Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (613)

Search Parameters:
Keywords = energy embodied

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
48 pages, 8533 KiB  
Systematic Review
Eco-Efficient Retrofitting of Rural Heritage: A Systematic Review of Sustainable Strategies
by Stefano Bigiotti, Mariangela Ludovica Santarsiero, Anna Irene Del Monaco and Alvaro Marucci
Energies 2025, 18(15), 4065; https://doi.org/10.3390/en18154065 - 31 Jul 2025
Viewed by 168
Abstract
Through a systematic review of sustainable rural dwelling recovery, this study offers a broader reflection on retrofitting practices, viewing eco-efficiency as a means to enhance both cultural heritage and agricultural landscapes. The work is based on the assumption that vernacular architecture in rural [...] Read more.
Through a systematic review of sustainable rural dwelling recovery, this study offers a broader reflection on retrofitting practices, viewing eco-efficiency as a means to enhance both cultural heritage and agricultural landscapes. The work is based on the assumption that vernacular architecture in rural contexts embodies historical, cultural, and typological values worthy of preservation, while remaining adaptable to reuse through eco-efficient solutions and technological innovation. Using the PRISMA protocol, 115 scientific contributions were selected from 1711 initial records and classified into four macro-groups: landscape relationships; seismic and energy retrofitting; construction techniques and innovative materials; and morphological–typological analysis. Results show a predominance (over 50%) of passive design strategies, compatible materials, and low-impact techniques, while active systems are applied more selectively to protect cultural integrity. The study identifies replicable methodological models combining sustainability, cultural continuity, and functional adaptation, offering recommendations for future operational guidelines. Conscious eco-efficient retrofitting thus emerges as a strategic tool for the integrated valorization of rural landscapes and heritage. Full article
(This article belongs to the Special Issue Sustainable Building Energy and Environment: 2nd Edition)
Show Figures

Figure 1

18 pages, 4939 KiB  
Article
Decarbonizing Agricultural Buildings: A Life-Cycle Carbon Emissions Assessment of Dairy Barns
by Hui Liu, Zhen Wang, Xinyi Du, Fei Qi, Chaoyuan Wang and Zhengxiang Shi
Agriculture 2025, 15(15), 1645; https://doi.org/10.3390/agriculture15151645 - 30 Jul 2025
Viewed by 160
Abstract
The life-cycle carbon emissions (LCCE) assessment of dairy barns is crucial for identifying low-carbon transition pathways and promoting the sustainable development of the dairy industry. We applied a life cycle assessment approach integrated with building information modeling and EnergyPlus to establish a full [...] Read more.
The life-cycle carbon emissions (LCCE) assessment of dairy barns is crucial for identifying low-carbon transition pathways and promoting the sustainable development of the dairy industry. We applied a life cycle assessment approach integrated with building information modeling and EnergyPlus to establish a full life cycle inventory of the material quantities and energy consumption for dairy barns. The LCCE was quantified from the production to end-of-life stages using the carbon equivalent of dairy barns (CEDB) as the functional unit, expressed in kg CO2e head−1 year−1. A carbon emission assessment model was developed based on the “building–process–energy” framework. The LCCE of the open barn and the lower profile cross-ventilated (LPCV) barn were 152 kg CO2e head−1 year−1 and 229 kg CO2e head−1 year−1, respectively. Operational carbon emissions (OCE) accounted for the largest share of LCCE, contributing 57% and 74%, respectively. For embodied carbon emissions (ECE), the production of building materials dominated, representing 91% and 87% of the ECE, respectively. Regarding carbon mitigation strategies, the use of extruded polystyrene boards reduced carbon emissions by 45.67% compared with stone wool boards and by 36% compared with polyurethane boards. Employing a manure pit emptying system reduced carbon emissions by 76% and 74% compared to manure scraping systems. Additionally, the adoption of clean electricity resulted in a 33% reduction in OCE, leading to an overall LCCE reduction of 22% for the open barn and 26% for the LPCV barn. This study introduces the CEDB to evaluate low-carbon design strategies for dairy barns, integrating building layout, ventilation systems, and energy sources in a unified assessment approach, providing valuable insights for the low-carbon transition of agricultural buildings. Full article
Show Figures

Figure 1

38 pages, 5939 KiB  
Article
Decentralized Energy Management for Microgrids Using Multilayer Perceptron Neural Networks and Modified Cheetah Optimizer
by Zulfiqar Ali Memon, Ahmed Bilal Awan, Hasan Abdel Rahim A. Zidan and Mohana Alanazi
Processes 2025, 13(8), 2385; https://doi.org/10.3390/pr13082385 - 27 Jul 2025
Viewed by 444
Abstract
This paper presents a decentralized energy management system (EMS) based on Multilayer Perceptron Artificial Neural Networks (MLP-ANNs) and a Modified Cheetah Optimizer (MCO) to account for uncertainty in renewable generation and load demand. The proposed framework applies an MLP-ANN with Levenberg–Marquardt (LM) training [...] Read more.
This paper presents a decentralized energy management system (EMS) based on Multilayer Perceptron Artificial Neural Networks (MLP-ANNs) and a Modified Cheetah Optimizer (MCO) to account for uncertainty in renewable generation and load demand. The proposed framework applies an MLP-ANN with Levenberg–Marquardt (LM) training for high-precision forecasts of photovoltaic/wind generation, ambient temperature, and load demand, greatly outperforming traditional statistical methods (e.g., time-series analysis) and resilient backpropagation (RP) in precision. The new MCO algorithm eliminates local trapping and premature convergence issues in classical optimization methods like Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs). Simulations on a test microgrid verily demonstrate the advantages of the framework, achieving a 26.8% cost-of-operation reduction against rule-based EMSs and classical PSO/GA, and a 15% improvement in forecast accuracy using an LM-trained MLP-ANN. Moreover, demand response programs embodied in the system reduce peak loads by 7.5% further enhancing grid stability. The MLP-ANN forecasting–MCO optimization duet is an effective and cost-competitive decentralized microgrid management solution under uncertainty. Full article
Show Figures

Figure 1

26 pages, 6009 KiB  
Article
Integrated Mechanical and Eco-Economical Assessments of Fly Ash-Based Geopolymer Concrete
by Qasim Shaukat Khan, Raja Hilal Ahmad, Asad Ullah Qazi, Syed Minhaj Saleem Kazmi, Muhammad Junaid Munir and Muhammad Hassan Javed
Buildings 2025, 15(14), 2555; https://doi.org/10.3390/buildings15142555 - 20 Jul 2025
Viewed by 265
Abstract
This research evaluates the mechanical properties, environmental impacts, and cost-effectiveness of Hub Coal fly ash (FA)-based geopolymer concrete (FAGPC) as a sustainable alternative to ordinary Portland cement (OPC) concrete. This local FA has not been investigated previously. A total of 24 FAGPC mixes [...] Read more.
This research evaluates the mechanical properties, environmental impacts, and cost-effectiveness of Hub Coal fly ash (FA)-based geopolymer concrete (FAGPC) as a sustainable alternative to ordinary Portland cement (OPC) concrete. This local FA has not been investigated previously. A total of 24 FAGPC mixes were tested under both ambient and heat curing conditions, varying the molarities of sodium hydroxide (NaOH) solution (10-M, 12-M 14-M and 16-M), sodium silicate to sodium hydroxide (Na2SiO3/NaOH) ratios (1.5, 2.0, and 2.5), and alkaline activator solution to fly ash (AAS/FA) ratios (0.5 and 0.6). The test results demonstrated that increasing NaOH molarity enhances the compressive strength (CS.) by 145% under ambient curing, with a peak CS. of 32.8 MPa at 16-M NaOH, and similarly, flexural strength (FS.) increases by 90% with a maximum FS. of 6.5 MPa at 14-M NaOH. Conversely, increasing the Na2SiO3/NaOH ratio to 2.5 reduced the CS. and FS. of ambient-cured specimens by 12.5% and 10.5%, respectively. Microstructural analysis revealed that higher NaOH molarity produced a denser, more homogeneous matrix, supported by increased Si–O–Al bond formation observed through energy-dispersive X-ray spectrometry. Environmentally, FAGPC demonstrated a 35–40% reduction in embodied CO2 emissions compared to OPC, although the production costs of FAGPC were 30–35% higher, largely due to the expense of alkaline activators. These findings highlight the potential of FAGPC as a low-carbon alternative to OPC concrete, balancing enhanced mechanical performance with sustainability. New, green, and cheap activation solutions are sought for a new generation of more sustainable and affordable FAGPC. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

32 pages, 8548 KiB  
Article
A Comprehensive Study of the Macro-Scale Performance of Graphene Oxide Enhanced Low Carbon Concrete
by Thusitha Ginigaddara, Pasadi Devapura, Vanissorn Vimonsatit, Michael Booy, Priyan Mendis and Rish Satsangi
Constr. Mater. 2025, 5(3), 47; https://doi.org/10.3390/constrmater5030047 - 18 Jul 2025
Viewed by 343
Abstract
This study presents a detailed and comprehensive investigation into the macro-scale performance, strength gain mechanisms, environment and economic performance of graphene oxide (GO)-enhanced low-emission concrete. A comprehensive experimental program evaluated fresh and hardened properties, including slump retention, bleeding, air content, compressive, flexural, and [...] Read more.
This study presents a detailed and comprehensive investigation into the macro-scale performance, strength gain mechanisms, environment and economic performance of graphene oxide (GO)-enhanced low-emission concrete. A comprehensive experimental program evaluated fresh and hardened properties, including slump retention, bleeding, air content, compressive, flexural, and tensile strength, drying shrinkage, and elastic modulus. Scanning Electron Microscopy (SEM), energy-dispersive spectroscopy (EDS), Thermogravimetric analysis (TGA) and proton nuclear magnetic resonance (1H-NMR) was employed to examine microstructural evolution and early age water retention, confirming GO’s role in accelerating cement hydration and promoting C-S-H formation. Optimal performance was achieved at 0.05% GO (by binder weight), resulting in a 25% increase in 28-day compressive strength without compromising workability. This outcome is attributed to a tailored, non-invasive mixing strategy, wherein GO was pre-dispersed during synthesis and subsequently blended without the use of invasive mixing methods such as high shear mixing or ultrasonication. Fourier-transform infrared (FTIR) spectroscopy further validated the chemical compatibility of GO and PCE and confirmed the compatibility and efficiency of the admixture. Sustainability metrics, including embodied carbon and strength-normalized cost indices (USD/MPa), indicated that, although GO increased material cost, the overall cost-performance ratio remained competitive at breakeven GO prices. Enhanced efficiency also led to lower net embodied CO2 emissions. By integrating mechanical, microstructural, and environmental analyses, this study demonstrates GO’s multifunctional benefits and provides a robust basis for its industrial implementation in sustainable infrastructure. Full article
Show Figures

Figure 1

25 pages, 3162 KiB  
Article
Advancing Energy-Efficient Renovation Through Dynamic Life Cycle Assessment and Costing: Insights and Experiences from VERIFY Tool Deployment
by Komninos Angelakoglou, Ioannis Lampropoulos, Eleni Chatzigeorgiou, Paraskevi Giourka, Georgios Martinopoulos, Angelos-Saverios Skembris, Andreas Seitaridis, Georgia Kousovista and Nikos Nikolopoulos
Energies 2025, 18(14), 3736; https://doi.org/10.3390/en18143736 - 15 Jul 2025
Viewed by 450
Abstract
This study investigates the deployment of VERIFY, a dynamic life cycle assessment (LCA) and life cycle costing (LCC) tool, tailored to evaluate the energy and environmental performance of building renovation strategies. The tool was applied to three diverse building renovation projects across Europe, [...] Read more.
This study investigates the deployment of VERIFY, a dynamic life cycle assessment (LCA) and life cycle costing (LCC) tool, tailored to evaluate the energy and environmental performance of building renovation strategies. The tool was applied to three diverse building renovation projects across Europe, offering insights into how life cycle-based tools can enhance decision-making by integrating operational data and modeling of energy systems. The paper highlights how VERIFY captures both embodied and operational impacts—addressing limitations of conventional energy assessments—and aligns with EU frameworks such as Level(s). Key findings from the case studies in Italy, Spain, and the Netherlands demonstrate how LCA/LCC-based approaches can support energy efficiency objectives and guide sustainability-aligned renovation investments. Across the three case studies, the tool demonstrated up to 51% reduction in primary energy demand, 66% decrease in life cycle greenhouse gas emissions, and 51% reduction in life cycle costs. These outcomes provide researchers with a validated dynamic LCA/LCC framework and offer practitioners a replicable methodology for planning and evaluating sustainability-driven renovations. Despite their advantages, the effective use of LCA tools in energy renovation faces challenges, including limited data availability, regulatory fragmentation, and methodological complexity. The paper concludes that advanced tools such as VERIFY, when harmonized with evolving EU energy performance and sustainability standards, can strengthen the evidence base for deep energy renovation and carbon reduction in the building sector. Full article
Show Figures

Figure 1

18 pages, 14333 KiB  
Article
Unveiling the Intrinsic Linkages Between “Water–Carbon–Ecology” Footprints in the Yangtze River Economic Belt and the Yellow River Basin
by Daiwei Zhang, Ming Jing, Weiwei Chen, Buhui Chang, Ting Li, Shuai Zhang, En Liu, Ziming Li and Chang Liu
Sustainability 2025, 17(14), 6419; https://doi.org/10.3390/su17146419 - 14 Jul 2025
Viewed by 238
Abstract
Unveiling the relationship between the “Water–Carbon–Ecology” (W-C-E) footprints embodied in regional trade and resource flows is crucial for enhancing the synergistic benefits between economic development and environmental protection. This study constructs an association framework based on the Multi-Regional Input–Output (MRIO) model to systematically [...] Read more.
Unveiling the relationship between the “Water–Carbon–Ecology” (W-C-E) footprints embodied in regional trade and resource flows is crucial for enhancing the synergistic benefits between economic development and environmental protection. This study constructs an association framework based on the Multi-Regional Input–Output (MRIO) model to systematically evaluate the “W-C-E” footprints and resource flow characteristics of the Yangtze River Economic Belt and the Yellow River Basin. By integrating import and export trade data, this study reveals the patterns of resource flows within and outside these regions. This research delineates the connection patterns between the “W-C-E” footprints and resource flows across three dimensions: spatial, sectoral, and environmental–economic factors. The results indicate that the Yangtze River Economic Belt has gained significant economic benefits from regional trade but also bears substantial environmental costs. Import and export trade further exacerbate the imbalance in regional resource flows, with the Yangtze River Economic Belt exporting many embodied resources through high-energy-consuming products, while the Yellow River Basin increases resource input by importing products such as food and tobacco. Sectoral analysis reveals that agriculture, electricity and water supply, and mining are the sectors with the highest net output of “W-C-E” footprints in both regions, whereas services, food and tobacco, and construction are the sectors with the highest net input. The comprehensive framework of this study can be extended to the analysis of resource–environment–economic systems in other regions, providing methodological support for depicting complex human–land system linkage patterns. Full article
Show Figures

Figure 1

15 pages, 1486 KiB  
Article
Assessment of Building Compactness at Initial Design Stage of Single-Family Houses
by Edwin Koźniewski
Energies 2025, 18(13), 3569; https://doi.org/10.3390/en18133569 - 7 Jul 2025
Viewed by 297
Abstract
The paper is the culmination of research on geometric aspects of assessing the energy demand of a single-family house. In a recent study, two collections of single-family houses were analyzed: (a) a collection of 21 with outlines assumed a priori so that the [...] Read more.
The paper is the culmination of research on geometric aspects of assessing the energy demand of a single-family house. In a recent study, two collections of single-family houses were analyzed: (a) a collection of 21 with outlines assumed a priori so that the building area was constant (which is not achievable in practice) and (b) a collection of 33 real buildings, recently designed by the Polish design studio Galeria Domów. These examples show the functioning of the indicators analyzed by the author in earlier papers and indicate the RCsq indicator that best reflects the assessment of building compactness in percentage points in relation to the ideal shape of the building plan, which is a square. The RCsq index is economically expressed by only two parameters, namely the base area Af and the building outline perimeter P, and therefore is easy to implement in the BIM system and at the same time covers high-rise buildings. As it turned out, the tested buildings from Galeria Domów have very good geometric and therefore energy efficiency. The above-mentioned indicator also highlights the advisability of analyzing the heated part in addition to the standard full-contour analyses. Full article
Show Figures

Figure 1

62 pages, 3413 KiB  
Review
Biofuels, E-Fuels, and Waste-Derived Fuels: Advances, Challenges, and Future Directions
by Zeki Yılbaşı
Sustainability 2025, 17(13), 6145; https://doi.org/10.3390/su17136145 - 4 Jul 2025
Viewed by 1020
Abstract
The imperative to decarbonize global energy systems and enhance energy security necessitates a transition towards ecofuels, broadly classified as biofuels, waste-derived fuels, and electrofuels (e-Fuels). The primary goal of this review is to provide a holistic and comparative evaluation of these three pivotal [...] Read more.
The imperative to decarbonize global energy systems and enhance energy security necessitates a transition towards ecofuels, broadly classified as biofuels, waste-derived fuels, and electrofuels (e-Fuels). The primary goal of this review is to provide a holistic and comparative evaluation of these three pivotal ecofuel pillars under a unified framework, identifying their strategic niches in the energy transition by critically assessing their interconnected technical, economic, and policy challenges. It offers a comparative dissection of inherent resource constraints, spanning biomass availability, the immense scale of renewable electricity required for e-Fuels, sustainable carbon dioxide (CO2) sourcing, and the complexities of utilizing non-biodegradable wastes, identifying that true feedstock sustainability and holistic lifecycle management are paramount, cross-cutting limitations for all pathways. This review critically highlights how the current global reliance on fossil fuels for electricity production (approx. 60%) and the upstream emissions embodied in renewable energy infrastructure challenge the climate neutrality claims of ecofuels, particularly e-Fuels, underscoring the necessity for comprehensive well-to-wheels (WtW) lifecycle assessments (LCAs) over simpler tank-to-wheels (TtW) approaches. This perspective is crucial as emerging regulations demand significant greenhouse gas (GHG) emission reductions (70–100%) compared to fossil fuels. Ultimately, this synthesis argues for a nuanced, technologically neutral deployment strategy, prioritizing specific ecofuels for hard-to-abate sectors, and underscores the urgent need for stable, long-term policies coupled with robust and transparent LCA methodologies to guide a truly sustainable energy transition. Full article
Show Figures

Figure 1

27 pages, 1153 KiB  
Review
Integrated Biomimetics: Natural Innovations for Urban Design, Smart Technologies, and Human Health
by Ocotlán Diaz-Parra, Francisco R. Trejo-Macotela, Jorge A. Ruiz-Vanoye, Jaime Aguilar-Ortiz, Miguel A. Ruiz-Jaimes, Yadira Toledo-Navarro, Alejandro Fuentes Penna, Ricardo A. Barrera-Cámara and Julio C. Salgado-Ramirez
Appl. Sci. 2025, 15(13), 7323; https://doi.org/10.3390/app15137323 - 29 Jun 2025
Viewed by 683
Abstract
Biomimetics has emerged as a transformative interdisciplinary approach that harnesses nature’s evolutionary strategies to develop sustainable solutions across diverse fields. This study explores its integrative role in shaping smart cities, advancing artificial intelligence and robotics, innovating biomedical applications, and enhancing computational design tools. [...] Read more.
Biomimetics has emerged as a transformative interdisciplinary approach that harnesses nature’s evolutionary strategies to develop sustainable solutions across diverse fields. This study explores its integrative role in shaping smart cities, advancing artificial intelligence and robotics, innovating biomedical applications, and enhancing computational design tools. By analysing the evolution of biomimetic principles and their technological impact, this work highlights how nature-inspired solutions contribute to energy efficiency, adaptive urban planning, bioengineered materials, and intelligent systems. Furthermore, this paper discusses future perspectives on biomimetics-driven innovations, emphasising their potential to foster resilience, efficiency, and sustainability in rapidly evolving technological landscapes. Particular attention is given to neuromorphic hardware, a biologically inspired computing paradigm that mimics neural processing through spike-based communication and analogue architectures. Key components such as memristors and neuromorphic processors enable adaptive, low-power, task-specific computation, with wide-ranging applications in robotics, AI, healthcare, and renewable energy systems. Furthermore, this paper analyses how self-organising cities, conceptualised as complex adaptive systems, embody biomimetic traits such as resilience, decentralised optimisation, and autonomous resource management. Full article
Show Figures

Figure 1

22 pages, 4231 KiB  
Article
A Mytho-Religious Reading of Kumbapattu of the Kurichiya Community of Kerala, India
by Dilsha K Das and Preeti Navaneeth
Religions 2025, 16(7), 848; https://doi.org/10.3390/rel16070848 - 26 Jun 2025
Viewed by 406
Abstract
Kumbapattu is a folk song of the indigenous Kurichiya community sung during Thira, a religious festival celebrated during the month of Kumbham (February). It narrates the mythical life and actions of Malakkari, an embodiment of Lord Shiva and the chief deity [...] Read more.
Kumbapattu is a folk song of the indigenous Kurichiya community sung during Thira, a religious festival celebrated during the month of Kumbham (February). It narrates the mythical life and actions of Malakkari, an embodiment of Lord Shiva and the chief deity of the Kurichiya. A critical study of this 1051-line folk song, its ritual performance, and its ecological fountainheads can contribute to our understanding of the cultural and ritualistic energies and functions of indigenous art forms. This paper examines the role played by religious folk songs in reiterating Kurichiya identity and community integration, and the relevance of such narratives in addressing ecological challenges while sustaining cultural heritage. The method of close textual analysis of Kumbapattu is employed to decode the religious concepts and philosophies of the community, supplemented by observations of ritual performances during fieldwork. This study draws on both primary and secondary materials for the analysis. The study employs Bronisław Malinowski’s myth–ritual theory to examine the relationship between myth and ritual and their role in shaping the Kurichiya identity. Further, William R. Bascom’s four functional categories are applied to identify the ecological functions expressed through the song, since the community is traditionally agrarian and still largely depends on forest and environment for a significant part of their community life. To provide a culturally grounded interpretation that reflects Kurichiya worldviews, the study also incorporates indigenous epistemology to make the analysis more relevant and comprehensive. Full article
(This article belongs to the Special Issue The Interplay between Religion and Culture)
Show Figures

Figure 1

20 pages, 1669 KiB  
Article
Assessing the Energy and Economic Performance of Green and Cool Roofs: A Life Cycle Approach
by Taylana Piccinini Scolaro and Enedir Ghisi
Sustainability 2025, 17(13), 5782; https://doi.org/10.3390/su17135782 - 23 Jun 2025
Viewed by 361
Abstract
Green and cool roofs have significant potential to reduce energy consumption in buildings, but high initial costs and the need for local adaptation limit their adoption. This study aims to compare the life cycle energy assessment (LCEA) and life cycle cost analysis (LCCA) [...] Read more.
Green and cool roofs have significant potential to reduce energy consumption in buildings, but high initial costs and the need for local adaptation limit their adoption. This study aims to compare the life cycle energy assessment (LCEA) and life cycle cost analysis (LCCA) of green, cool, and standard (fibre cement) roofs in three Brazilian cities with different climatic and economic contexts. Computer simulations were carried out on a multifamily residential building model to assess the energy performance of the roofs. The simulation results and literature data were used to estimate the roofs’ energy consumption and cost over the life cycle. Over a 40-year life cycle, green and cool roofs reduced energy consumption by 13% to 22% compared to standard roofs. Cool roofs showed the lowest life cycle costs, while green roofs faced cost-effectiveness challenges due to high initial and maintenance costs. However, in areas with high energy demands and electricity tariffs, the life cycle cost of green roofs may be decreased. The study highlights the crucial role of material selection in embodied energy and emphasises the dominant impact of the operational phase on energy consumption and life cycle costs. These findings underscore the need for customised design strategies and localised assessments to support decision-making. Full article
(This article belongs to the Special Issue Green Construction Materials and Sustainability)
Show Figures

Figure 1

31 pages, 3525 KiB  
Article
A Whole-Life Carbon Assessment of a Single-Family House in North India Using BIM-LCA Integration
by Deepak Kumar, Kranti Kumar Maurya, Shailendra K. Mandal, Nandini Halder, Basit Afaq Mir, Anissa Nurdiawati and Sami G. Al-Ghamdi
Buildings 2025, 15(13), 2195; https://doi.org/10.3390/buildings15132195 - 23 Jun 2025
Viewed by 538
Abstract
As the population increases, the growing demand for residential housing escalates construction activities, significantly impacting global warming by contributing 42% of primary energy use and 39% of global greenhouse gas (GHG) emissions. This study addresses a gap in research on lifecycle assessment (LCA) [...] Read more.
As the population increases, the growing demand for residential housing escalates construction activities, significantly impacting global warming by contributing 42% of primary energy use and 39% of global greenhouse gas (GHG) emissions. This study addresses a gap in research on lifecycle assessment (LCA) for Indian residential buildings by evaluating the full cradle-to-grave carbon footprint of a typical single-family house in Northern India. A BIM-based LCA framework was applied to a 110 m2 single-family dwelling over a 60-year life span. Operational use performance and climate analysis was evaluated via cove tool. The total carbon footprint over a 60-year lifespan was approximately 5884 kg CO2e, with operational energy use accounting for about 87% and embodied carbon approximately 11%. Additional impacts came from maintenance and replacements. Energy usage was calculated as 71.76 kWh/m2/year and water usage as 232.2 m3/year. Energy consumption was the biggest driver of emissions, but substantial impacts also stemmed from material production. Cement-based components and steel were the largest embodied carbon contributors. Under the business-as-usual (BAU) scenario, the operational emissions reach approximately 668,000 kg CO2e with HVAC and 482,000 kg CO2e without HVAC. The findings highlight the necessity of integrating embodied carbon considerations alongside operational energy efficiency in India’s building codes, emphasizing reductions in energy consumption and the adoption of low-carbon materials to mitigate the environmental impact of residential buildings. Future work should focus on the dynamic modeling of electricity decarbonization, improved regional datasets, and scenario-based LCA to better support India’s transition to net-zero emissions by 2070. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

18 pages, 5617 KiB  
Article
Tex-Crete—Carbon and Cost Assessment of Concrete with Textile and Carboard Fibres—Case Studies Towards Circular Economy
by Malindu Sandanayake, Ronja Kraus, Robert Haigh, Ehsan Yaghoubi and Zora Vrcelj
Appl. Sci. 2025, 15(13), 6962; https://doi.org/10.3390/app15136962 - 20 Jun 2025
Viewed by 370
Abstract
Concrete and other cementitious materials are among the most widely used construction materials worldwide. However, their high embodied carbon emissions and energy-intensive manufacturing processes pose significant environmental challenges. This study assesses the carbon emissions, cost implications, and circularity potential of a novel concrete [...] Read more.
Concrete and other cementitious materials are among the most widely used construction materials worldwide. However, their high embodied carbon emissions and energy-intensive manufacturing processes pose significant environmental challenges. This study assesses the carbon emissions, cost implications, and circularity potential of a novel concrete mix, Tex-crete, which incorporates recycled textile and cardboard fibres as sustainable alternatives to conventional reinforcement and cementitious materials in concrete. The study employs a cradle-to-gate life cycle assessment (LCA) approach to compare carbon emissions and costs across different mix designs, using two case studies: a temporary construction site compound and a footpath. Experimental results indicate that Tex-crete, particularly the KFT mix design (including 2.5% textile fibres with treated kraft fibres), achieves comparable compressive and tensile strength to traditional concrete while demonstrating a net reduction in both carbon emissions (3.38%) and production costs (2.56%). A newly introduced circularity index (CI) further evaluated the reuse, repair, and recycling potential of the novel mix, revealing that KFT exhibits the highest circularity score (0.44). Parametric analysis using Monte Carlo simulations highlighted transportation distance and energy consumption during fibre processing as key factors influencing emissions. The findings provide valuable insights for industry stakeholders seeking sustainable concrete solutions aligned with circular economy principles, offering an optimized balance between environmental performance, structural integrity, and cost-effectiveness. Full article
(This article belongs to the Special Issue Advances in Building Materials and Concrete, 2nd Edition)
Show Figures

Figure 1

21 pages, 4361 KiB  
Article
Building Sustainable Futures: Evaluating Embodied Carbon Emissions and Biogenic Carbon Storage in a Cross-Laminated Timber Wall and Floor (Honeycomb) Mass Timber Building
by Aayusha Chapagain and Paul Crovella
Sustainability 2025, 17(12), 5602; https://doi.org/10.3390/su17125602 - 18 Jun 2025
Viewed by 618
Abstract
The building sector significantly contributes to global energy consumption and carbon emissions, primarily due to the extensive use of carbon-intensive materials such as concrete and steel. Mass timber construction, particularly using cross-laminated timber (CLT), offers a promising low-carbon alternative. This study aims to [...] Read more.
The building sector significantly contributes to global energy consumption and carbon emissions, primarily due to the extensive use of carbon-intensive materials such as concrete and steel. Mass timber construction, particularly using cross-laminated timber (CLT), offers a promising low-carbon alternative. This study aims to calculate the embodied carbon emissions and biogenic carbon storage of a CLT-based affordable housing project, 340+ Dixwell in New Haven, Connecticut. This project was designed using a honeycomb structural system, where mass timber floors and roofs are supported by mass timber-bearing walls. The authors are not aware of a prior study that has evaluated the life cycle impacts of honeycomb mass timber construction while considering Timber Use Intensity (TUI). Unlike traditional post-and-beam systems, the honeycomb design uses nearly twice the amount of timber, resulting in higher carbon sequestration. This makes the study significant from a sustainability perspective. This study follows International Standard Organization (ISO) standards 14044, 21930, and 21931 and reports the results for both lifecycle stages A1–A3 and A1–A5. The analysis covers key building components, including the substructure, superstructure, and enclosure, with timber, concrete, metals, glass, and insulation as the materials assessed. Material quantities were extracted using Autodesk Revit®, and the life cycle assessment (LCA) was evaluated using One Click LCA (2015)®. The A1 to A3 stage results of this honeycomb building revealed that, compared to conventional mass timber housing structures such as Adohi Hall and Heartwood, it demonstrates the lowest embodiedf carbon emissions and the highest biogenic carbon storage per square foot. This outcome is largely influenced by its higher Timber Use Intensity (TUI). Similarly, the A1-A5 findings indicate that the embodied carbon emissions of this honeycomb construction are 40% lower than the median value for other multi-family residential buildings, as assessed using the Carbon Leadership Forum (CLF) Embodied Carbon Emissions Benchmark Study of various buildings. Moreover, the biogenic carbon storage per square foot of this building is 60% higher than the average biogenic carbon storage of reference mass timber construction types. Full article
Show Figures

Figure 1

Back to TopTop