Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = end-of-life PV modules

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 2355 KB  
Review
Life-Cycle Assessment of Innovative Industrial Processes for Photovoltaic Production: Process-Level LCIs, Scale-Up Dynamics, and Recycling Implications
by Kyriaki Kiskira, Nikitas Gerolimos, Georgios Priniotakis and Dimitrios Nikolopoulos
Appl. Sci. 2026, 16(1), 501; https://doi.org/10.3390/app16010501 - 4 Jan 2026
Viewed by 165
Abstract
The rapid commercialization of next-generation photovoltaic (PV) technologies, particularly perovskite, thin-film roll-to-roll (R2R) architectures, and tandem devices, requires robust assessment of environmental performance at the level of industrial manufacturing processes. Environmental impacts can no longer be evaluated solely at the device or module [...] Read more.
The rapid commercialization of next-generation photovoltaic (PV) technologies, particularly perovskite, thin-film roll-to-roll (R2R) architectures, and tandem devices, requires robust assessment of environmental performance at the level of industrial manufacturing processes. Environmental impacts can no longer be evaluated solely at the device or module level. Although many life-cycle assessment (LCA) studies compare silicon, cadmium telluride (CdTe), copper indium gallium selenide (CIGS), and perovskite technologies, most rely on aggregated indicators and database-level inventories. Few studies systematically compile and harmonize process-level life-cycle inventories (LCIs) for the manufacturing steps that differentiate emerging industrial routes, such as solution coating, R2R processing, atomic layer deposition, low-temperature annealing, and advanced encapsulation–metallization strategies. In addition, inconsistencies in functional units, system boundaries, electricity-mix assumptions, and scale-up modeling continue to limit meaningful cross-study comparison. To address these gaps, this review (i) compiles and critically analyzes process-resolved LCIs for innovative PV manufacturing routes across laboratory, pilot, and industrial scales; (ii) quantifies sensitivity to scale-up, yield, throughput, and electricity carbon intensity; and (iii) proposes standardized methodological rules and open-access LCI templates to improve reproducibility, comparability, and integration with techno-economic and prospective LCA models. The review also synthesizes current evidence on recycling, circularity, and critical-material management. It highlights that end-of-life (EoL) benefits for emerging PV technologies are highly conditional and remain less mature than for crystalline-silicon systems. By shifting the analytical focus from technology class to manufacturing process and life-cycle configuration, this work provides a harmonized evidence base to support scalable, circular, and low-carbon industrial pathways for next-generation PV technologies. Full article
(This article belongs to the Special Issue Life Cycle Assessment in Sustainable Materials Manufacturing)
Show Figures

Graphical abstract

14 pages, 1779 KB  
Article
Closing the Loop on Solar: A Sustainability Assessment of Photovoltaic Recycling in Greece
by Kyriaki Kiskira, Angeliki Lalopoulou, Konstantinos Kalkanis and George Vokas
Energies 2025, 18(23), 6314; https://doi.org/10.3390/en18236314 - 30 Nov 2025
Cited by 1 | Viewed by 363
Abstract
This paper examines the sustainability of photovoltaic (PV) panel recycling through a case study in Greece. It traces the evolution of PVs and outlines the main construction characteristics, emphasizing that although PV systems reduce greenhouse gas emissions, they also generate substantial end-of-life (EoL) [...] Read more.
This paper examines the sustainability of photovoltaic (PV) panel recycling through a case study in Greece. It traces the evolution of PVs and outlines the main construction characteristics, emphasizing that although PV systems reduce greenhouse gas emissions, they also generate substantial end-of-life (EoL) waste containing both valuable and potentially hazardous materials. The study estimates Greece’s annual PV waste generation and evaluates its environmental, social, and economic impacts. It focuses on advanced disassembly and recycling methods by PV types and calculates material-recovery rates. Using national installation data from 2009–2023, the analysis quantifies the potential mass of recoverable materials and assesses the sustainability of PV recycling in terms of environmental protection, public health, and economic feasibility. Results show high recovery rates: silicon (85%), aluminum (100%), silver (98–100%), glass (95%), copper (97%), and tin (32%). Although current recycling economics remain challenging, the environmental and health benefits are significant. This research contributes to the existing literature by providing the first detailed quantification of recoverable raw materials embedded in Greece’s PV stock and by highlighting the need for technological innovation and supportive policies to enable a circular and sustainable solar economy. Full article
(This article belongs to the Special Issue A Circular Economy Perspective: From Waste to Energy)
Show Figures

Figure 1

27 pages, 3909 KB  
Article
Second-Life EV Batteries for PV–SLB Hybrid Petrol Stations: A Roadmap for Malaysia’s Urban Energy Transition
by Md Tanjil Sarker, Gobbi Ramasamy, Marran Al Qwaid and Shashikumar Krishnan
Urban Sci. 2025, 9(10), 422; https://doi.org/10.3390/urbansci9100422 - 13 Oct 2025
Viewed by 2694
Abstract
The rapid growth of electric vehicle (EV) adoption in Malaysia is projected to generate substantial volumes of end-of-life lithium-ion batteries, creating both environmental challenges and opportunities for repurposing into second-life batteries (SLBs). This study investigates the technical, economic, and regulatory feasibility of deploying [...] Read more.
The rapid growth of electric vehicle (EV) adoption in Malaysia is projected to generate substantial volumes of end-of-life lithium-ion batteries, creating both environmental challenges and opportunities for repurposing into second-life batteries (SLBs). This study investigates the technical, economic, and regulatory feasibility of deploying SLBs for photovoltaic (PV) energy storage in petrol stations, an application aligned with the nation’s energy transition goals. Laboratory testing of Nissan Leaf ZE0 battery modules over a 120-day operation period demonstrated stable cycling performance with approximately 7% capacity fade, maintaining state-of-health (SOH) above 47%. A case study of a 12 kWp PV–SLB hybrid system for a typical Malaysian petrol station shows 45 kWh of usable storage, capable of offsetting a daily electricity demand of 45 kWh, reducing capital cost by 30–50% compared to new lithium-ion systems, and achieving 70–80% lifecycle CO2 emission reductions. The proposed architecture leverages SLBs’ suitability for slower, steady discharge to provide reliable nighttime operation and grid load relief, particularly in semi-urban and rural stations. Beyond technical validation, the paper evaluates economic benefits, environmental impacts, and Malaysia’s regulatory readiness, identifying gaps in certification standards, reverse logistics, and workforce skills. Strategic recommendations are proposed to enable large-scale SLB deployment and integration into hybrid PV–petrol station systems. Findings indicate that SLBs can serve as a cost-effective, sustainable energy storage solution, supporting Malaysia’s National Energy Transition Roadmap (NETR), advancing circular economy practices, and positioning the country as a potential ASEAN leader in battery repurposing. Full article
Show Figures

Figure 1

28 pages, 2422 KB  
Article
Reverse Logistics Network Optimization for Retired BIPV Panels in Smart City Energy Systems
by Cimeng Zhou and Shilong Li
Buildings 2025, 15(14), 2549; https://doi.org/10.3390/buildings15142549 - 19 Jul 2025
Viewed by 888
Abstract
Through the energy conversion of building skins, building-integrated photovoltaic (BIPV) technology, the core carrier of the smart city energy system, encourages the conversion of buildings into energy-generating units. However, the decommissioning of the module faces the challenge of physical dismantling and financial environmental [...] Read more.
Through the energy conversion of building skins, building-integrated photovoltaic (BIPV) technology, the core carrier of the smart city energy system, encourages the conversion of buildings into energy-generating units. However, the decommissioning of the module faces the challenge of physical dismantling and financial environmental damage because of the close coupling with the building itself. As the first tranche of BIPV projects will enter the end of their life cycle, it is urgent to establish a multi-dimensional collaborative recycling mechanism that meets the characteristics of building pv systems. Based on the theory of reverse logistics network, the research focuses on optimizing the reverse logistics network during the decommissioning stage of BIPV modules, and proposes a dual-objective optimization model that considers both cost and carbon emissions for BIPV. Meanwhile, the multi-level recycling network which covers “building points-regional transfer stations-specialized distribution centers” is designed in the research, the Pareto solution set is solved by the improved NSGA-II algorithm, a “1 + 1” du-al-core construction model of distribution center and transfer station is developed, so as to minimize the total cost and life cycle carbon footprint of the logistics network. At the same time, the research also reveals the driving effect of government reward and punishment policies on the collaborative behavior of enterprise recycling, and provides methodological support for the construction of a closed-loop supply chain of “PV-building-environment” symbiosis. The study concludes that in the process of constructing smart city energy system, the systematic control of resource circulation and environmental risks through the optimization of reverse logistics network can provide technical support for the sustainable development of smart city. Full article
(This article belongs to the Special Issue Research on Smart Healthy Cities and Real Estate)
Show Figures

Figure 1

34 pages, 3259 KB  
Review
Recent Progress in the Recovery and Recycling of Polymers from End-of-Life Silicon PV Modules
by Pradeep Padhamnath
Sustainability 2025, 17(10), 4583; https://doi.org/10.3390/su17104583 - 16 May 2025
Cited by 2 | Viewed by 3724
Abstract
Solar photovoltaic (PV) technology has emerged as the most preferred source of clean energy generation and has been deployed at a large scale. However, end-of-life management of the PV modules is a critical issue that has garnered the recent attention of lawmakers and [...] Read more.
Solar photovoltaic (PV) technology has emerged as the most preferred source of clean energy generation and has been deployed at a large scale. However, end-of-life management of the PV modules is a critical issue that has garnered the recent attention of lawmakers and researchers alike. Consequently, several researchers are actively developing technology to recycle the end-of-life PV modules. Since silicon PV modules account for more than 90% of the modules deployed globally, most of these efforts are focused on recycling crystalline silicon PV modules. Researchers have primarily focused on recovering pure silver from the contacts and pure Si from the solar cells. However, to ensure complete recyclability of such panels, the different polymers used in these modules must also be recycled. This review addresses the issue of recycling the polymers from end-of-life c-Si modules. Scopus and Google Scholar were used to search for the relevant literature. This review presents the current state-of-the-art technology related to polymer recycling found in the PV modules, the challenges encountered in their recycling, and the outlook. While research on the recycling of polymers has progressed in the last few decades, the instances of their applications in the recycling of polymers from PV panels are rarely reported in the literature. In this work, certain technical pathways, which can be employed to recycled polymers obtained from end-of-life PV panels, are presented. Recycling the polymers from the end-of-life silicon PV modules is crucial for improving the sustainability of solar PV technology. Full article
Show Figures

Graphical abstract

14 pages, 2210 KB  
Article
Estimation of Türkiye’s Solar Panel Waste Using Artificial Neural Networks (ANNs): A Comparative Analysis of ANNs and Multiple Regression Analysis
by Kenan Koçkaya
Sustainability 2025, 17(9), 4085; https://doi.org/10.3390/su17094085 - 1 May 2025
Cited by 1 | Viewed by 1330
Abstract
Due to global changes, interest in solar energy is increasing day by day. The share of solar energy in energy production is constantly increasing, replacing limited resources such as oil and gas, due to the fact that its source is inexhaustible and free [...] Read more.
Due to global changes, interest in solar energy is increasing day by day. The share of solar energy in energy production is constantly increasing, replacing limited resources such as oil and gas, due to the fact that its source is inexhaustible and free and it does not emit CO2. The increasing prevalence of photovoltaic (PV) technology has brought about the problem of disposing of end-of-life panels in an environmentally friendly manner. In this study, a two-stage system model was developed to estimate Türkiye’s PV panel waste amount up to 2050. First, a new Artificial Neural Network (ANN) model was developed to estimate Türkiye’s total PV panel installed power in the coming years. The performance of the ANN model was compared with PV panel installed power estimation data obtained using multiple regression analysis. In the second stage, a mathematical model was created to estimate the amount of PV module waste. In the waste potential estimations for both methods, end-of-life and early failure scenarios due to various reasons were taken into account. As a result of the study, it was found that Türkiye’s total waste potential aligns with the future projection data published by the International Energy Agency (IEA) and the International Renewable Energy Agency (IRENA). Full article
(This article belongs to the Topic Solar Forecasting and Smart Photovoltaic Systems)
Show Figures

Figure 1

19 pages, 1740 KB  
Article
The Solar Waste Challenge: Estimating and Managing End-of-Life Photovoltaic Panels in Italy
by Soroush Khakpour, Le Quyen Luu, Francesco Nocera, Alberta Latteri and Maurizio Cellura
Energies 2025, 18(9), 2219; https://doi.org/10.3390/en18092219 - 27 Apr 2025
Cited by 3 | Viewed by 2795
Abstract
Italy ranks among the leading countries in photovoltaic (PV) adoption, having installed 6.80 GW of new PV capacity, bringing the total installed capacity to 37.09 GW in 2024. However, this widespread deployment also leads to a substantial amount of PV waste as systems [...] Read more.
Italy ranks among the leading countries in photovoltaic (PV) adoption, having installed 6.80 GW of new PV capacity, bringing the total installed capacity to 37.09 GW in 2024. However, this widespread deployment also leads to a substantial amount of PV waste as systems reach the end of their lifespan. This study aims to estimate the volume of PV waste expected to be generated in Italy due to the decommissioning of end-of-life (EoL) PV panels and to explore landfill and recovery scenarios that could offer the most sustainable management strategies. The findings indicate that 4520 kilotonnes of PV waste will be produced in Italy between 2030 and 2050. Of this, a significant share consists of glass (2704.9 kilotonnes) and aluminum (762.1 kilotonnes). Additionally, Italy will produce 174.6 kt of landfill waste in 2036. In 2049 and 2050, the total composition recovery is predicted to reach 571 kt and 604.7 kt, respectively. To summarize, the main contributions of this work include (1) projections of the EoL of crystalline silicon PV waste by material quantity for 2050, (2) the economic value share of PV module materials based on waste estimates and recovery, and (3) the estimation of the EoL solar compositions generated by 2050. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

17 pages, 11943 KB  
Article
Assessing the Feasibility of Integrating a Thermal Separational Method with PV Recycling Technologies
by Gergely Balázs Patthy, Zsófia Závodi-Fodor and Miklós Jakab
Thermo 2025, 5(1), 10; https://doi.org/10.3390/thermo5010010 - 14 Mar 2025
Viewed by 2424
Abstract
The growing volume of end-of-life photovoltaic (PV) panels, projected to reach 60–78 million tons by 2050, poses significant environmental challenges. With landfilling being the most cost-effective but unsustainable disposal method, developing eco-friendly processes to recover valuable materials is essential. One potential solution for [...] Read more.
The growing volume of end-of-life photovoltaic (PV) panels, projected to reach 60–78 million tons by 2050, poses significant environmental challenges. With landfilling being the most cost-effective but unsustainable disposal method, developing eco-friendly processes to recover valuable materials is essential. One potential solution for recovering raw materials from PV panels is thermal treatment. Therefore, in this study, PV modules were heat-treated at a low heating rate, and their components were manually separated with an average efficiency of 90%. The recovered silicon wafers and tempered glass sheets were utilized to fabricate new PV panels using lamination technology. The applied heating parameters enabled the cells to be removed from the PV panels without structural damage. However, the results of electroluminescence tests showed that thermal treatment significantly damages the p-n junctions, rendering direct reuse in new panels unfeasible. The thermal separation methods outlined in this study offer valuable opportunities for industries employing various PV-panel-recycling technologies. These methods lay the groundwork for environmentally responsible management and recovery of materials from end-of-life solar panels, advancing sustainable recycling practices. Full article
Show Figures

Figure 1

25 pages, 5892 KB  
Article
Photovoltaic Waste Generation in the Context of Sustainable Energy Transition in EU Member States
by María Beatriz Nieto Morone, Félix García Rosillo, Miguel Ángel Muñoz-García and Maria del Carmen Alonso-García
Resources 2025, 14(3), 37; https://doi.org/10.3390/resources14030037 - 26 Feb 2025
Cited by 5 | Viewed by 3801
Abstract
The European Union (EU) is witnessing an expansion in solar capacity, aligning with its commitment to achieving climate neutrality by 2050. However, deploying solar capacity introduces significant environmental complexities, such as managing photovoltaic waste when the modules reach their end of life. This [...] Read more.
The European Union (EU) is witnessing an expansion in solar capacity, aligning with its commitment to achieving climate neutrality by 2050. However, deploying solar capacity introduces significant environmental complexities, such as managing photovoltaic waste when the modules reach their end of life. This study presents an assessment of PV waste mass generation, integrating the latest data from the revised targets of the National Energy and Climate Plans (NECPs) of EU Member States presented in December 2023. Annual and cumulative PV waste mass is presented, analyzing the results in terms of the PV capacity deployment in each country and their recycling needs to face the treatment of the generated PV waste. According to the reviewed targets, the analysis reveals significant variations in PV waste mass generation across EU countries. The revisions show a substantial increase in the amount of waste generated in Europe. Lithuania and Ireland are anticipated to face substantial challenges, particularly under the early-loss scenario, whereas Germany, Italy, France, and Spain continue to be the countries that will generate the most PV waste mass in Europe. These findings emphasize the necessity for formulating and implementing effective waste management strategies to address the increasing generation of PV waste and mitigate its environmental impact. Furthermore, the study underscores the need to reassess projections to accommodate evolving energy policies and targets, ensuring alignment with sustainability objectives in this dynamic field. Full article
Show Figures

Figure 1

31 pages, 4525 KB  
Review
From Waste to Resource: Exploring the Current Challenges and Future Directions of Photovoltaic Solar Cell Recycling
by Ghadeer Badran and Vlado K. Lazarov
Solar 2025, 5(1), 4; https://doi.org/10.3390/solar5010004 - 11 Feb 2025
Cited by 8 | Viewed by 6323
Abstract
The rapid proliferation of photovoltaic (PV) solar cells as a clean energy source has raised significant concerns regarding their end-of-life (EoL) management, particularly in terms of sustainability and waste reduction. This review comprehensively examines challenges, opportunities, and future directions in the recycling of [...] Read more.
The rapid proliferation of photovoltaic (PV) solar cells as a clean energy source has raised significant concerns regarding their end-of-life (EoL) management, particularly in terms of sustainability and waste reduction. This review comprehensively examines challenges, opportunities, and future directions in the recycling of PV solar cells, focusing on mechanical, thermal, and chemical recycling techniques. It also evaluates the scalability and practicality of these methods to different PV technologies, including crystalline silicon and thin-film modules. It explores the economic and environmental impacts of these processes, highlighting the necessity of developing robust recycling infrastructure and innovative technologies to address the anticipated surge in PV waste. Additionally, this review discusses the critical role of government policies and industry collaboration in overcoming the barriers to effective recycling. Furthermore, the importance of integrating design-for-recyclability principles into PV module development is emphasized, as it can significantly enhance material recovery and process efficiency. By advancing these strategies, the solar industry can achieve greater sustainability, reduce resource depletion, and mitigate environmental risks, thereby ensuring the long-term viability of solar energy as a key component of global renewable energy initiatives. Full article
Show Figures

Figure 1

29 pages, 7255 KB  
Review
Solar PV End-of-Life Waste Recycling: An Assessment of Mechanical Recycling Methods and Proposed Hybrid Laser and High Voltage Pulse Crushing Method
by Amjad Ali, Muhammad Shahid, Sikandar Abdul Qadir, Md Tasbirul Islam, Muhammad Waseem Khan and Shoaib Ahmed
Resources 2024, 13(12), 169; https://doi.org/10.3390/resources13120169 - 29 Nov 2024
Cited by 5 | Viewed by 5946
Abstract
This research article investigates the recycling of end-of-life solar photovoltaic (PV) panels by analyzing various mechanical methods, including Crushing, High Voltage Pulse Crushing, Electrostatic Separation, Hot Knife Cutting, Water Jet Cutting, and Magnetic Separation. Each method’s effectiveness in extracting materials such as glass, [...] Read more.
This research article investigates the recycling of end-of-life solar photovoltaic (PV) panels by analyzing various mechanical methods, including Crushing, High Voltage Pulse Crushing, Electrostatic Separation, Hot Knife Cutting, Water Jet Cutting, and Magnetic Separation. Each method’s effectiveness in extracting materials such as glass, silicon, metals (copper, aluminum, silver, tin, lead), and EVA was evaluated. The analysis reveals that no single method is entirely sufficient for comprehensive material recovery. Based on the data analysis, a new hypothetical hybrid method, Laser and High Voltage Pulse (L&HVP), is proposed, which integrates the precision of laser irradiation with the robustness of high voltage pulse crushing. The laser irradiation step would theoretically facilitate the removal of the ethylene-vinyl acetate (EVA) encapsulant, preparing the materials for subsequent separation. The high high-voltage pulse crushing would then selectively fragment and separate the remaining components, potentially enhancing material recovery efficiency while minimizing contamination. The proposed approach is grounded in the observed limitations of existing techniques. This method aims to offer a more comprehensive and sustainable solution for solar PV module recycling. Further research and experimentation are necessary to validate the effectiveness of the L&HVP method and its potential impact on the field of solar PV recycling. Full article
Show Figures

Figure 1

44 pages, 19912 KB  
Review
Recycling of Silicon-Based Photovoltaic Modules: Mediterranean Region Insight
by Ana-María Diez-Suarez, Marta Martínez-Benavides, Cristina Manteca Donado, Jorge-Juan Blanes-Peiró and Elia Judith Martínez Torres
Energies 2024, 17(23), 6015; https://doi.org/10.3390/en17236015 - 29 Nov 2024
Cited by 4 | Viewed by 4279
Abstract
The rapid expansion of photovoltaic (PV) installations across Mediterranean Europe since 2007 has resulted in a substantial increase in the need for end-of-life (EoL) management strategies for monocrystalline PV modules. This paper reviews the technical challenges and opportunities associated with the recycling of [...] Read more.
The rapid expansion of photovoltaic (PV) installations across Mediterranean Europe since 2007 has resulted in a substantial increase in the need for end-of-life (EoL) management strategies for monocrystalline PV modules. This paper reviews the technical challenges and opportunities associated with the recycling of PV modules, focusing on the physical, chemical, and thermal processes currently employed. Despite advancements in recycling technology, significant gaps remain in infrastructure and regulatory enforcement, particularly in Mediterranean countries. The recovery of valuable materials such as silicon, silver, and glass presents both economic and environmental benefits, although the costs of recycling remain a key barrier to widespread adoption. Our analysis suggests that optimizing these recycling processes could improve their profitability and scalability, enabling more effective resource recovery. The paper concludes with recommendations for policy and infrastructure development to support the sustainable management of PV waste across the Mediterranean region. Full article
Show Figures

Figure 1

11 pages, 19263 KB  
Article
Thermal–Mechanical Delamination for Recovery of Tempered Glass from Photovoltaic Panels
by Agnieszka Surowiak and Mustapha Wahman
Energies 2024, 17(17), 4444; https://doi.org/10.3390/en17174444 - 4 Sep 2024
Cited by 7 | Viewed by 3374
Abstract
This paper presents a sustainable recycling process for the separation and recovery of tempered glass from end-of-life photovoltaic (PV) modules. As glass accounts for 75% of the weight of a panel, its recovery is an important step in the recycling process. Current methods, [...] Read more.
This paper presents a sustainable recycling process for the separation and recovery of tempered glass from end-of-life photovoltaic (PV) modules. As glass accounts for 75% of the weight of a panel, its recovery is an important step in the recycling process. Current methods, such as mechanical, chemical and thermal processes, often lead to contamination of the glass and pose significant environmental risks. In response to these challenges, a thermal–mechanical delamination approach is proposed in this study. The method utilizes controlled heat application (hot air gun) to weaken the adhesive bond between the glass and encapsulant, allowing for separation with a thin stainless steel wire. Various analytical methods, including X-ray diffraction analysis (XRD), X-ray fluorescence (XRF) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), were used to verify the effectiveness of the proposed method. The results show that the proposed method is effective. In less than a minute, the glass layer was separated and recovered with a success rate of over 99%, with no degradation of the material or release of gasses. The significance of this process lies in its ability to recover high-purity glass while minimizing the impact on the environment. This opens up the possibility of reusing the recovered tempered glass in new PV panels or other applications, reducing the need for virgin materials and lowering the overall environmental footprint of the solar energy industry. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

24 pages, 2462 KB  
Review
Sustainable Strategies for Crystalline Solar Cell Recycling: A Review on Recycling Techniques, Companies, and Environmental Impact Analysis
by Mina Akhter, Ahmed Al Mansur, Md. Imamul Islam, M. S. Hossain Lipu, Tahia F. Karim, Maher G. M. Abdolrasol and Thamer A. H. Alghamdi
Sustainability 2024, 16(13), 5785; https://doi.org/10.3390/su16135785 - 7 Jul 2024
Cited by 25 | Viewed by 14177
Abstract
Solar PV is gaining increasing importance in the worldwide energy industry. Consequently, the global expansion of crystalline photovoltaic power plants has resulted in a rise in PV waste generation. However, disposing of PV waste is challenging and can pose harmful chemical effects on [...] Read more.
Solar PV is gaining increasing importance in the worldwide energy industry. Consequently, the global expansion of crystalline photovoltaic power plants has resulted in a rise in PV waste generation. However, disposing of PV waste is challenging and can pose harmful chemical effects on the environment. Therefore, developing technologies for recycling crystalline silicon solar modules is imperative to improve process efficiency, economics, recovery, and recycling rates. This review offers a comprehensive analysis of PV waste management, specifically focusing on crystalline solar cell recycling. The classification of PV recycling companies based on various components, including solar panels, PV glass, aluminum frames, silicon solar cells, junction boxes, plastic, back sheets, and cables, is explored. Additionally, the survey includes an in-depth literature review concentrating on chemical treatment for crystalline solar cell recycling. Furthermore, this study provides constructive suggestions for PV power plants on how to promote solar cell recycling at the end of their life cycles, thereby reducing their environmental impact. Moreover, the techno-economic and environmental dimensions of solar cell recycling techniques are investigated in detail. Overall, this review offers valuable insights into the challenges and opportunities associated with crystalline solar cell recycling, emphasizing the importance of economically feasible and environmentally sustainable PV waste management solutions in the constantly evolving solar energy market. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

21 pages, 1411 KB  
Review
Sustainable Treatment of Spent Photovoltaic Solar Panels Using Plasma Pyrolysis Technology and Its Economic Significance
by Ping Fa Chiang, Shanshan Han, Mugabekazi Joie Claire, Ndungutse Jean Maurice, Mohammadtaghi Vakili and Abdulmoseen Segun Giwa
Clean Technol. 2024, 6(2), 432-452; https://doi.org/10.3390/cleantechnol6020022 - 9 Apr 2024
Cited by 13 | Viewed by 7613
Abstract
In the past few decades, the solar energy market has increased significantly, with an increasing number of photovoltaic (PV) modules being deployed around the world each year. Some believe that these PV modules have a lifespan of around 25–30 years. As their lifetime [...] Read more.
In the past few decades, the solar energy market has increased significantly, with an increasing number of photovoltaic (PV) modules being deployed around the world each year. Some believe that these PV modules have a lifespan of around 25–30 years. As their lifetime is limited, solar panels wind up in the waste stream after their end of life (EoL). Several ecological challenges are associated with their inappropriate disposal due to the presence of hazardous heavy metals (HMs). Some studies have reported different treatment technologies, including pyrolysis, stabilization, physical separation, landfill, and the use of chemicals. Each proposed treatment technique pollutes the environment and underutilizes the potential resources present in discarded solar panels (DSPs). This review recommends thermal plasma pyrolysis as a promising treatment technology. This process will have significant advantages, such as preventing toxic HMs from contaminating the soil and groundwater, reducing the amount of e-waste from DSPs in an environmentally friendly and economical way, and allows the utilization of the valuable resources contained in EoL photovoltaic solar panel modules by converting them into hydrogen-rich syngas to generate thermal energy, electricity, and non-leachable slag that can be used as an additive in other treatment processes or as a conditioner to improve soil properties. However, plasma pyrolysis uses a high temperature to break down waste materials, a challenge which can be offset by the integration of this process in anaerobic digestion (AD), as the slag from plasma pyrolysis can be used as an additive in AD treatments to produce high yields of biogas and improve nutrient recovery. Moreover, the produced energy from both processes can operate the entire plant in which they take place and increase the net energy production, a resource which can be sold for an additional income. Future challenges and recommendations are also highlighted. Full article
(This article belongs to the Collection Review Papers in Clean Technologies)
Show Figures

Figure 1

Back to TopTop