Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = endocannabinoid tone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1926 KB  
Review
Cardiovascular Effects of Cannabidiol: From Molecular Mechanisms to Clinical Implementation
by Hrvoje Urlić, Marko Kumrić, Nikola Pavlović, Goran Dujić, Željko Dujić and Joško Božić
Int. J. Mol. Sci. 2025, 26(19), 9610; https://doi.org/10.3390/ijms26199610 - 1 Oct 2025
Viewed by 1270
Abstract
Cannabidiol (CBD) and other phytocannabinoids are gaining attention for their therapeutic potential in cardiovascular disease (CVD), the world’s leading cause of death. This review highlights advances in understanding the endocannabinoid system, including CB1 and CB2 receptors, and the mechanisms by which CBD exerts [...] Read more.
Cannabidiol (CBD) and other phytocannabinoids are gaining attention for their therapeutic potential in cardiovascular disease (CVD), the world’s leading cause of death. This review highlights advances in understanding the endocannabinoid system, including CB1 and CB2 receptors, and the mechanisms by which CBD exerts anti-inflammatory, antioxidative, vasoprotective, and immunomodulatory effects. Preclinical and translational studies indicate that selective activation of CB2 receptors may attenuate atherogenesis, limit infarct size in ischemia–reperfusion injury, decrease oxidative stress, and lessen chronic inflammation, while avoiding the psychotropic effects linked to CB1. CBD also acts on multiple molecular targets beyond the CB receptors, affecting redox-sensitive transcription factors, vascular tone, immune function, and endothelial integrity. Early clinical trials and observational studies suggest that CBD may lower blood pressure, improve endothelial function, and reduce sympatho-excitatory peptides such as catestatin, with a favorable safety profile. However, limited bioavailability, small sample sizes, short study durations, and uncertainty about long-term safety present challenges to its clinical use. Further research is needed to standardize dosing, refine receptor targeting, and clarify the role of the endocannabinoid system in cardiovascular health. Overall, current evidence supports CBD’s promise as an adjunct in CVD treatment, but broader clinical use requires more rigorous, large-scale studies. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

35 pages, 1690 KB  
Review
The Endocannabinoid System in the Development and Treatment of Obesity: Searching for New Ideas
by Anna Serefko, Joanna Lachowicz-Radulska, Monika Elżbieta Jach, Katarzyna Świąder and Aleksandra Szopa
Int. J. Mol. Sci. 2025, 26(19), 9549; https://doi.org/10.3390/ijms26199549 - 30 Sep 2025
Viewed by 1539
Abstract
Obesity is a complex, multifactorial disease and a growing global health challenge associated with type 2 diabetes, cardiovascular disorders, cancer, and reduced quality of life. The existing pharmacological therapies are characterized by their limited number and efficacy, and safety concerns further restrict their [...] Read more.
Obesity is a complex, multifactorial disease and a growing global health challenge associated with type 2 diabetes, cardiovascular disorders, cancer, and reduced quality of life. The existing pharmacological therapies are characterized by their limited number and efficacy, and safety concerns further restrict their utilization. This review synthesizes extensive knowledge regarding the role of the endocannabinoid system (ECS) in the pathogenesis of obesity, as well as its potential as a therapeutic target. A thorough evaluation of preclinical and clinical data concerning endocannabinoid ligands, cannabinoid receptors (CB1, CB2), their genetic variants, and pharmacological interventions targeting the ECS was conducted. Literature data suggests that the overactivation of the ECS may play a role in the pathophysiology of excessive food intake, dysregulated energy balance, adiposity, and metabolic disturbances. The pharmacological modulation of ECS components, by means of CB1 receptor antagonists/inverse agonists, CB2 receptor agonists, enzyme inhibitors, and hybrid or allosteric ligands, has demonstrated promising anti-obesity effects in animal models. However, the translation of these findings into clinical practice remains challenging due to safety concerns, particularly neuropsychiatric adverse events. The development of novel strategies, including peripherally restricted compounds, hybrid dual-target agents, dietary modulation of endocannabinoid tone, and non-pharmacological interventions, promises to advance the field of obesity management. Full article
(This article belongs to the Special Issue Molecular Research and Insight into Endocannabinoid System)
Show Figures

Figure 1

35 pages, 1877 KB  
Review
Dysregulation of the Cannabinoid System in Childhood Epilepsy: From Mechanisms to Therapy
by Gloria Montebello and Giuseppe Di Giovanni
Int. J. Mol. Sci. 2025, 26(13), 6234; https://doi.org/10.3390/ijms26136234 - 27 Jun 2025
Cited by 1 | Viewed by 4801
Abstract
Epilepsy affects over 12 million children worldwide, with approximately 30% classified as having drug-resistant epilepsy (DRE), often accompanied by neuropsychiatric comorbidities that severely impact quality of life. The endocannabinoid system (ECS) functions as a multifaceted neuromodulatory network regulating neuronal excitability, synaptic plasticity, and [...] Read more.
Epilepsy affects over 12 million children worldwide, with approximately 30% classified as having drug-resistant epilepsy (DRE), often accompanied by neuropsychiatric comorbidities that severely impact quality of life. The endocannabinoid system (ECS) functions as a multifaceted neuromodulatory network regulating neuronal excitability, synaptic plasticity, and immune homeostasis from early life through adolescence and into aging. In pediatric epilepsies, alterations in ECS components, particularly CB1 receptor expression and endocannabinoid levels, reveal disorder-specific vulnerabilities and therapeutic opportunities. Cannabidiol (CBD), a non-psychoactive compound from Cannabis sativa, has shown strong preclinical and clinical efficacy in treating DRE and is approved for Dravet syndrome, Lennox–Gastaut syndrome, and Tuberous Sclerosis Complex. Other ECS-based strategies, such as the use of CB1 receptor-positive allosteric modulators, can selectively enhance endogenous cannabinoid signaling where and when it is active, potentially reducing seizures in conditions like Dravet and absence epilepsy. Similarly, FAAH and MAGL inhibitors may help restore ECS tone without directly activating CB1 receptors. Precision targeting of ECS components based on regional expression and syndrome-specific pathophysiology may optimize seizure control and associated comorbidities. Nonetheless, long-term pediatric use must be approached with caution, given the critical role of the ECS in brain development. Full article
Show Figures

Figure 1

17 pages, 880 KB  
Article
Endocannabinoid Tone and Oxylipins in Rheumatoid Arthritis and Osteoarthritis—A Novel Target for the Treatment of Pain and Inflammation?
by Jost Klawitter, Andrew D. Clauw, Jennifer A. Seifert, Jelena Klawitter, Bridget Tompson, Cristina Sempio, Susan L. Ingram, Uwe Christians and Larry W. Moreland
Int. J. Mol. Sci. 2025, 26(12), 5707; https://doi.org/10.3390/ijms26125707 - 14 Jun 2025
Cited by 1 | Viewed by 1108
Abstract
Inflammation is a complicated physiological process that contributes to a variety of disorders including osteoarthritis (OA) and rheumatoid arthritis (RA). Endocannabinoids and the endocannabinoid system (ECS) play a pivotal role in the physiological response to pain and inflammation. A clinical study to investigate [...] Read more.
Inflammation is a complicated physiological process that contributes to a variety of disorders including osteoarthritis (OA) and rheumatoid arthritis (RA). Endocannabinoids and the endocannabinoid system (ECS) play a pivotal role in the physiological response to pain and inflammation. A clinical study to investigate the role of the endocannabinoid system and related lipids in pain and inflammation in OA and RA was performed. In total, 80 subjects, namely, 25 patients with RA, 18 with OA, and 37 healthy participants, were included. Sixteen endocannabinoids and congeners, as well as 129 oxylipins, were quantified in plasma using specific, quantitative LC-MS/MS assays. The endocannabinoid analysis revealed significantly lower levels of 2-arachidonoylglycerol (2-AG) in RA and OA patients compared to healthy participants. In contrast, the EC levels of the ethanolamide group (anandamide, docosahexaenoyl-EA, palmitoleoyl-EA, and other ethanolamides) were higher in the RA study cohort and to a lesser extent also in the OA cohort. This analysis of oxylipins revealed lower levels of the pro-resolving lipid 9-oxo-octadecadienoic acid (9-oxoODE) and the ω-3 fatty acids EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) in RA compared to all other study cohorts. 2-AG is a key regulator of nociception and inflammation, and its relatively low levels might be a mechanistic contributor to residual pain and inflammation in RA and OA. Several changes in pro- and anti-inflammatory lipid mediators were detected, including lower levels of EPA and DHA in RA, which might reveal the potential for nutritional supplementation with these anti-inflammatory fatty acids. Full article
(This article belongs to the Special Issue Rheumatoid Arthritis: Molecular Mechanisms and Immunotherapy)
Show Figures

Figure 1

59 pages, 4829 KB  
Article
FAAH Inhibition Counteracts Neuroinflammation via Autophagy Recovery in AD Models
by Federica Armeli, Roberto Coccurello, Giacomo Giacovazzo, Beatrice Mengoni, Ilaria Paoletti, Sergio Oddi, Mauro Maccarrone and Rita Businaro
Int. J. Mol. Sci. 2024, 25(22), 12044; https://doi.org/10.3390/ijms252212044 - 9 Nov 2024
Cited by 2 | Viewed by 1878
Abstract
Endocannabinoids have attracted great interest for their ability to counteract the neuroinflammation underlying Alzheimer’s disease (AD). Our study aimed at evaluating whether this activity was also due to a rebalance of autophagic mechanisms in cellular and animal models of AD. We supplied URB597, [...] Read more.
Endocannabinoids have attracted great interest for their ability to counteract the neuroinflammation underlying Alzheimer’s disease (AD). Our study aimed at evaluating whether this activity was also due to a rebalance of autophagic mechanisms in cellular and animal models of AD. We supplied URB597, an inhibitor of Fatty-Acid Amide Hydrolase (FAAH), the degradation enzyme of anandamide, to microglial cultures treated with Aβ25-35, and to Tg2576 transgenic mice, thus increasing the endocannabinoid tone. The addition of URB597 did not alter cell viability and induced microglia polarization toward an anti-inflammatory phenotype, as shown by the modulation of pro- and anti-inflammatory cytokines, as well as M1 and M2 markers; moreover microglia, after URB597 treatment released higher levels of Bdnf and Nrf2, confirming the protective role underlying endocannabinoids increase, as shown by RT-PCR and immunofluorescence experiments. We assessed the number and area of amyloid plaques in animals administered with URB597 compared to untreated animals and the expression of autophagy key markers in the hippocampus and prefrontal cortex from both groups of mice, via immunohistochemistry and ELISA. After URB597 supply, we detected a reduction in the number and areas of amyloid plaques, as detected by Congo Red staining and a reshaping of microglia activation as shown by M1 and M2 markers’ modulation. URB597 administration restored autophagy in Tg2576 mice via an increase in BECN1 (Beclin1), ATG7 (Autophagy Related 7), LC3 (light chain 3) and SQSTM1/p62 (sequestrome 1) as well as via the activation of the ULK1 (Unc-51 Like Autophagy Activating Kinase 1) signaling pathway, suggesting that it targets mTOR/ULK1-dependent autophagy pathway. The potential of endocannabinoids to rebalance autophagy machinery may be considered as a new perspective for therapeutic intervention in AD. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

15 pages, 5916 KB  
Article
Function of Presynaptic Inhibitory Cannabinoid CB1 Receptors in Spontaneously Hypertensive Rats and Its Modification by Enhanced Endocannabinoid Tone
by Marek Toczek, Eberhard Schlicker, Patryk Remiszewski and Barbara Malinowska
Int. J. Mol. Sci. 2024, 25(2), 858; https://doi.org/10.3390/ijms25020858 - 10 Jan 2024
Viewed by 1939
Abstract
We studied whether the function of presynaptic inhibitory cannabinoid CB1 receptors on the sympathetic nerve fibres innervating resistance vessels is increased in spontaneously hypertensive rats (SHR) like in deoxycorticosterone (DOCA)–salt hypertension. An increase in diastolic blood pressure (DBP) was induced by electrical [...] Read more.
We studied whether the function of presynaptic inhibitory cannabinoid CB1 receptors on the sympathetic nerve fibres innervating resistance vessels is increased in spontaneously hypertensive rats (SHR) like in deoxycorticosterone (DOCA)–salt hypertension. An increase in diastolic blood pressure (DBP) was induced by electrical stimulation of the preganglionic sympathetic neurons or by phenylephrine injection in pithed SHR and normotensive Wistar–Kyoto rats (WKY). The electrically (but not the phenylephrine) induced increase in DBP was inhibited by the cannabinoid receptor agonist CP55940, similarly in both groups, and by the endocannabinoid reuptake inhibitor AM404 in SHR only. The effect of CP55940 was abolished/reduced by the CB1 receptor antagonist AM251 (in both groups) and in WKY by endocannabinoid degradation blockade, i.e., the monoacylglycerol lipase (MAGL) inhibitor MJN110 and the dual fatty acid amide hydrolase (FAAH)/MAGL inhibitor JZL195 but not the FAAH inhibitor URB597. MJN110 and JZL195 tended to enhance the effect of CP55940 in SHR. In conclusion, the function of presynaptic inhibitory CB1 receptors depends on the hypertension model. Although no differences occurred between SHR and WKY under basal experimental conditions, the CB1 receptor function was better preserved in SHR when the endocannabinoid tone was increased by the inhibition of MAGL or the endocannabinoid transporter. Full article
Show Figures

Graphical abstract

16 pages, 5392 KB  
Article
Renal Endocannabinoid Dysregulation in Obesity-Induced Chronic Kidney Disease in Humans
by Anna Permyakova, Ariel Rothner, Sarah Knapp, Alina Nemirovski, Danny Ben-Zvi and Joseph Tam
Int. J. Mol. Sci. 2023, 24(17), 13636; https://doi.org/10.3390/ijms241713636 - 4 Sep 2023
Cited by 7 | Viewed by 2802
Abstract
The endocannabinoid system (ECS) regulates various physiological processes, including energy homeostasis and kidney function. ECS upregulation in obese animals and humans suggests a potential link to obesity-induced chronic kidney disease (CKD). However, obesity-induced ECS changes in the kidney are mainly studied in rodents, [...] Read more.
The endocannabinoid system (ECS) regulates various physiological processes, including energy homeostasis and kidney function. ECS upregulation in obese animals and humans suggests a potential link to obesity-induced chronic kidney disease (CKD). However, obesity-induced ECS changes in the kidney are mainly studied in rodents, leaving the impact on obese humans unknown. In this study, a total of 21 lean and obese males (38–71 years) underwent a kidney biopsy. Biochemical analysis, histology, and endocannabinoid (eCB) assessment were performed on kidney tissue and blood samples. Correlations between different parameters were evaluated using a comprehensive matrix. The obese group exhibited kidney damage, reflected in morphological changes, and elevated kidney injury and fibrotic markers. While serum eCB levels were similar between the lean and obese groups, kidney eCB analysis revealed higher anandamide in obese patients. Obese individuals also exhibited reduced expression of cannabinoid-1 receptor (CB1R) in the kidney, along with increased activity of eCB synthesizing and degrading enzymes. Correlation analysis highlighted connections between renal eCBs, kidney injury markers, obesity, and related pathologies. In summary, this study investigates obesity’s impact on renal eCB “tone” in humans, providing insights into the ECS’s role in obesity-induced CKD. Our findings enhance the understanding of the intricate interplay among obesity, the ECS, and kidney function. Full article
(This article belongs to the Special Issue Endocannabinoid Receptors in Human Health and Disease)
Show Figures

Figure 1

18 pages, 13475 KB  
Article
Weak Hypotensive Effect of Chronic Administration of the Dual FAAH/MAGL Inhibitor JZL195 in Spontaneously Hypertensive Rats as Revealed by Area under the Curve Analysis
by Marek Toczek, Piotr Ryszkiewicz, Patryk Remiszewski, Eberhard Schlicker, Anna Krzyżewska, Hanna Kozłowska and Barbara Malinowska
Int. J. Mol. Sci. 2023, 24(13), 10942; https://doi.org/10.3390/ijms241310942 - 30 Jun 2023
Cited by 3 | Viewed by 2234
Abstract
The enhancement of the endocannabinoid tone might have a beneficial influence on hypertension. Polypharmacology proposes multi-target-directed ligands (MTDLs) as potential therapeutic agents for the treatment of complex diseases. In the present paper, we studied JZL195, a dual inhibitor of the two major endocannabinoid-degrading [...] Read more.
The enhancement of the endocannabinoid tone might have a beneficial influence on hypertension. Polypharmacology proposes multi-target-directed ligands (MTDLs) as potential therapeutic agents for the treatment of complex diseases. In the present paper, we studied JZL195, a dual inhibitor of the two major endocannabinoid-degrading enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Hemodynamic parameters were assessed in conscious animals via radiotelemetry and tail-cuff methods and then evaluated by the area under the curve (AUC). Single administration of JZL195 induced dose-dependent weak hypotensive and bradycardic responses in SHR but not in WKY. Similarly, its chronic application revealed only a slight hypotensive potential which, however, effectively prevented the progression of hypertension and did not undergo tolerance. In addition, multiple JZL195 administrations slightly decreased heart rate only in WKY and prevented the gradual weight gain in both groups. JZL195 did not affect organ weights, blood glucose level, rectal temperature and plasma oxidative stress markers. In conclusion, chronic dual FAAH/MAGL inhibition prevents the progression of hypertension in SHR without affecting some basal functions of the body. In addition, our study clearly proves the suitability of AUC for the evaluation of weak blood pressure changes. Full article
(This article belongs to the Special Issue Advances in the Pathogenesis and Treatment of Hypertension)
Show Figures

Figure 1

23 pages, 2948 KB  
Article
Dietary Docosahexaenoic Acid and Glucose Systemic Metabolic Changes in the Mouse
by Bruce A. Watkins, John W. Newman, George A. Kuchel, Oliver Fiehn and Jeffrey Kim
Nutrients 2023, 15(12), 2679; https://doi.org/10.3390/nu15122679 - 8 Jun 2023
Cited by 4 | Viewed by 2875
Abstract
The endocannabinoid system (ECS) participates in regulating whole body energy balance. Overactivation of the ECS has been associated with the negative consequence of obesity and type 2 diabetes. Since activators of the ECS rely on lipid-derived ligands, an investigation was conducted to determine [...] Read more.
The endocannabinoid system (ECS) participates in regulating whole body energy balance. Overactivation of the ECS has been associated with the negative consequence of obesity and type 2 diabetes. Since activators of the ECS rely on lipid-derived ligands, an investigation was conducted to determine whether dietary PUFA could influence the ECS to affect glucose clearance by measuring metabolites of macronutrient metabolism. C57/blk6 mice were fed a control or DHA-enriched semi-purified diet for a period of 112 d. Plasma, skeletal muscle, and liver were collected after 56 d and 112 d of feeding the diets for metabolomics analysis. Key findings characterized a shift in glucose metabolism and greater catabolism of fatty acids in mice fed the DHA diet. Glucose use and promotion of fatty acids as substrate were found based on levels of metabolic pathway intermediates and altered metabolic changes related to pathway flux with DHA feeding. Greater levels of DHA-derived glycerol lipids were found subsequently leading to the decrease of arachidonate-derived endocannabinoids (eCB). Levels of 1- and 2-arachidonylglcerol eCB in muscle and liver were lower in the DHA diet group compared to controls. These findings demonstrate that DHA feeding in mice alters macronutrient metabolism and may restore ECS tone by lowering arachidonic acid derived eCB. Full article
(This article belongs to the Special Issue Nutritional Regulation of Insulin Resistance and Lipid Metabolism)
Show Figures

Figure 1

16 pages, 2330 KB  
Article
A Lipidomics- and Transcriptomics-Based Analysis of the Intestine of Genetically Obese (ob/ob) and Diabetic (db/db) Mice: Links with Inflammation and Gut Microbiota
by Francesco Suriano, Claudia Manca, Nicolas Flamand, Matthias Van Hul, Nathalie M. Delzenne, Cristoforo Silvestri, Patrice D. Cani and Vincenzo Di Marzo
Cells 2023, 12(3), 411; https://doi.org/10.3390/cells12030411 - 25 Jan 2023
Cited by 6 | Viewed by 3957
Abstract
Obesity is associated with a cluster of metabolic disorders, chronic low-grade inflammation, altered gut microbiota, increased intestinal permeability, and alterations of the lipid mediators of the expanded endocannabinoid (eCB) signaling system, or endocannabinoidome (eCBome). In the present study, we characterized the profile of [...] Read more.
Obesity is associated with a cluster of metabolic disorders, chronic low-grade inflammation, altered gut microbiota, increased intestinal permeability, and alterations of the lipid mediators of the expanded endocannabinoid (eCB) signaling system, or endocannabinoidome (eCBome). In the present study, we characterized the profile of the eCBome and related oxylipins in the small and large intestines of genetically obese (ob/ob) and diabetic (db/db) mice to decipher possible correlations between these mediators and intestinal inflammation and gut microbiota composition. Basal lipid and gene expression profiles, measured by LC/MS-MS-based targeted lipidomics and qPCR transcriptomics, respectively, highlighted a differentially altered intestinal eCBome and oxylipin tone, possibly linked to increased mRNA levels of inflammatory markers in db/db mice. In particular, the duodenal levels of several 2-monoacylglycerols and N-acylethanolamines were increased and decreased, respectively, in db/db mice, which displayed more pronounced intestinal inflammation. To a little extent, these differences were explained by changes in the expression of the corresponding metabolic enzymes. Correlation analyses suggested possible interactions between eCBome/oxylipin mediators, cytokines, and bacterial components and bacterial taxa closely related to intestinal inflammation. Collectively, this study reveals that db/db mice present a higher inflammatory state in the intestine as compared to ob/ob mice, and that this difference is associated with profound and potentially adaptive or maladaptive, and partly intestinal segment-specific alterations in eCBome and oxylipin signaling. This study opens the way to future investigations on the biological role of several poorly investigated eCBome mediators and oxylipins in the context of obesity and diabetes-induced gut dysbiosis and inflammation. Full article
(This article belongs to the Special Issue Lipid Metabolism and Metabolic Disorders)
Show Figures

Graphical abstract

40 pages, 6526 KB  
Review
Recent Advances in Endocannabinoid System Targeting for Improved Specificity: Strategic Approaches to Targeted Drug Delivery
by Mendhi Henna Dasram, Roderick B. Walker and Sandile M. Khamanga
Int. J. Mol. Sci. 2022, 23(21), 13223; https://doi.org/10.3390/ijms232113223 - 30 Oct 2022
Cited by 24 | Viewed by 7921
Abstract
Opportunities for developing innovative and intelligent drug delivery technologies by targeting the endocannabinoid system are becoming more apparent. This review provides an overview of strategies to develop targeted drug delivery using the endocannabinoid system (ECS). Recent advances in endocannabinoid system targeting showcase enhanced [...] Read more.
Opportunities for developing innovative and intelligent drug delivery technologies by targeting the endocannabinoid system are becoming more apparent. This review provides an overview of strategies to develop targeted drug delivery using the endocannabinoid system (ECS). Recent advances in endocannabinoid system targeting showcase enhanced pharmaceutical therapy specificity while minimizing undesirable side effects and overcoming formulation challenges associated with cannabinoids. This review identifies advances in targeted drug delivery technologies that may permit access to the full pharmacotherapeutic potential of the ECS. The design of optimized nanocarriers that target specific tissues can be improved by understanding the nature of the signaling pathways, distribution in the mammalian body, receptor structure, and enzymatic degradation of the ECS. A closer look at ligand-receptor complexes, endocannabinoid tone, tissue distribution, and G-protein activity leads to a better understanding of the potential of the ECS toolkit for therapeutics. The signal transduction pathways examine the modulation of downstream effector proteins, desensitization, signaling cascades, and biased signaling. An in-depth and overall view of the targeted system is achieved through homology modeling where mutagenesis and ligand binding examine the binding site and allow sequence analysis and the formation of libraries for molecular docking and molecular dynamic simulations. Internalization routes exploring receptor-mediated endocytosis and lipid rafts are also considered for explicit signaling. Furthermore, the review highlights nanotechnology and surface modification aspects as a possible future approach for specific targeting. Full article
(This article belongs to the Topic Advances in Cannabinoid Research)
Show Figures

Figure 1

12 pages, 697 KB  
Article
Reduced Endocannabinoid Tone in Saliva of Chronic Orofacial Pain Patients
by Yaron Haviv, Olga Georgiev, Tal Gaver-Bracha, Sharleen Hamad, Alina Nemirovski, Rivka Hadar, Yair Sharav, Doron J. Aframian, Yariv Brotman and Joseph Tam
Molecules 2022, 27(14), 4662; https://doi.org/10.3390/molecules27144662 - 21 Jul 2022
Cited by 6 | Viewed by 3626
Abstract
Background: the endocannabinoid system (ECS) participates in many physiological and pathological processes including pain generation, modulation, and sensation. Its involvement in chronic orofacial pain (OFP) in general, and the reflection of its involvement in OFP in salivary endocannabinoid (eCBs) levels in particular, has [...] Read more.
Background: the endocannabinoid system (ECS) participates in many physiological and pathological processes including pain generation, modulation, and sensation. Its involvement in chronic orofacial pain (OFP) in general, and the reflection of its involvement in OFP in salivary endocannabinoid (eCBs) levels in particular, has not been examined. Objectives: to evaluate the association between salivary (eCBs) levels and chronic OFP. Methods: salivary levels of 2 eCBs, anandamide (AEA), 2-arachidonoylglycerol (2-AG), 2 endocannabinoid-like compoundsN-palmitoylethanolamine (PEA), N-oleoylethanolamine (OEA), and their endogenous precursor and breakdown product, arachidonic acid (AA), were analyzed using liquid chromatography/tandem mass spectrometry in 83 chronic OFP patients and 43 pain-free controls. The chronic OFP patients were divided according to diagnosis into musculoskeletal, neurovascular/migraine, and neuropathic pain types. Results: chronic OFP patients had lower levels of OEA (p = 0.02) and 2-AG (p = 0.01). Analyzing specific pain types revealed lower levels of AEA and OEA in the neurovascular group (p = 0.04, 0.02, respectively), and 2-AG in the neuropathic group compared to controls (p = 0.05). No significant differences were found between the musculoskeletal pain group and controls. Higher pain intensity was accompanied by lower levels of AA (p = 0.028), in neuropathic group. Conclusions: lower levels of eCBs were found in the saliva of chronic OFP patients compared to controls, specifically those with neurovascular/migraine, and neuropathic pain. The detection of changes in salivary endocannabinoids levels related to OFP adds a new dimension to our understanding of OFP mechanisms, and may have diagnostic as well as therapeutic implications for pain. Full article
(This article belongs to the Section Bioactive Lipids)
Show Figures

Figure 1

33 pages, 4718 KB  
Article
Effects of Intra-BLA Administration of PPAR Antagonists on Formalin-Evoked Nociceptive Behaviour, Fear-Conditioned Analgesia, and Conditioned Fear in the Presence or Absence of Nociceptive Tone in Rats
by Jessica C. Gaspar, Bright N. Okine, David Dinneen, Michelle Roche and David P. Finn
Molecules 2022, 27(6), 2021; https://doi.org/10.3390/molecules27062021 - 21 Mar 2022
Cited by 8 | Viewed by 3079
Abstract
There is evidence for the involvement of peroxisome proliferator-activated receptors (PPARs) in pain, cognition, and anxiety. However, their role in pain–fear interactions is unknown. The amygdala plays a key role in pain, conditioned fear, and fear-conditioned analgesia (FCA). We investigated the effects of [...] Read more.
There is evidence for the involvement of peroxisome proliferator-activated receptors (PPARs) in pain, cognition, and anxiety. However, their role in pain–fear interactions is unknown. The amygdala plays a key role in pain, conditioned fear, and fear-conditioned analgesia (FCA). We investigated the effects of intra-basolateral amygdala (BLA) administration of PPARα, PPARβ/δ, and PPARγ antagonists on nociceptive behaviour, FCA, and conditioned fear in the presence or absence of nociceptive tone. Male Sprague-Dawley (SD) rats received footshock (FC) or no footshock (NFC) in a conditioning arena. Twenty-three and a half hours later, rats received an intraplantar injection of formalin or saline and, 15 min later, intra-BLA microinjections of vehicle, PPARα (GW6471) PPARβ/δ (GSK0660), or PPARγ (GW9662) antagonists before arena re-exposure. Pain and fear-related behaviour were assessed, and neurotransmitters/endocannabinoids measured post-mortem. Intra-BLA administration of PPARα or PPARγ antagonists potentiated freezing in the presence of nociceptive tone. Blockade of all PPAR subtypes in the BLA increased freezing and BLA dopamine levels in NFC rats in the absence of nociceptive tone. Administration of intra-BLA PPARα and PPARγ antagonists increased levels of dopamine in the BLA compared with the vehicle-treated counterparts. In conclusion, PPARα and PPARγ in the BLA play a role in the expression or extinction of conditioned fear in the presence or absence of nociceptive tone. Full article
(This article belongs to the Special Issue High Times for Cannabinoid Research)
Show Figures

Figure 1

25 pages, 3704 KB  
Article
Inhibitory Neurotransmission Is Sex-Dependently Affected by Tat Expression in Transgenic Mice and Suppressed by the Fatty Acid Amide Hydrolase Enzyme Inhibitor PF3845 via Cannabinoid Type-1 Receptor Mechanisms
by Changqing Xu, Barkha J. Yadav-Samudrala, Callie Xu, Bhupendra Nath, Twisha Mistry, Wei Jiang, Micah J. Niphakis, Benjamin F. Cravatt, Somnath Mukhopadhyay, Aron H. Lichtman, Bogna M. Ignatowska-Jankowska and Sylvia Fitting
Cells 2022, 11(5), 857; https://doi.org/10.3390/cells11050857 - 2 Mar 2022
Cited by 10 | Viewed by 3723
Abstract
(1) Background. The endocannabinoid (eCB) system, which regulates physiological and cognitive processes, presents a promising therapeutic target for treating HIV-associated neurocognitive disorders (HAND). Here we examine whether upregulating eCB tone has potential protective effects against HIV-1 Tat (a key HIV transactivator of transcription) [...] Read more.
(1) Background. The endocannabinoid (eCB) system, which regulates physiological and cognitive processes, presents a promising therapeutic target for treating HIV-associated neurocognitive disorders (HAND). Here we examine whether upregulating eCB tone has potential protective effects against HIV-1 Tat (a key HIV transactivator of transcription) protein-induced alterations in synaptic activity. (2) Methods. Whole-cell patch-clamp recordings were performed to assess inhibitory GABAergic neurotransmission in prefrontal cortex slices of Tat transgenic male and female mice, in the presence and absence of the fatty acid amide hydrolase (FAAH) enzyme inhibitor PF3845. Western blot and mass spectrometry analyses assessed alterations of cannabinoid receptor and enzyme protein expression as well as endogenous ligands, respectively, to determine the impact of Tat exposure on the eCB system. (3) Results. GABAergic activity was significantly altered upon Tat exposure based on sex, whereas the effectiveness of PF3845 to suppress GABAergic activity in Tat transgenic mice was not altered by Tat or sex and involved CB1R-related mechanisms that depended on calcium signaling. Additionally, our data indicated sex-dependent changes for AEA and related non-eCB lipids based on Tat induction. (4) Conclusion. Results highlight sex- and/or Tat-dependent alterations of GABAergic activity and eCB signaling in the prefrontal cortex of Tat transgenic mice and further increase our understanding about the role of FAAH inhibition in neuroHIV. Full article
Show Figures

Figure 1

21 pages, 1140 KB  
Review
Mutual Links between the Endocannabinoidome and the Gut Microbiome, with Special Reference to Companion Animals: A Nutritional Viewpoint
by Aniello Schiano Moriello, Vincenzo Di Marzo and Stefania Petrosino
Animals 2022, 12(3), 348; https://doi.org/10.3390/ani12030348 - 31 Jan 2022
Cited by 16 | Viewed by 7403
Abstract
There is growing evidence that perturbation of the gut microbiome, known as “dysbiosis”, is associated with the pathogenesis of human and veterinary diseases that are not restricted to the gastrointestinal tract. In this regard, recent studies have demonstrated that dysbiosis is linked to [...] Read more.
There is growing evidence that perturbation of the gut microbiome, known as “dysbiosis”, is associated with the pathogenesis of human and veterinary diseases that are not restricted to the gastrointestinal tract. In this regard, recent studies have demonstrated that dysbiosis is linked to the pathogenesis of central neuroinflammatory disorders, supporting the existence of the so-called microbiome-gut-brain axis. The endocannabinoid system is a recently recognized lipid signaling system and termed endocannabinoidome monitoring a variety of body responses. Accumulating evidence demonstrates that a profound link exists between the gut microbiome and the endocannabinoidome, with mutual interactions controlling intestinal homeostasis, energy metabolism and neuroinflammatory responses during physiological conditions. In the present review, we summarize the latest data on the microbiome-endocannabinoidome mutual link in health and disease, focalizing the attention on gut dysbiosis and/or altered endocannabinoidome tone that may distort the bidirectional crosstalk between these two complex systems, thus leading to gastrointestinal and metabolic diseases (e.g., idiopathic inflammation, chronic enteropathies and obesity) as well as neuroinflammatory disorders (e.g., neuropathic pain and depression). We also briefly discuss the novel possible dietary interventions based not only on probiotics and/or prebiotics, but also, and most importantly, on endocannabinoid-like modulators (e.g., palmitoylethanolamide) for intestinal health and beyond. Full article
(This article belongs to the Special Issue Animal Nutrition for Small Animal Health)
Show Figures

Figure 1

Back to TopTop