Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = energy harvesting suspension

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6428 KiB  
Article
Design, Modeling, and Experimental Validation of a Hybrid Piezoelectric–Magnetoelectric Energy-Harvesting System for Vehicle Suspensions
by Hicham Mastouri, Amine Ennawaoui, Mohammed Remaidi, Erroumayssae Sabani, Meryiem Derraz, Hicham El Hadraoui and Chouaib Ennawaoui
World Electr. Veh. J. 2025, 16(4), 237; https://doi.org/10.3390/wevj16040237 - 18 Apr 2025
Cited by 1 | Viewed by 777
Abstract
The growing demand for sustainable and self-powered technologies in automotive applications has led to increased interest in energy harvesting from vehicle suspensions. Recovering mechanical energy from road-induced vibrations offers a viable solution for powering wireless sensors and autonomous electronic systems, reducing dependence on [...] Read more.
The growing demand for sustainable and self-powered technologies in automotive applications has led to increased interest in energy harvesting from vehicle suspensions. Recovering mechanical energy from road-induced vibrations offers a viable solution for powering wireless sensors and autonomous electronic systems, reducing dependence on external power sources. This study presents the design, modeling, and experimental validation of a hybrid energy-harvesting system that integrates piezoelectric and magnetoelectric effects to efficiently convert mechanical vibrations into electrical energy. A model-based systems engineering (MBSE) approach was used to optimize the system architecture, ensuring high energy conversion efficiency, durability, and seamless integration into suspension systems. The theoretical modeling of both piezoelectric and magnetoelectric energy harvesting mechanisms was developed, providing analytical expressions for the harvested power as a function of system parameters. The designed system was then fabricated and tested under controlled mechanical excitations to validate the theoretical models. Experimental results demonstrate that the hybrid system achieves a maximum power output of 16 µW/cm2 from the piezoelectric effect and 3.5 µW/cm2 from the magnetoelectric effect. The strong correlation between theoretical predictions and experimental measurements confirms the feasibility of this hybrid approach for self-powered automotive applications. Full article
Show Figures

Figure 1

54 pages, 21776 KiB  
Review
Mechanical, Thermal, and Environmental Energy Harvesting Solutions in Fully Electric and Hybrid Vehicles: Innovative Approaches and Commercial Systems
by Giuseppe Rausa, Maurizio Calabrese, Ramiro Velazquez, Carolina Del-Valle-Soto, Roberto De Fazio and Paolo Visconti
Energies 2025, 18(8), 1970; https://doi.org/10.3390/en18081970 - 11 Apr 2025
Viewed by 1576
Abstract
Energy harvesting in the automotive sector is a rapidly growing field aimed at improving vehicle efficiency and sustainability by recovering wasted energy. Various technologies have been developed to convert mechanical, thermal, and environmental energy into electrical power, reducing dependency on traditional energy sources. [...] Read more.
Energy harvesting in the automotive sector is a rapidly growing field aimed at improving vehicle efficiency and sustainability by recovering wasted energy. Various technologies have been developed to convert mechanical, thermal, and environmental energy into electrical power, reducing dependency on traditional energy sources. This manuscript provides a comprehensive review of energy harvesting applications/methodologies, aiming to trace the research lines and future developments. This work identifies the main categories of harvesting solutions, namely mechanical, thermal, and hybrid/environmental solar–wind systems; each section includes a detailed review of the technical and scientific state of the art and a comparative analysis with detailed tables, allowing the state of the art to be mapped for identification of the strengths of each solution, as well as the challenges and future developments needed to enhance the technological level. These improvements focus on energy conversion efficiency, material innovation, vehicle integration, energy savings, and environmental sustainability. The mechanical harvesting section focuses on energy recovery from vehicle vibrations, with emphasis on regenerative suspensions and piezoelectric-based solutions. Specifically, solutions applied to suspensions with electric generators can achieve power outputs of around 1 kW, while piezoelectric-based suspension systems can generate up to tens of watts. The thermal harvesting section, instead, explores methods for converting waste heat from an internal combustion engine (ICE) into electrical power, including thermoelectric generators (TEGs) and organic Rankine cycle systems (ORC). Notably, ICEs with TEGs can recover above 1 kW of power, while ICE-based ORC systems can generate tens of watts. On the other hand, TEGs integrated into braking systems can harvest a few watts of power. Then, hybrid solutions are discussed, focusing on integrated mechanical and thermal energy recovery systems, as well as solar and wind energy harvesting. Hybrid solutions can achieve power outputs above 1 kW, with the main contribution from TEGs (≈1 kW), compared to piezoelectric systems (hundreds of W). Lastly, a section on commercial solutions highlights how current scientific research meets the automotive sector’s needs, providing significant insights for future development. For these reasons, the research results aim to be guidelines for a better understanding of where future studies should focus to improve the technological level and efficiency of energy harvesting solutions in the automotive sector. Full article
(This article belongs to the Special Issue Advances in Energy Harvesting Systems)
Show Figures

Figure 1

15 pages, 5016 KiB  
Article
Performance Analysis of Seat Inertial Suspension Vibration Suppression and Energy Harvesting for Electric Commercial Vehicles
by Haiting Wang, Senlei Ma, Yu Peng and Changning Liu
World Electr. Veh. J. 2025, 16(4), 216; https://doi.org/10.3390/wevj16040216 - 5 Apr 2025
Viewed by 585
Abstract
This study examines the efficacy of a seat inertial suspension system in relation to vibration isolation and energy recovery in electric commercial vehicles. The research focuses on the structural modifications of the suspension system that arise from the incorporation of an inerter, a [...] Read more.
This study examines the efficacy of a seat inertial suspension system in relation to vibration isolation and energy recovery in electric commercial vehicles. The research focuses on the structural modifications of the suspension system that arise from the incorporation of an inerter, a novel vibration isolation component. A dynamic model of the seat inertial suspension is constructed, which includes two different structures consisting of components connected in parallel and in series. The analysis explores how the absorption of suspension parameters affects both seat comfort and the characteristics of energy harvesting. Furthermore, an optimal design methodology for the seat inertial suspension is proposed, seat comfort and energy recovery efficiency are also taken into consideration. The findings reveal that the parallel-structured seat inertial suspension system demonstrates superior overall performance. Specifically, it achieves a 36.6% reduction in seat acceleration, a 55.3% decrease in suspension working space, and an energy harvesting efficiency of 41.9%. The seat inertial suspension significantly improves occupant comfort by reducing seat acceleration, significantly reducing the amplitude of seat suspension movement, and recovering most of the seat suspension’s vibration energy, in comparison to traditional seat suspension systems. Full article
Show Figures

Figure 1

25 pages, 9193 KiB  
Review
Recent Advances in Translational Electromagnetic Energy Harvesting: A Review
by Marco Valerio Perrozzi, Mirco Lo Monaco and Aurelio Somà
Energies 2025, 18(7), 1588; https://doi.org/10.3390/en18071588 - 22 Mar 2025
Viewed by 760
Abstract
Wireless Sensor Nodes (WSNs) are becoming increasingly popular in various industrial sectors due to their capability of real-time remote monitoring of assets. Powering these devices with vibrational energy harvesters (EHs) provides multiple benefits, such as minimal maintenance and ideally infinite lifespan. Among the [...] Read more.
Wireless Sensor Nodes (WSNs) are becoming increasingly popular in various industrial sectors due to their capability of real-time remote monitoring of assets. Powering these devices with vibrational energy harvesters (EHs) provides multiple benefits, such as minimal maintenance and ideally infinite lifespan. Among the vibrational harvesters, translational electromagnetic ones (TEMEHs) are a promising solution due to their simple and reliable architecture and their ability to harvest energy at low frequencies. However, a major challenge is achieving a high power density. In this paper, recent literature about this typology of harvesters is reviewed. Different techniques to tune the resonance frequencies to the fundamental frequencies of the ambient vibrations are analyzed, such as non-linearities and multi-DOF configurations. The harvesters are classified on the basis of the suspension type, highlighting advantages and disadvantages. A final comparison is carried out in terms of NPD and FoMv, two indexes that evaluate power density in relation to size and excitation amplitudes. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

17 pages, 1090 KiB  
Article
The Possibility of Environmentally Sustainable Yield and Quality Management of Spring Wheat (Triticum aestivum L.) of the Cornetto Variety When Using Sapropel Extract
by Pavel Dmitriyev, Alexander Bykov, Ivan Zuban, Ivan Fomin, Saltanat Ismagulova, Kirill Ostrovnoy and Inna Jemaledinova
Sustainability 2024, 16(22), 9870; https://doi.org/10.3390/su16229870 - 12 Nov 2024
Cited by 1 | Viewed by 1197
Abstract
Sustainable development is one of the main directions of modern agriculture. First of all, sustainability in the agricultural sector can be achieved through the possible abandonment of traditional mineral fertilizers. Many decades of using these fertilizers have led to the degradation of arable [...] Read more.
Sustainable development is one of the main directions of modern agriculture. First of all, sustainability in the agricultural sector can be achieved through the possible abandonment of traditional mineral fertilizers. Many decades of using these fertilizers have led to the degradation of arable soils and to soil and environmental pollution. As a result, this causes reductions in yields and the environmental quality of agricultural products and affects the health of the population. An alternative to traditional mineral fertilizers may be the use of innovative organomineral fertilizers obtained from local resources. These include manure, humus, compost, sediments, etc. In recent years, fertilizers obtained from the sapropels of the bottom sediments of lakes have become widespread. Their distinctive feature is the environmental friendliness and completeness of the content of chemical elements and substances necessary for the development and growth of plants. In addition, the methods of obtaining and applying these fertilizers allow us to talk about their effectiveness in use. The range of applications of these fertilizers is diverse, from use in the form of a dry extract applied directly to the soil to the use of liquid suspensions used at various stages of processing and from pre-sowing seed treatment to watering and spraying plants at different periods of vegetation. Moreover, an important aspect is the research work on the variational use of sapropel fertilizers on different crops, with different methods of production and concentrations and at different stages of processing. This publication contains the results of a study of the effect of the obtained innovative sapropel fertilizer on productivity, wheat grain quality, and economic efficiency (Triticum aestivum L.). To identify the optimal concentration of sapropel extract, laboratory studies were carried out to determine the germination energy and germination of wheat seeds of different varieties when they were soaked in various concentrations: 0.4, 0.8, 1.2, 1.6, and 2.0 g/L. The best indicators of germination energy and germination of wheat seeds during treatment with the extract were obtained at a concentration of 1.2 g/L. The research was conducted at an accredited variety testing laboratory. A field experiment was conducted in the fields of the agrobiological station of North Kazakhstan University named after Manash Kozybayev. The treatment of the seeds was carried out by soaking them in sapropel extract to evenly distribute the substance. The scheme of the field experiment included the option of using foliar treatment with a solution of sapropel extract at the tillering stage. As a result of the application of the obtained extract in the field, environmental and socio-economic efficiency was noted. The conducted field studies note its positive effect and effectiveness on the morphological, qualitative, and quantitative indicators of the wheat harvest. In the areas where wheat seeds were pretreated, as well as where foliar treatment with the resulting sapropel suspension was carried out, the best yield indicators were revealed. In these variants of the experiment with pre-sowing and pre-sowing and foliar treatment with the sapropel extract solution, the yield was 3.63 and 3.81 tons per hectare, respectively. The introduction of sapropel extract at the stage of seed treatment before sowing, as well as foliar processing of wheat at the tillering stage, will increase the efficiency and profitability of the agricultural industry and obtain a synergistic effect in the form of socio-economic efficiency and environmental safety of production. In our opinion, this will contribute to the development of sustainable agriculture and the production of environmental products. Full article
Show Figures

Figure 1

21 pages, 13027 KiB  
Article
Valorization of Coffea arabica Wood Waste to Obtain Suspensions of Lignocellulose Microfibrils and Lignocellulose Nanofibrils (LCMF/LCNF) and Production of Eco-Friendly Films for Packaging
by Adriano Reis Prazeres Mascarenhas, Carine Setter, Mário Vanoli Scatolino, Rafael Carvalho do Lago, Felipe Gomes Batista, Dayane Targino de Medeiros, Carolina Aparecida dos Santos, Alberto Ricley do Vale, Rafael Rodolfo de Melo and Gustavo Henrique Denzin Tonoli
Forests 2024, 15(10), 1834; https://doi.org/10.3390/f15101834 - 21 Oct 2024
Cited by 1 | Viewed by 1300
Abstract
Coffee is one of the most consumed commodities globally, and its harvests generate large quantities of wood waste with low industrial value. This study aimed to explore the potential of residual Coffea arabica wood to produce lignocellulose microfibrils and lignocellulose nanofibrils (LCMF/LCNF) and [...] Read more.
Coffee is one of the most consumed commodities globally, and its harvests generate large quantities of wood waste with low industrial value. This study aimed to explore the potential of residual Coffea arabica wood to produce lignocellulose microfibrils and lignocellulose nanofibrils (LCMF/LCNF) and biodegradable films with possible application in packaging. The fibers were treated with 5% NaOH and fibrillated in an ultrarefiner until they formed a gel. The resulting suspensions were used to create films whose physical, morphological, optical, and mechanical properties were analyzed. The NaOH treatment removed extractives and exposed hemicelluloses, allowing the gel point to be reached with just seven passes through the ultrarefiner, saving energy (~4700 kWh/t). More than 65% of the fibers had diameters of less than 100 nm and little sedimentation after 8 h. The films were flexible, thin (24.5 µm), with a high density (~1100 kg/m3) and good resistance to grease, as well as a water vapor permeability of ~1230 g/m2/day, suitable for packaging bread, fruit, and vegetables. However, the higher wettability of the surface may limit its use in humid environments. The films showed moderate tensile strength (~25 MPa) but low puncture resistance (~7 N mm), making them suitable for biodegradable packaging. Full article
(This article belongs to the Special Issue Development and Performance of Wood-Based Products)
Show Figures

Figure 1

18 pages, 4164 KiB  
Article
Experimental Study of the Energy Regenerated by a Horizontal Seat Suspension System under Random Vibration
by Igor Maciejewski, Sebastian Pecolt, Andrzej Błażejewski, Bartosz Jereczek and Tomasz Krzyzynski
Energies 2024, 17(17), 4341; https://doi.org/10.3390/en17174341 - 30 Aug 2024
Cited by 1 | Viewed by 1163
Abstract
This article introduces a novel regenerative suspension system designed for active seat suspension, to reduce vibrations while recovering energy. The system employs a four-quadrant electric actuator operation model and utilizes a brushless DC motor as an actuator and an energy harvester. This motor, [...] Read more.
This article introduces a novel regenerative suspension system designed for active seat suspension, to reduce vibrations while recovering energy. The system employs a four-quadrant electric actuator operation model and utilizes a brushless DC motor as an actuator and an energy harvester. This motor, a permanent magnet synchronous type, transforms DC into three-phase AC power, serving dual purposes of vibration energy recovery and active power generation. The system’s advanced vibration control is achieved through the switching of MOSFET transistors, ensuring the suspension system meets operational criteria that contrast with traditional vibro-isolation systems, thereby reducing the negative effects of mechanical vibrations on the human body, while also lowering energy consumption. Comparative studies of the regenerative system dynamics against passive and active systems under random vibrations demonstrated its effectiveness. This research assessed the system’s performance through power spectral density and transmissibility functions, highlighting its potential to enhance energy efficiency and the psychophysical well-being of individuals subjected to mechanical vibrations. The effectiveness of the energy regeneration process under the chosen early excitation vibrations was investigated. Measurements of the motor torque in the active mode and during regenerative braking mode, and the corresponding phase currents of the motor, are presented. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

16 pages, 613 KiB  
Article
Potential Power Output from Vehicle Suspension Energy Harvesting Given Bumpy and Random-Surfaced Roads
by Hengyu Guo, Weijun Zeng, Dario Egloff, Fei Meng and Oscar Dahlsten
Sustainability 2024, 16(16), 6964; https://doi.org/10.3390/su16166964 - 14 Aug 2024
Viewed by 1783
Abstract
The energy efficiency of vehicles is a crucial challenge relating to sustainable energy preservation and regeneration methods. Regenerative breaking has proven feasible, and there is interest in whether harvesting energy from a vehicle’s suspension is similarly feasible. We here provide methods for estimating [...] Read more.
The energy efficiency of vehicles is a crucial challenge relating to sustainable energy preservation and regeneration methods. Regenerative breaking has proven feasible, and there is interest in whether harvesting energy from a vehicle’s suspension is similarly feasible. We here provide methods for estimating the amount of power that can be regenerated from the suspension for given vehicle and road parameters. We show that a reasonable road model is a generalised Gaussian process known as AR(1). Using this model, we can derive the key equation used in the ISO 8608 standard for measuring road roughness, such that the AR(1) parameters can be related to the measured road roughness data. We find that the road roughness coefficient of ISO 8608 and the diffusion coefficient of the AR(1) road are equal up to a factor. We provide an analytical expression for the maximum amount of power that can be generated for given road and car parameters, derived via Fourier analysis. We further model harvesting from large bumps using Simulink. These results help to estimate the potential power output given the measured road data. Full article
(This article belongs to the Special Issue Sustainable and Renewable Thermal Energy Systems)
Show Figures

Figure 1

29 pages, 8536 KiB  
Article
A Simulation Approach for Analysis of the Regenerative Potential of High-Speed Train Suspensions
by Haihua Wang, Xinjue Zhang, Ruichen Wang and Guosheng Feng
Energies 2024, 17(14), 3496; https://doi.org/10.3390/en17143496 - 16 Jul 2024
Viewed by 1241
Abstract
This study primarily investigates the adaptability and performance of hydraulic–electric regenerative dampers for high-speed trains by substituting conventional primary dampers with hydraulic–electric regenerative dampers. The primary objectives are to develop a detailed model of primary suspension regenerative damper (PSRD) energy conversion that incorporates [...] Read more.
This study primarily investigates the adaptability and performance of hydraulic–electric regenerative dampers for high-speed trains by substituting conventional primary dampers with hydraulic–electric regenerative dampers. The primary objectives are to develop a detailed model of primary suspension regenerative damper (PSRD) energy conversion that incorporates factors such as oil pressure loss, motor efficiency, and overall system efficiency, and to perform a comprehensive comparative analysis of vibration responses, wheel wear, comfort indices, and power generation using an integrated MATLAB and SIMPACK co-simulation platform. The results reveal that at an operational speed of 350 km/h, the dynamic responses of the carbody, bogie, wheelset, and dampers equipped with the proposed PSRD systems closely align with those of conventional primary vertical damper systems. The detailed PSRDs’ hydraulic–mechanical–electrical model effectively captures the subtleties of oil pressure fluctuations and their impacts. The wear distribution and magnitude across the vehicle remain consistent during acceleration, constant, and deceleration speeds, ensuring uniform wear characteristics. Under real-world railway operational conditions, the ride comfort metrics of vehicles fitted with regenerative dampers are comparable to those with conventional primary vertical dampers. Furthermore, each regenerative damper can generate up to 21.72 W of electrical power, achieving a generation efficiency of 45.28%. Finally, a test rig was designed and fabricated to validate the primary suspension regenerative damper (PSRD) model, showing good agreement between predicted and actual damping force and power regeneration, with results indicating a peak damping force of 12.5 kN and approximately 230 W of regenerated power. This research provides a theoretical foundation and experimental validation for implementing power regeneration mechanisms in railway transportation, demonstrating that the hydraulic–mechanical–electrical PSRD model can fulfil the performance criteria of conventional dampers while offering substantial energy harvesting capabilities. This advancement not only enhances energy efficiency but also contributes to the sustainable development of high-speed rail systems. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

16 pages, 3458 KiB  
Review
Mathematical Analysis of the Electromotive Induced Force in a Magnetically Damped Suspension
by Susana Aberturas, Juan Diego Aguilera, José Luis Olazagoitia, Miguel Ángel García and Antonio Hernando
Mathematics 2024, 12(7), 1004; https://doi.org/10.3390/math12071004 - 27 Mar 2024
Viewed by 1297
Abstract
This study explores the advanced mathematical modeling of electromagnetic energy harvesting in vehicle suspension systems, addressing the pressing need for sustainable transportation and improved energy efficiency. We focus on the complex challenge posed by the non-linear behavior of magnetic flux in relation to [...] Read more.
This study explores the advanced mathematical modeling of electromagnetic energy harvesting in vehicle suspension systems, addressing the pressing need for sustainable transportation and improved energy efficiency. We focus on the complex challenge posed by the non-linear behavior of magnetic flux in relation to displacement, a critical aspect often overlooked in conventional approaches. Utilizing Taylor expansion and Fourier analysis, we dissect the intricate relationship between oscillation and electromagnetic damping, crucial for optimizing energy recovery. Our rigorous mathematical methodology enables the precise calculation of the average power per cycle and unit mass, providing a robust metric for evaluating the effectiveness of energy harvesting. Further, the study extends to the practical application in a combined system of passive and electromagnetic suspension, demonstrating the real-world viability of our theoretical findings. This research not only offers a comprehensive solution for enhancing vehicle efficiency through advanced suspension systems but also sets a precedent for the integration of complex mathematical techniques in solving real-world engineering challenges, contributing significantly to the future of energy-efficient automotive technologies. The cases reviewed in this article and listed as references are those commonly found in the literature. Full article
Show Figures

Figure 1

16 pages, 16214 KiB  
Article
Rubber-Tracked Forwarders—Productivity and Cost Efficiency Potentials
by Mikael Lundbäck, Ola Lindroos and Martin Servin
Forests 2024, 15(2), 284; https://doi.org/10.3390/f15020284 - 2 Feb 2024
Cited by 3 | Viewed by 1581
Abstract
The extraction of timber is expensive, energy intensive, and potentially damaging to the forest soil. Machine development aims to mitigate risks for environmental impact and decrease energy consumption while maintaining or increasing cost efficiency. The development of rubber-tracked forwarders has gained renewed interest, [...] Read more.
The extraction of timber is expensive, energy intensive, and potentially damaging to the forest soil. Machine development aims to mitigate risks for environmental impact and decrease energy consumption while maintaining or increasing cost efficiency. The development of rubber-tracked forwarders has gained renewed interest, not least due to climate change leading to unreliable weather in combination with low tolerance for soil damage. The increased cost of rubber tracks compared to wheels is believed to be compensated by higher driving speed enabled by semi-active suspension. Thus, the aim of this study was to theoretically investigate how the productivity and cost efficiency of rubber-tracked forwarders are affected by variations in driving speed and machine costs. The calculations were made with fixed stand parameters, to evaluate performance in well-defined working conditions, and with parameters from 2500 final felling stands in central Sweden, to evaluate performance in varied working conditions. Scenarios were compared to a baseline corresponding to mid-sized wheeled forwarders. The results show higher productivity with the increased driving speed enabled by rubber tracks and suspension at all extraction distances, with larger differences at long extraction distances. Assuming a 15% higher machine price for the rubber-tracked forwarder and a variable cost increase proportional to speed increase, extraction costs break even with the baseline at 400 m and 700 m extraction distance for moderate and fast driving speed, respectively. Furthermore, a rubber-tracked forwarder is likely to enable access to a larger part of the harvest area during longer seasons. For the studied set of stands, the year-round accessible volumes are estimated to increase from 9% to 92% with a rubber-tracked forwarder. With rubber tracks instead of wheels, good accessibility has the potential to be combined with low soil impact and cost efficiency in a favourable way for both industry and ecosystem. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

14 pages, 4135 KiB  
Article
Dynamic Performance of a Magnetic Energy-Harvesting Suspension: Analysis and Experimental Verification
by Ran Zhou, Yuanyuan Song, Junjie Jin, Fangchao Xu, Feng Sun, Lijian Yang and Mingyin Yan
Actuators 2023, 12(8), 308; https://doi.org/10.3390/act12080308 - 27 Jul 2023
Cited by 2 | Viewed by 2864
Abstract
The advantages of the proposed novel magnetic energy-harvesting suspension (MEHS) are high safety, compact structure and convenient maintenance, compared with the previous studies. However, the force generated by the energy harvester with harvesting energy can affect the motion of the mechanical system. Therefore, [...] Read more.
The advantages of the proposed novel magnetic energy-harvesting suspension (MEHS) are high safety, compact structure and convenient maintenance, compared with the previous studies. However, the force generated by the energy harvester with harvesting energy can affect the motion of the mechanical system. Therefore, this paper aims to analyze the ride comfort and road handling of the MEHS, and investigates the dynamic performance of the MEHS. Firstly, the structure and the working principle of the MEHS are illustrated and introduced, and the dynamic mechanism of the quarter-vehicle with the MEHS is revealed and investigated. Secondly, the effects of the electromechanical coupling coefficient and external load resistance on the dynamic performance are investigated by numerical calculation. An experimental setup is established to verify the dynamic performance of the proposed MEHS. According to the experimental results, the dynamic performance of the suspension is contradictory with the increase of the external load resistance at the periodic frequency 7 Hz. And compared with the passive suspension, the dynamic performance of the MEHS is changed at various excitations, in which the sprung displacement and relative dynamic load of the tire of MEHS at the periodic frequency 3.3 Hz are reduced by 39.45% and 41.18%, respectively. Overall, the external load resistance of the proposed MEHS can be utilized to realize the variable damping of the suspension system and reduce the effect of vibration on the suspension system at the resonance frequency. And the dynamic performance has been verified in the laboratory, which lays the foundation for the dynamic analysis in a real vehicle. Full article
(This article belongs to the Special Issue Vibration Control Using Electromagnetic Actuators)
Show Figures

Figure 1

19 pages, 4980 KiB  
Article
Enhanced Energy Recovery in Magnetic Energy-Harvesting Shock Absorbers Using Soft Magnetic Materials
by Susana Aberturas, José Luis Olazagoitia, Miguel Ángel García and Antonio Hernando
Magnetochemistry 2023, 9(7), 189; https://doi.org/10.3390/magnetochemistry9070189 - 20 Jul 2023
Cited by 1 | Viewed by 2486
Abstract
In the automobile sector, energy recovery and sustainability are becoming more and more important, and energy-harvesting suspension systems (EHSAs) have a lot of promise to improve vehicle efficiency. This investigation expands on prior work that investigated the viability of an EHSA that uses [...] Read more.
In the automobile sector, energy recovery and sustainability are becoming more and more important, and energy-harvesting suspension systems (EHSAs) have a lot of promise to improve vehicle efficiency. This investigation expands on prior work that investigated the viability of an EHSA that uses permanent magnets and amorphous core coils. The performance of the proposed system is demonstrated and enhanced in the current study through the development and optimization of a prototype. A thorough testing of the prototype is performed to determine design improvements for boosting the system’s overall performance and to quantify the recovered energy. In previous work, a method was proposed to find the dependence of the magnetic flux with the relative position between the primary and secondary elements to obtain the optimal position for the system. This method is applied to optimize the energy harvesting coil by testing different configurations in terms of the placement and type of amorphous or nonamorphous core inside the energy harvesting coil. This is a crucial area of attention in order to maximize energy recovery while solving the low-frequency problem that suspension systems have (on the order of 10 Hz). Full article
(This article belongs to the Special Issue Magnetism: Energy, Recycling, Novel Materials)
Show Figures

Figure 1

21 pages, 13258 KiB  
Article
Identification Procedure for Design Optimization of Gravitational Electromagnetic Energy Harvesters
by Mirco Lo Monaco, Caterina Russo and Aurelio Somà
Appl. Sci. 2023, 13(4), 2736; https://doi.org/10.3390/app13042736 - 20 Feb 2023
Cited by 8 | Viewed by 2440
Abstract
Energy harvesting is a promising technique for supplying low-power devices as an alternative to conventional batteries. Energy harvesters can be integrated into Autonomous Internet of Things (AIoT) systems to create a wireless network of sensor nodes for real-time monitoring of assets. This paper [...] Read more.
Energy harvesting is a promising technique for supplying low-power devices as an alternative to conventional batteries. Energy harvesters can be integrated into Autonomous Internet of Things (AIoT) systems to create a wireless network of sensor nodes for real-time monitoring of assets. This paper shows a design and optimization methodology for gravitational vibration-based electromagnetic energy harvesters (GVEHs) of different sizes considering the design constraints of its real application. The configuration, analytical model, and electro-mechanical coupling of these devices are described in detail. A numerical model is developed in the Ansys Maxwell FEM environment to derive the non-linear stiffness and damping of the asymmetric magnetic suspension. Experimental laboratory tests on three harvester prototypes are compared to numerical results of dynamic simulations in MATLAB/Simulink for the validation of the proposed model through error estimation. The fully-parametric validated model is used to perform sensitivity analyses on the device’s mechanical characteristics of natural frequency and magnet equilibrium position by varying the fixed and moving magnets dimensions. The set of magnets composing the magnetic spring is chosen complying with the application design constraints of size and resonance frequency tuning. Coil parameters of length and number of turns are optimized for maximum output power generation. The optimized device simulated performances are compared to other devices in the literature in terms of NPD, a significant index that evaluates power density under different excitation amplitudes. The optimized harvester presents the highest NPD value of 2.61, achieving an improvement of 52% with respect to the best harvester amongst the three tested prototypes. Full article
(This article belongs to the Special Issue State-of-the-Art in Energy Harvesting for IoT and WSN)
Show Figures

Figure 1

22 pages, 7037 KiB  
Article
Hydraulic Integrated Interconnected Regenerative Suspension: Sensitivity Analysis and Parameter Optimization
by Sijing Guo, Liang Chen, Yu Pan, Xuxiang Wang and Gangfeng Tan
Electronics 2023, 12(4), 891; https://doi.org/10.3390/electronics12040891 - 9 Feb 2023
Cited by 9 | Viewed by 2526
Abstract
Hydraulic integrated interconnected regenerative suspension (HIIRS) is a novel suspension system that can simultaneously harvest the vibration energy in the suspension and enhance the vehicle dynamics. The parameter sensitivity of the HIIRS system is analyzed and the significant parameters are optimized in this [...] Read more.
Hydraulic integrated interconnected regenerative suspension (HIIRS) is a novel suspension system that can simultaneously harvest the vibration energy in the suspension and enhance the vehicle dynamics. The parameter sensitivity of the HIIRS system is analyzed and the significant parameters are optimized in this paper. Specifically, a half-vehicle model with the HIIRS is established. Based on the model, the parameter sensitivity of the hydraulic system is analyzed with three objectives, ride comfort, road holding, and average energy harvesting power. The parameters considered in this study are more abundant than those in previous related studies, including hydraulic cylinder inner diameter, hydraulic motor displacement, resistance, initial system pressure, and accumulator parameters. It turns out that the most sensitive parameters are the inner diameter of the hydraulic cylinder, the resistance, and the displacement of the hydraulic motor. To further study the performances that the HIIRS could present, both the single-objective optimization and the multi-objective optimization problems are solved and compared with the optimized traditional suspensions. The optimized HIIRS performs better in ride comfort and road holding than the optimized traditional suspension and anti-roll bar suspension. Different from the previous suspension optimization design, multi-objective optimization not only considers the traditional performance of the suspension but also incorporates the energy harvesting characteristics into the optimization objective. In the multi-objective optimization, a Pareto front is obtained, which shows that the ride comfort conflicts with the road holding and the energy harvesting power, while road holding and energy harvesting power did not conflict. The Pareto front shows that the optimized HIIRS is superior to the traditional suspension in ride comfort and road holding, and also harvests considerable energy. Full article
Show Figures

Figure 1

Back to TopTop