Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (637)

Search Parameters:
Keywords = endocannabinoid system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 1059 KiB  
Review
Autism Spectrum Disorder: From Experimental Models to Probiotic Application with a Special Focus on Lactiplantibacillus plantarum
by Giusi Sabatini, Ilenia Boccadoro, Roberta Prete, Natalia Battista and Aldo Corsetti
Nutrients 2025, 17(15), 2470; https://doi.org/10.3390/nu17152470 - 29 Jul 2025
Viewed by 234
Abstract
Background/Objectives: Autism spectrum disorder (ASD) encompasses several neurodevelopmental disorders, whose onset is correlated to genetic and environmental factors. Although the etiopathogenesis is not entirely clear, the involvement of inflammatory processes, the endocannabinoid system, and alterations in the permeability and composition of the intestinal [...] Read more.
Background/Objectives: Autism spectrum disorder (ASD) encompasses several neurodevelopmental disorders, whose onset is correlated to genetic and environmental factors. Although the etiopathogenesis is not entirely clear, the involvement of inflammatory processes, the endocannabinoid system, and alterations in the permeability and composition of the intestinal microbiota are known to occur. Methods: This review systematically explores the literature available to date on the most widely used murine models for the study of ASD, the main biomarkers investigated for the diagnosis of ASD, and the therapeutic potential of probiotics, with a particular focus on the use of strains of Lactiplantibacillus (Lpb.) plantarum in in vivo models and clinical trials for ASD. Results: Several studies have demonstrated that targeting multifactorial biomarkers in animal models and patients contributes to a more comprehensive understanding of the complex mechanisms underlying ASD. Moreover, accumulating evidence supports the beneficial effect of probiotics, including Lpb. plantarum, as a promising alternative therapeutic strategy, capable of modulating gut–brain axis communication. Conclusions: Probiotic supplementation, particularly with selected Lpb. plantarum strains, is emerging as a potential complementary approach for ameliorating ASD-related gastrointestinal and behavioral symptoms. However, further large-scale clinical studies are essential to validate their efficacy and determine optimal treatment protocols and dietary strategies. Full article
(This article belongs to the Special Issue The Effect of Nutrition Interventions on Neuropsychiatric Diseases)
Show Figures

Graphical abstract

21 pages, 319 KiB  
Review
The Role of the Endocannabinoid System in Oncology and the Potential Use of Cannabis Derivatives for Cancer Management in Companion Animals
by Giorgia della Rocca, Alessandra Di Salvo, Erica Salucci, Michela Amadori, Giovanni Re and Cristina Vercelli
Animals 2025, 15(15), 2185; https://doi.org/10.3390/ani15152185 - 24 Jul 2025
Viewed by 201
Abstract
The last decades of research have shown that the endocannabinoid system may be a promising therapeutic target for the pharmacological treatment of cancer in human medicine and possibly in veterinary medicine as well. Compared with the original cells, the expression of gene encoding [...] Read more.
The last decades of research have shown that the endocannabinoid system may be a promising therapeutic target for the pharmacological treatment of cancer in human medicine and possibly in veterinary medicine as well. Compared with the original cells, the expression of gene encoding for receptors and enzymes belonging to the endocannabinoid system has been found to be altered in several tumor types; it has been hypothesized that this aberrant expression may be related to the course of the neoplasm as well as to the patient’s prognosis. Several studies, conducted both in vitro and in vivo, suggest that both endo- and phytocannabinoids can modulate signaling pathways, controlling cell proliferation and survival. In the complex process of carcinogenesis, cannabinoids seem to intervene at different levels by stimulating cell death, inhibiting the processes of angiogenesis and metastasis, and regulating antitumor immunity. Although the molecular mechanisms by which cannabinoids act are not always clear and defined, their synergistic activity with the most used antineoplastic drugs in clinical oncology is showing promising results, thus providing veterinary medicine with alternative therapeutic targets in disease control. This review aims to summarize current knowledge on the potential role of the endocannabinoid system and exogenous cannabinoids in oncology, with specific reference to the molecular mechanisms by which cannabinoids may exert antitumor activity. Additionally, it explores the potential synergy between cannabinoids and conventional anticancer drugs and considers their application in veterinary oncology. Full article
33 pages, 1463 KiB  
Review
Molecular Mechanisms of the Endocannabinoid System with a Focus on Reproductive Physiology and the Cannabinoid Impact on Fertility
by Patrycja Kalak, Piotr Kupczyk, Antoni Szumny, Tomasz Gębarowski, Marcin Jasiak, Artur Niedźwiedź, Wojciech Niżański and Michał Dzięcioł
Int. J. Mol. Sci. 2025, 26(15), 7095; https://doi.org/10.3390/ijms26157095 - 23 Jul 2025
Viewed by 299
Abstract
The endocannabinoid system (ECS) is a complex neuromodulatory network involved in maintaining physiological balance through interactions with various neurotransmitter and hormonal pathways. Its key components—cannabinoid receptors (CBRs)—are activated by endogenous ligands and exogenous cannabinoids such as those found in the Cannabis sativa plant. [...] Read more.
The endocannabinoid system (ECS) is a complex neuromodulatory network involved in maintaining physiological balance through interactions with various neurotransmitter and hormonal pathways. Its key components—cannabinoid receptors (CBRs)—are activated by endogenous ligands and exogenous cannabinoids such as those found in the Cannabis sativa plant. Although cannabinoids like cannabidiol (CBD) have garnered interest for their potential therapeutic effects, evidence regarding their safety, particularly for reproductive health, remains limited. This review summarizes the structure and molecular mechanisms of the ECS, its role in reproductive physiology—including its interactions with the hypothalamic–pituitary–gonadal axis (HPG axis), gametogenesis, implantation, and lactation—and the possible consequences of cannabinoid exposure for fertility. In addition, we focus on the involvement of the ECS and cannabinoids in breast cancer, highlighting emerging evidence on their dual role in tumor progression and therapy. These insights emphasize the need for further research to better define the therapeutic potential and risks associated with cannabinoid use in reproductive health and breast cancer. Full article
Show Figures

Figure 1

24 pages, 1378 KiB  
Review
Anti-Inflammatory Effects of Cannabinoids in Therapy of Neurodegenerative Disorders and Inflammatory Diseases of the CNS
by Dorota Tomaszewska-Zaremba, Alina Gajewska and Tomasz Misztal
Int. J. Mol. Sci. 2025, 26(14), 6570; https://doi.org/10.3390/ijms26146570 - 8 Jul 2025
Viewed by 443
Abstract
Many neurodegenerative diseases are associated with immune system disorders, while neurodegenerative processes often occur in inflammatory conditions of the Central Nervous System (CNS). Cannabinoids exhibit significant therapeutic potential due to their dual ability to modulate both neural and immune functions. These compounds have [...] Read more.
Many neurodegenerative diseases are associated with immune system disorders, while neurodegenerative processes often occur in inflammatory conditions of the Central Nervous System (CNS). Cannabinoids exhibit significant therapeutic potential due to their dual ability to modulate both neural and immune functions. These compounds have a broad spectrum of action, allowing them to target multiple pathological mechanisms underlying neurodegenerative and inflammatory CNS diseases. The present review outlines the therapeutic potential of cannabinoids, with a focus on their anti-inflammatory properties, in the treatment of neurodegenerative conditions, including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and Huntington’s disease, as well as inflammatory CNS disorders like multiple sclerosis and HIV-associated dementia. Full article
(This article belongs to the Special Issue The Impact of Natural Bioactive Compounds on Human Health and Disease)
Show Figures

Figure 1

35 pages, 1877 KiB  
Review
Dysregulation of the Cannabinoid System in Childhood Epilepsy: From Mechanisms to Therapy
by Gloria Montebello and Giuseppe Di Giovanni
Int. J. Mol. Sci. 2025, 26(13), 6234; https://doi.org/10.3390/ijms26136234 - 27 Jun 2025
Viewed by 1818
Abstract
Epilepsy affects over 12 million children worldwide, with approximately 30% classified as having drug-resistant epilepsy (DRE), often accompanied by neuropsychiatric comorbidities that severely impact quality of life. The endocannabinoid system (ECS) functions as a multifaceted neuromodulatory network regulating neuronal excitability, synaptic plasticity, and [...] Read more.
Epilepsy affects over 12 million children worldwide, with approximately 30% classified as having drug-resistant epilepsy (DRE), often accompanied by neuropsychiatric comorbidities that severely impact quality of life. The endocannabinoid system (ECS) functions as a multifaceted neuromodulatory network regulating neuronal excitability, synaptic plasticity, and immune homeostasis from early life through adolescence and into aging. In pediatric epilepsies, alterations in ECS components, particularly CB1 receptor expression and endocannabinoid levels, reveal disorder-specific vulnerabilities and therapeutic opportunities. Cannabidiol (CBD), a non-psychoactive compound from Cannabis sativa, has shown strong preclinical and clinical efficacy in treating DRE and is approved for Dravet syndrome, Lennox–Gastaut syndrome, and Tuberous Sclerosis Complex. Other ECS-based strategies, such as the use of CB1 receptor-positive allosteric modulators, can selectively enhance endogenous cannabinoid signaling where and when it is active, potentially reducing seizures in conditions like Dravet and absence epilepsy. Similarly, FAAH and MAGL inhibitors may help restore ECS tone without directly activating CB1 receptors. Precision targeting of ECS components based on regional expression and syndrome-specific pathophysiology may optimize seizure control and associated comorbidities. Nonetheless, long-term pediatric use must be approached with caution, given the critical role of the ECS in brain development. Full article
Show Figures

Figure 1

19 pages, 7023 KiB  
Article
Modulation of Neurexins Alternative Splicing by Cannabinoid Receptors 1 (CB1) Signaling
by Elisa Innocenzi, Giuseppe Sciamanna, Alice Zucchi, Vanessa Medici, Eleonora Cesari, Donatella Farini, David J. Elliott, Claudio Sette and Paola Grimaldi
Cells 2025, 14(13), 972; https://doi.org/10.3390/cells14130972 - 25 Jun 2025
Viewed by 553
Abstract
Synaptic plasticity is the key mechanism underlying learning and memory. Neurexins are pre-synaptic molecules that play a pivotal role in synaptic plasticity, interacting with many different post-synaptic molecules in the formation of neural circuits. Neurexins are alternatively spliced at different splice sites, yielding [...] Read more.
Synaptic plasticity is the key mechanism underlying learning and memory. Neurexins are pre-synaptic molecules that play a pivotal role in synaptic plasticity, interacting with many different post-synaptic molecules in the formation of neural circuits. Neurexins are alternatively spliced at different splice sites, yielding thousands of isoforms with different properties of interaction with post-synaptic molecules for a quick adaptation to internal and external inputs. The endocannabinoid system also plays a central role in synaptic plasticity, regulating key retrograde signaling at both excitatory and inhibitory synapses. This study aims at elucidating the crosstalk between alternative splicing of neurexin and the endocannabinoid system in the hippocampus. By employing an ex vivo hippocampal system, we found that pharmacological activation of cannabinoid receptor 1 (CB1) with the specific agonist ACEA led to reduced neurotransmission, associated with increased expression of the Nrxn1–3 spliced isoforms excluding the exon at splice site 4 (SS4−). In contrast, treatment with the CB1 antagonist AM251 increased glutamatergic activity and promoted the expression of the Nrxn variants including the exon (SS4+) Knockout of the involved splicing factor SLM2 determined the suppression of the exon splicing at SS4 and the expression only of the SS4+ variants of Nrxns1–3 transcripts. Interestingly, in SLM2 ko hippocampus, modulation of neurotransmission by AM251 or ACEA was abolished. These findings suggest a direct crosstalk between CB1-dependent signaling, neurotransmission and expression of specific Nrxns splice variants in the hippocampus. We propose that the fine-tuned regulation of Nrxn13 genes alternative splicing may play an important role in the feedback control of neurotransmission by the endocannabinoid system. Full article
(This article belongs to the Special Issue Synaptic Plasticity and the Neurobiology of Learning and Memory)
Show Figures

Figure 1

24 pages, 5287 KiB  
Article
A Tourette Syndrome/ADHD-like Phenotype Results from Postnatal Disruption of CB1 and CB2 Receptor Signalling
by Victoria Gorberg, Tamar Harpaz, Emilya Natali Shamir, Orit Diana Karminsky, Ester Fride, Roger G. Pertwee, Iain R. Greig, Peter McCaffery and Sharon Anavi-Goffer
Int. J. Mol. Sci. 2025, 26(13), 6052; https://doi.org/10.3390/ijms26136052 - 24 Jun 2025
Viewed by 570
Abstract
Cannabinoid receptor 1 (CB1) signalling is critical for weight gain and for milk intake in newborn pups. This is important as in humans, low birth weight increases the risk for attention-deficit hyperactivity disorder (ADHD). Moreover, some children with ADHD also have [...] Read more.
Cannabinoid receptor 1 (CB1) signalling is critical for weight gain and for milk intake in newborn pups. This is important as in humans, low birth weight increases the risk for attention-deficit hyperactivity disorder (ADHD). Moreover, some children with ADHD also have Tourette syndrome (TS). However, it remains unclear if insufficient CB1 receptor signalling may promote ADHD/TS-like behaviours. Here, ADHD/TS-like behaviours were studied from postnatal to adulthood by exposing postnatal wild-type CB1 and Cannabinoid receptor 2 (CB2) knockout mouse pups to SR141716A (rimonabant), a CB1 receptor antagonist/inverse agonist. Postnatal disruption of the cannabinoid system by SR141716A induced vocal-like tics and learning deficits in male mice, accompanied by excessive vocalisation, hyperactivity, motor-like tics and/or high-risk behaviour in adults. In CB1 knockouts, rearing and risky behaviours increased in females. In CB2 knockouts, vocal-like tics did not develop, and males were hyperactive with learning deficits. Importantly, females were hyperactive but showed no vocal-like tics. The appearance of vocal-like tics depends on disrupted CB1 receptor signalling and on functional CB2 receptors after birth. Inhibition of CB1 receptor signalling together with CB2 receptor stimulation underlie ADHD/TS-like behaviours in males. This study suggests that the ADHD/TS phenotype may be a single clinical entity resulting from incorrect cannabinoid signalling after birth. Full article
Show Figures

Figure 1

20 pages, 1301 KiB  
Review
The Involvement of the Endocannabinoid, Glutamatergic, and GABAergic Systems in PTSD
by Anna Dorota Grzesińska
Int. J. Mol. Sci. 2025, 26(13), 5929; https://doi.org/10.3390/ijms26135929 - 20 Jun 2025
Viewed by 692
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating mental health condition that develops in response to traumatic events. The endocannabinoid, glutamatergic, and GABAergic systems play crucial roles in the neurobiological mechanisms of PTSD. Both the endocannabinoid, glutamatergic, and GABAergic systems are involved in synaptic [...] Read more.
Post-traumatic stress disorder (PTSD) is a debilitating mental health condition that develops in response to traumatic events. The endocannabinoid, glutamatergic, and GABAergic systems play crucial roles in the neurobiological mechanisms of PTSD. Both the endocannabinoid, glutamatergic, and GABAergic systems are involved in synaptic remodeling and neuronal differentiation, ensuring efficient information transmission in the brain. Their interplay influences motivation, behavior, sensory perception, pain regulation, and visual processing. Additionally, these systems regulate processes such as cellular proliferation, adhesion, apoptosis, and immune responses. This article explores the involvement of the endocannabinoid, glutamatergic, and GABAergic systems in PTSD pathogenesis. A literature review was conducted on studies examining the relationship between the endocannabinoid, glutamatergic, and GABAergic systems in PTSD. Relevant publications were sourced from the Web of Science and Scopus databases, covering research up to 29 February 2025. Neurobiological mechanisms underlying PTSD may share common pathways with other mental and somatic disorders, particularly those involving inflammatory processes. The identification of biomarkers is crucial for assessing PTSD risk and implementing targeted interventions to improve patient outcomes. A deeper understanding of these mechanisms could enhance therapeutic strategies, ultimately improving the quality of life for individuals affected by PTSD. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 967 KiB  
Review
Interactions Between Iron Metabolism and the Endocannabinoid System in Bacterial Infections
by Kayle Brenna Dickson, Juan Zhou and Christian Lehmann
Antibiotics 2025, 14(6), 614; https://doi.org/10.3390/antibiotics14060614 - 18 Jun 2025
Viewed by 399
Abstract
Iron is a key nutritional requirement for a variety of physiological functions, and its metabolism is tightly controlled under homeostatic conditions. The endocannabinoid system (ECS) represents an additional physiological system with a key role in maintaining homeostasis that is known for its role [...] Read more.
Iron is a key nutritional requirement for a variety of physiological functions, and its metabolism is tightly controlled under homeostatic conditions. The endocannabinoid system (ECS) represents an additional physiological system with a key role in maintaining homeostasis that is known for its role in modulating immune responses. Recent research has highlighted intriguing interactions between these systems, including the suppression of iron uptake by the ECS and alterations to the iron-catalyzed Fenton reaction. These interactions are particularly interesting in the context of bacterial infections. As iron is a vital nutrient for bacteria, modulating iron levels using the ECS may be able to control bacterial growth. This review aims to explore the current understanding of how the ECS affects iron homeostasis and its implications for bacterial pathogenesis. In this study, we provide an overview of both iron metabolism and the ECS, focusing on harnessing these systems to develop novel therapeutic strategies to modulate iron metabolism in bacterial infections. By elucidating these complex interactions, we hope to provide new insights into the development of novel treatments for bacterial infections. Full article
Show Figures

Figure 1

20 pages, 7139 KiB  
Article
Cannabinoid Receptor 1 Regulates Zebrafish Renal Multiciliated Cell Development via cAMP Signaling
by Thanh Khoa Nguyen, Sophia Baker, Julienne Angtuaco, Liana Arceri, Samuel Kaczor, Bram Fitzsimonds, Matthew R. Hawkins and Rebecca A. Wingert
J. Dev. Biol. 2025, 13(2), 20; https://doi.org/10.3390/jdb13020020 - 17 Jun 2025
Viewed by 770
Abstract
Endocannabinoid signaling plays a significant role in neurogenesis and nervous system physiology, but its roles in the development of other tissues are just beginning to be appreciated. Previous reports have shown the presence of the key endocannabinoid receptor Cannabinoid receptor 1 (CB1 or [...] Read more.
Endocannabinoid signaling plays a significant role in neurogenesis and nervous system physiology, but its roles in the development of other tissues are just beginning to be appreciated. Previous reports have shown the presence of the key endocannabinoid receptor Cannabinoid receptor 1 (CB1 or Cnr1) in multiciliated (MCC) tissues and its upregulation in kidney diseases, yet the relationship between Cnr1 and renal MCC development is unknown. Here, we report that Cnr1 is essential for cilia development across tissues and regulates renal MCCs via cyclic AMP (cAMP) signaling during zebrafish embryogenesis. Using a combination of genetic and pharmacological studies, we found that the loss of function, agonism and antagonism of cnr1 all lead to reduced mature renal MCC populations. cnr1 deficiency also led to reduced cilia development across tissues, including the pronephros, ear, Kupffer’s vesicle (KV), and nasal placode. Interestingly, treatment with the cAMP activator Forskolin (FSK) restored renal MCC defects in agonist-treated embryos, suggesting that cnr1 mediates cAMP signaling in renal MCC development. Meanwhile, treatment with the cAMP inhibitor SQ-22536 alone or with cnr1 deficiency led to reduced MCC populations, suggesting that cnr1 also mediates renal MCC development independently of cAMP signaling. Our findings indicate that cnr1 has a critical role in controlling renal MCC development both via cAMP signaling and an independent pathway, further revealing implications for ciliopathies and renal diseases. Full article
(This article belongs to the Special Issue Feature Papers from Journal of Developmental Biology Reviewers)
Show Figures

Figure 1

28 pages, 5643 KiB  
Article
Prenatal Delta-9-Tetrahydrocannabinol Exposure Induces Transcriptional Alterations in Dopaminergic System with Associated Electrophysiological Dysregulation in the Prefrontal Cortex of Adolescent Rats
by Martina Di Bartolomeo, Sonia Aroni, Marcello Serra, Valeria Serra, Francesca Martella, Federica Gilardini, Miriam Melis and Claudio D’Addario
Cells 2025, 14(12), 904; https://doi.org/10.3390/cells14120904 - 14 Jun 2025
Viewed by 2450
Abstract
Prenatal cannabis exposure (PCE) has been associated with altered prefrontal cortex (PFC) activity and connectivity in adulthood, potentially increasing the risk of psychopathology later in life. This risk is thought to involve a complex interplay between the endocannabinoid and dopaminergic systems. We investigated [...] Read more.
Prenatal cannabis exposure (PCE) has been associated with altered prefrontal cortex (PFC) activity and connectivity in adulthood, potentially increasing the risk of psychopathology later in life. This risk is thought to involve a complex interplay between the endocannabinoid and dopaminergic systems. We investigated the transcriptional regulation of genes associated with these systems in an animal model of PCE during adolescence, focusing on DNA methylation and specific microRNAs (miRNAs). Our study revealed increased mRNA levels of dopamine D1 and D2 receptors (Drd1 and Drd2) in the PFC, with a notable effect on Drd2 in male offspring. Notably, we observed a consistent reduction in Drd2 DNA methylation levels in PCE male rats. Both Drd1 and Drd2 expressions were regulated by selective miRNAs. Accordingly, we found changes in the excitability of PFC pyramidal neurons in male adolescent PCE offspring, along with alterations in the Netrin-1/DCC guidance cue system. Our findings highlight PCE-induced modifications of the PFC dopaminergic system while maintaining stable gene expression of the endocannabinoid system in male offspring. Changes in this complex interaction during sensitive developmental periods like adolescence might lead to sex-dependent divergent behavioral outcomes induced by PCE. Full article
Show Figures

Graphical abstract

17 pages, 880 KiB  
Article
Endocannabinoid Tone and Oxylipins in Rheumatoid Arthritis and Osteoarthritis—A Novel Target for the Treatment of Pain and Inflammation?
by Jost Klawitter, Andrew D. Clauw, Jennifer A. Seifert, Jelena Klawitter, Bridget Tompson, Cristina Sempio, Susan L. Ingram, Uwe Christians and Larry W. Moreland
Int. J. Mol. Sci. 2025, 26(12), 5707; https://doi.org/10.3390/ijms26125707 - 14 Jun 2025
Viewed by 478
Abstract
Inflammation is a complicated physiological process that contributes to a variety of disorders including osteoarthritis (OA) and rheumatoid arthritis (RA). Endocannabinoids and the endocannabinoid system (ECS) play a pivotal role in the physiological response to pain and inflammation. A clinical study to investigate [...] Read more.
Inflammation is a complicated physiological process that contributes to a variety of disorders including osteoarthritis (OA) and rheumatoid arthritis (RA). Endocannabinoids and the endocannabinoid system (ECS) play a pivotal role in the physiological response to pain and inflammation. A clinical study to investigate the role of the endocannabinoid system and related lipids in pain and inflammation in OA and RA was performed. In total, 80 subjects, namely, 25 patients with RA, 18 with OA, and 37 healthy participants, were included. Sixteen endocannabinoids and congeners, as well as 129 oxylipins, were quantified in plasma using specific, quantitative LC-MS/MS assays. The endocannabinoid analysis revealed significantly lower levels of 2-arachidonoylglycerol (2-AG) in RA and OA patients compared to healthy participants. In contrast, the EC levels of the ethanolamide group (anandamide, docosahexaenoyl-EA, palmitoleoyl-EA, and other ethanolamides) were higher in the RA study cohort and to a lesser extent also in the OA cohort. This analysis of oxylipins revealed lower levels of the pro-resolving lipid 9-oxo-octadecadienoic acid (9-oxoODE) and the ω-3 fatty acids EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) in RA compared to all other study cohorts. 2-AG is a key regulator of nociception and inflammation, and its relatively low levels might be a mechanistic contributor to residual pain and inflammation in RA and OA. Several changes in pro- and anti-inflammatory lipid mediators were detected, including lower levels of EPA and DHA in RA, which might reveal the potential for nutritional supplementation with these anti-inflammatory fatty acids. Full article
(This article belongs to the Special Issue Rheumatoid Arthritis: Molecular Mechanisms and Immunotherapy)
Show Figures

Figure 1

29 pages, 2109 KiB  
Article
Molecular Insights into the Nociceptive Modulation by Palmitoylethanolamide and Equisetum arvense Extract: An In Vitro Study Across the Blood–Brain Barrier
by Simone Mulè, Rebecca Galla, Sara Ferrari, Marco Invernizzi and Francesca Uberti
Nutrients 2025, 17(12), 1998; https://doi.org/10.3390/nu17121998 - 13 Jun 2025
Viewed by 566
Abstract
Background: The blood–brain barrier (BBB) plays a critical role in protecting the central nervous system (CNS) but also limits drug delivery. Insufficient knowledge of how the CNS promotes the onset and maintenance of peripheral neuropathic pain limits therapeutic methods for the treatment of [...] Read more.
Background: The blood–brain barrier (BBB) plays a critical role in protecting the central nervous system (CNS) but also limits drug delivery. Insufficient knowledge of how the CNS promotes the onset and maintenance of peripheral neuropathic pain limits therapeutic methods for the treatment of persistent neuropathic pain. Thus, this study aimed to evaluate the ability of a novel combination of Palmitoylethanolamide (PEA) and Equisetum arvense L. (Equisetum A.L.) to cross the BBB and modulate nociceptive pathways. Methods: Using a humanised in vitro BBB tri-culture model, the permeability, cytotoxicity, and integrity of the barrier were assessed after exposure to two different PEA forms, PEA ultramicronized (PEA-um) and PEA80mesh, Equisetum A.L., and a combination of the last two samples. The samples exhibited no cytotoxicity, maintained tight junction integrity, and efficiently crossed the blood–brain barrier (BBB), with the combination displaying the highest permeability. The eluate from the BBB model was then used to stimulate the co-culture of CCF-STTG1 astrocytes and SH-SY5Y neurons pre-treated with H2O2 200 µM. Results: Treatment with the combination significantly increased cell viability (1.8-fold, p < 0.05), reduced oxidative stress (2.5-fold, p < 0.05), and decreased pro-inflammatory cytokines (TNFα, IL-1β) compared to single agents. Mechanistic analysis revealed modulation of key targets involved in pain pathways, including decreased FAAH and NAAA activity, increased levels of endocannabinoids (AEA and 2-AG), upregulation of CB2 receptor expression, enhanced PPARα activity, and reduced phosphorylation of PKA and TRPV1. Conclusions: These findings suggest that the combination of PEA and Equisetum A.L. effectively crosses the BBB and exerts combined anti-inflammatory and analgesic effects at the CNS level, suggesting a possible role in modulating neuroinflammatory and nociception responses. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

30 pages, 1177 KiB  
Review
Recent Preclinical Evidence on Phytocannabinoids in Neurodegenerative Disorders: A Focus on Parkinson’s and Alzheimer’s Disease
by Nicoleta-Mirela Blebea, Ciprian Pușcașu, Gabriel Hancu, Alina Mihaela Stăniguț and Cornel Chiriță
Pharmaceuticals 2025, 18(6), 890; https://doi.org/10.3390/ph18060890 - 13 Jun 2025
Viewed by 1400
Abstract
The endocannabinoid system (ECS) is a vital biological network essential for maintaining homeostasis and supporting various physiological functions. It comprises cannabinoid receptors, endogenous lipid-based ligands, known as endocannabinoids, as well as metabolic enzymes and associated proteins responsible for regulating their levels within tissues. [...] Read more.
The endocannabinoid system (ECS) is a vital biological network essential for maintaining homeostasis and supporting various physiological functions. It comprises cannabinoid receptors, endogenous lipid-based ligands, known as endocannabinoids, as well as metabolic enzymes and associated proteins responsible for regulating their levels within tissues. The ECS plays a central role in modulating processes involving the central nervous system (CNS). Recent studies have highlighted its antioxidant, anti-inflammatory, and neuroprotective properties. The therapeutic potential of cannabinoids, particularly phytocannabinoids derived from plants, has attracted significant attention in medical and pharmaceutical research. This interest has grown in parallel with the increasing availability of cannabinoid-based food supplements on the pharmaceutical market. Given the complexity of the ECS and its broad range of interactions, the discovery of this system has spurred extensive investigations into the use of cannabinoids for various health conditions. In this review, we examine recent preclinical evidence supporting the use of phytocannabinoids in the context of neurodegenerative diseases, particularly in Alzheimer’s disease and Parkinson’s disease. Targeting the ECS through phytocannabinoid-based pharmacological modulation offers a promising therapeutic strategy for these neurological disorders. Among these compounds, cannabidiol has emerged as a key focus of research due to its multifaceted effects and favorable safety profile. Nonetheless, continued investigation is necessary to clarify its mechanisms of action, and to develop effective, evidence-based clinical applications. Full article
(This article belongs to the Special Issue Medicinal Potential of Cannabidiol and New Structural Analogs)
Show Figures

Graphical abstract

18 pages, 2189 KiB  
Article
Changes of CB1 Receptor Expression in Tissues of Cocaine-Exposed Eels
by Lorenzo Riccio, Teresa Chianese, Aldo Mileo, Sabrina Balsamo, Rosaria Sciarrillo, Roberta Gatta, Luigi Rosati, Maria De Falco and Anna Capaldo
Animals 2025, 15(12), 1734; https://doi.org/10.3390/ani15121734 - 12 Jun 2025
Viewed by 1058
Abstract
Previous studies performed on the European eel Anguilla anguilla showed changes in the morphology and physiology of several tissues after exposure to environmental cocaine concentrations. To better understand the model through which cocaine produced its effects on these tissues, we investigated whether there [...] Read more.
Previous studies performed on the European eel Anguilla anguilla showed changes in the morphology and physiology of several tissues after exposure to environmental cocaine concentrations. To better understand the model through which cocaine produced its effects on these tissues, we investigated whether there were alterations in the expression of cannabinoid CB1 receptor (CB1R). Indeed, the endocannabinoid system, and CB1R, regulate neurotransmission, neurodevelopment, embryonic development, reproduction, and the activity of the gastrointestinal system. CB1R has been detected in nervous and peripheral tissues in mammals, and orthologues of the mammalian CB1R are found throughout vertebrates including chicken, turtle, frog, and fish. Therefore, samples of gut, kidney, ovary, muscle, liver, skin, and gills from cocaine-exposed and non-exposed eels were processed for routine histology. Immunohistochemical analysis was carried out to evaluate the immunolocalization of the CB1R. Our results showed for the first time (1) the presence of CB1R in the peripheral tissues of the eel, and (2) statistically significant differences in the localization of CB1R in the gut, kidney, ovary, muscle, and liver of the eels exposed to cocaine, compared to controls. These results demonstrate the involvement of CB1R in cocaine effects and suggest its potential role as a biomarker of tissue alteration. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

Back to TopTop