789. [Google Scholar]
- Prechelt, L. Early Stopping—But When? In Neural Networks: Tricks of the Trade, 2nd ed.; Montavon, G., Orr, G.B., Müller, K.-R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 53–67. [Google Scholar]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS), Long Beach, CA, USA, 4–9 December 2017; pp. 4765–4774. [Google Scholar]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should I trust you?”: Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1135–1144. [Google Scholar]
- Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; Pedreschi, D. A survey of methods for explaining black box models. ACM Comput. Surv. (Csur) 2018, 51, 93. [Google Scholar]
- Amiri, A.F.; Kichou, S.; Oudira, H.; Chouder, A.; Silvestre, S. Fault Detection and Diagnosis of a Photovoltaic System Based on Deep Learning Using the Combination of a Convolutional Neural Network (CNN) and Bidirectional Gated Recurrent Unit (Bi-GRU). Sustainability 2024, 16, 1012. [Google Scholar] [CrossRef]
- Lodhi, E.; Wang, F.-Y.; Xiong, G.; Zhu, L.; Tamir, T.S.; Rehman, W.U.; Khan, M.A. A Novel Deep Stack-Based Ensemble Learning Approach for Fault Detection and Classification in Photovoltaic Arrays. Remote Sens. 2023, 15, 1277. [Google Scholar] [CrossRef]
- Boubaker, S.; Kamel, S.; Ghazouani, N.; Mellit, A. Assessment of Machine and Deep Learning Approaches for Fault Diagnosis in Photovoltaic Systems Using Infrared Thermography. Remote Sens. 2023, 15, 1686. [Google Scholar] [CrossRef]
Degradation | Parameter | Effect | Refs. |
---|---|---|---|
Ageing | Resistance shift | [9] | |
EVA Discoloration | Transmittance loss | [10] | |
LID | Saturation current rise | [6] | |
Cracking | Leakage current increase | [12,21,22] | |
Corrosion | Interconnection degradation | [11] | |
PID | , leakage ↑ | Leakage current due to high-voltage-induced insulation breakdown | [7] |
Feature | ReliefF Score |
---|---|
0.012122590549920763 | |
0.012122590549920752 | |
Irradiance | 0.00481230342158903 |
0.0047244059597221525 | |
0.004724262104104376 |
Metric | Normal | EVA Discoloration | Cracks | LID | Corrosion |
---|---|---|---|---|---|
Precision | 0.8230 | 0.7326 | 0.7666 | 0.6811 | 0.7339 |
Recall | 0.7588 | 0.7550 | 0.7609 | 0.6893 | 0.7911 |
F1-Score | 0.7896 | 0.7436 | 0.7638 | 0.6852 | 0.7614 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djeziri, M.; Ferko, N.; Bendahan, M.; Al Sheikh, H.; Moubayed, N. Detection and Identification of Degradation Root Causes in a Photovoltaic Cell Based on Physical Modeling and Deep Learning. Appl. Sci. 2025, 15, 7684. https://doi.org/10.3390/app15147684
Djeziri M, Ferko N, Bendahan M, Al Sheikh H, Moubayed N. Detection and Identification of Degradation Root Causes in a Photovoltaic Cell Based on Physical Modeling and Deep Learning. Applied Sciences. 2025; 15(14):7684. https://doi.org/10.3390/app15147684
Chicago/Turabian StyleDjeziri, Mohand, Ndricim Ferko, Marc Bendahan, Hiba Al Sheikh, and Nazih Moubayed. 2025. "Detection and Identification of Degradation Root Causes in a Photovoltaic Cell Based on Physical Modeling and Deep Learning" Applied Sciences 15, no. 14: 7684. https://doi.org/10.3390/app15147684
APA StyleDjeziri, M., Ferko, N., Bendahan, M., Al Sheikh, H., & Moubayed, N. (2025). Detection and Identification of Degradation Root Causes in a Photovoltaic Cell Based on Physical Modeling and Deep Learning. Applied Sciences, 15(14), 7684. https://doi.org/10.3390/app15147684