Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = encrypted peptides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1460 KiB  
Article
Solid-State Nanopore Readout of Programmable DNA and Peptide Nanostructures for Scalable Digital Data Storage
by Lihuan Zhao, Jiajun Wang, Lin-Sheng Wu and Xin Zhao
Biosensors 2025, 15(5), 287; https://doi.org/10.3390/bios15050287 - 3 May 2025
Viewed by 775
Abstract
DNA information storage holds tremendous potential due to its scalability, long lifespan, and environmental sustainability. The synthesis and reading of complex DNA data structures are of central importance. In this work, we propose new encoding schemes through novel synthesis methods of DNA and [...] Read more.
DNA information storage holds tremendous potential due to its scalability, long lifespan, and environmental sustainability. The synthesis and reading of complex DNA data structures are of central importance. In this work, we propose new encoding schemes through novel synthesis methods of DNA and peptide nanostructures. Silicon nitride (SiNx) solid-state nanopores (ssNPs) are employed as the detection platform to enable scalable and inexpensive reading. This approach is no longer constrained by the limitations of single-base sequencing technologies. Peptide nanostructures are introduced as a data medium via click-chemistry, expanding encoding sources. By integrating a photosensitive PC-linker, this approach endows the data chain with functionalities for encryption and data formatting, enhancing the security and organization of biological information storage. Our study presents a comprehensive framework for data management from data synthesis to post-processing, which includes encryption, decryption, and erasure functionalities. Full article
(This article belongs to the Special Issue Microfluidics for Biomedical Applications (3rd Edition))
Show Figures

Figure 1

15 pages, 3939 KiB  
Article
A Lupin (Lupinus angustifolius) Protein Hydrolysate Decreases the Severity of Experimental Autoimmune Encephalomyelitis: A Preliminary Study
by Ivan Cruz-Chamorro, Ana Isabel Álvarez-López, Guillermo Santos-Sánchez, Nuria Álvarez-Sánchez, Justo Pedroche, María del Carmen Millán-Linares, Patricia Judith Lardone and Antonio Carrillo-Vico
Int. J. Mol. Sci. 2025, 26(1), 32; https://doi.org/10.3390/ijms26010032 - 24 Dec 2024
Cited by 1 | Viewed by 920
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease, with inflammation and oxidative stress in the central nervous system being the main triggers. There are many drugs that reduce the clinical signs of MS, but none of them cure the disease. Food proteins have been [...] Read more.
Multiple sclerosis (MS) is a neurodegenerative disease, with inflammation and oxidative stress in the central nervous system being the main triggers. There are many drugs that reduce the clinical signs of MS, but none of them cure the disease. Food proteins have been shown to contain encrypted peptides that can be released after hydrolysis and exert numerous biological activities. Recently, we have demonstrated the anti-inflammatory and antioxidant activities of a lupin protein hydrolysate (LPH) both in vitro and in vivo. Therefore, the aim of this study was to evaluate whether LPH is capable of reducing the clinical signs of experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. EAE was induced in female C57BL/6N mice and they were treated intragastrically with LPH (100 mg/kg) or vehicle (control group) from day 0 (prophylactic approach) or from the onset of the disease (day 12 post-induction; therapeutic approach) and the clinical score of each mouse was recorded daily. Prophylactic treatment with LPH reduced the clinical score of the mice compared to the control group, as well as the maximum and cumulative scores, without changing the day of onset of the symptoms while the therapeutic intervention did not significantly improve the severity of the disease. For the first time, we demonstrated that prophylactic administration of LPH reduces the severity of MS, suggesting a potential nutraceutical or new functional foods in neuroinflammation. However, further studies are needed to confirm this nutritional effect in a clinical context. Full article
Show Figures

Figure 1

18 pages, 2595 KiB  
Article
Advances in Understanding the Antioxidant and Antigenic Properties of Egg-Derived Peptides
by Mihaela Brumă (Călin), Ina Vasilean, Leontina Grigore-Gurgu, Iuliana Banu and Iuliana Aprodu
Molecules 2024, 29(6), 1327; https://doi.org/10.3390/molecules29061327 - 16 Mar 2024
Cited by 4 | Viewed by 2060
Abstract
Pepsin, trypsin and proteinase K were used in the present study to hydrolyse the proteins from whole eggs, yolks or whites, and the resulting hydrolysates were characterised in terms of antioxidant and IgE-binding properties, using a combination of in vitro and in silico [...] Read more.
Pepsin, trypsin and proteinase K were used in the present study to hydrolyse the proteins from whole eggs, yolks or whites, and the resulting hydrolysates were characterised in terms of antioxidant and IgE-binding properties, using a combination of in vitro and in silico methods. Based on the degree of hydrolysis (DH) results, the egg yolk proteins are better substrates for all the tested enzymes (DH of 6.2–20.1%) compared to those from egg whites (DH of 2.0–4.4%). The SDS-PAGE analysis indicated that pepsin and proteinase K were more efficient compared to trypsin in breaking the intramolecular peptide bonds of the high molecular weight egg proteins. For all the tested substrates, enzyme-assisted hydrolysis resulted in a significant increase in antioxidant activity, suggesting that many bioactive peptides are encrypted in inactive forms in the parent proteins. The hydrolysates obtained with proteinase K exhibited the highest DPPH radical scavenging activity (124–311 µM Trolox/g protein) and the lowest residual IgE-binding capacity. The bioinformatics tools revealed that proteinase K is able to break the integrity of the main linear IgE-binding epitopes from ovalbumin and ovomucoid. It can be concluded that proteinase K is a promising tool for modulating the intrinsic properties of egg proteins. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Graphical abstract

28 pages, 15336 KiB  
Article
Immunomodulatory Peptides as Vaccine Adjuvants and Antimicrobial Agents
by Shiva Hemmati, Zahra Saeidikia, Hassan Seradj and Abdolali Mohagheghzadeh
Pharmaceuticals 2024, 17(2), 201; https://doi.org/10.3390/ph17020201 - 2 Feb 2024
Cited by 7 | Viewed by 4170
Abstract
The underdevelopment of adjuvant discovery and diversity, compared to core vaccine technology, is evident. On the other hand, antibiotic resistance is on the list of the top ten threats to global health. Immunomodulatory peptides that target a pathogen and modulate the immune system [...] Read more.
The underdevelopment of adjuvant discovery and diversity, compared to core vaccine technology, is evident. On the other hand, antibiotic resistance is on the list of the top ten threats to global health. Immunomodulatory peptides that target a pathogen and modulate the immune system simultaneously are promising for the development of preventive and therapeutic molecules. Since investigating innate immunity in insects has led to prominent achievements in human immunology, such as toll-like receptor (TLR) discovery, we used the capacity of the immunomodulatory peptides of arthropods with concomitant antimicrobial or antitumor activity. An SVM-based machine learning classifier identified short immunomodulatory sequences encrypted in 643 antimicrobial peptides from 55 foe-to-friend arthropods. The critical features involved in efficacy and safety were calculated. Finally, 76 safe immunomodulators were identified. Then, molecular docking and simulation studies defined the target of the most optimal peptide ligands among all human cell-surface TLRs. SPalf2-453 from a crab is a cell-penetrating immunoadjuvant with antiviral properties. The peptide interacts with the TLR1/2 heterodimer. SBsib-711 from a blackfly is a TLR4/MD2 ligand used as a cancer vaccine immunoadjuvant. In addition, SBsib-711 binds CD47 and PD-L1 on tumor cells, which is applicable in cancer immunotherapy as a checkpoint inhibitor. MRh4-679 from a shrimp is a broad-spectrum or universal immunoadjuvant with a putative Th1/Th2-balanced response. We also implemented a pathway enrichment analysis to define fingerprints or immunological signatures for further in vitro and in vivo immunogenicity and reactogenicity measurements. Conclusively, combinatorial machine learning, molecular docking, and simulation studies, as well as systems biology, open a new opportunity for the discovery and development of multifunctional prophylactic and therapeutic lead peptides. Full article
Show Figures

Figure 1

9 pages, 1625 KiB  
Communication
Collagen VI Is a Gi-Biased Ligand of the Adhesion GPCR GPR126/ADGRG6
by Caroline Wilde, Paulomi Mehta Chaudhry, Rong Luo, Kay-Uwe Simon, Xianhua Piao and Ines Liebscher
Cells 2023, 12(11), 1551; https://doi.org/10.3390/cells12111551 - 5 Jun 2023
Cited by 6 | Viewed by 3758
Abstract
GPR126/ADGRG6, a member of the adhesion G-protein-coupled receptor family, balances cell differentiation and proliferation through fine-tuning of intracellular cAMP levels, which is achieved through coupling to Gs and Gi proteins. While GPR126-mediated cAMP increase has been proven to be essential for differentiation of [...] Read more.
GPR126/ADGRG6, a member of the adhesion G-protein-coupled receptor family, balances cell differentiation and proliferation through fine-tuning of intracellular cAMP levels, which is achieved through coupling to Gs and Gi proteins. While GPR126-mediated cAMP increase has been proven to be essential for differentiation of Schwann cells, adipocytes and osteoblasts, Gi-signaling of the receptor was found to propagate breast cancer cell proliferation. Extracellular ligands or mechanical forces can modulate GPR126 activity but require an intact encrypted agonist sequence, coined the Stachel. Even though coupling to Gi can be seen for constitutively active truncated receptor versions of GPR126 as well as with a peptide agonist derived from the Stachel sequence, all known N-terminal modulators have so far only been shown to modulate Gs coupling. Here, we identified collagen VI as the first extracellular matrix ligand of GPR126 that induces Gi signaling at the receptor, which shows that N-terminal binding partners can mediate selective G protein signaling cascades that are masked by fully active truncated receptor variants. Full article
Show Figures

Figure 1

20 pages, 739 KiB  
Review
Bioactive Antimicrobial Peptides from Food Proteins: Perspectives and Challenges for Controlling Foodborne Pathogens
by Jessica Audrey Feijó Corrêa, Tiago de Melo Nazareth, Giovanna Fernandes da Rocha and Fernando Bittencourt Luciano
Pathogens 2023, 12(3), 477; https://doi.org/10.3390/pathogens12030477 - 17 Mar 2023
Cited by 25 | Viewed by 4151
Abstract
Bioactive peptides (BAPs) derived from food proteins have been extensively studied for their health benefits, majorly exploring their potential use as nutraceuticals and functional food components. These peptides possess a range of beneficial properties, including antihypertensive, antioxidant, immunomodulatory, and antibacterial activities, and are [...] Read more.
Bioactive peptides (BAPs) derived from food proteins have been extensively studied for their health benefits, majorly exploring their potential use as nutraceuticals and functional food components. These peptides possess a range of beneficial properties, including antihypertensive, antioxidant, immunomodulatory, and antibacterial activities, and are naturally present within dietary protein sequences. To release food-grade antimicrobial peptides (AMPs), enzymatic protein hydrolysis or microbial fermentation, such as with lactic acid bacteria (LAB), can be employed. The activity of AMPs is influenced by various structural characteristics, including the amino acid composition, three-dimensional conformation, liquid charge, putative domains, and resulting hydrophobicity. This review discusses the synthesis of BAPs and AMPs, their potential for controlling foodborne pathogens, their mechanisms of action, and the challenges and prospects faced by the food industry. BAPs can regulate gut microbiota by promoting the growth of beneficial bacteria or by directly inhibiting pathogenic microorganisms. LAB-promoted hydrolysis of dietary proteins occurs naturally in both the matrix and the gastrointestinal tract. However, several obstacles must be overcome before BAPs can replace antimicrobials in food production. These include the high manufacturing costs of current technologies, limited in vivo and matrix data, and the difficulties associated with standardization and commercial-scale production. Full article
(This article belongs to the Special Issue Reviews of Infectious Diseases)
Show Figures

Figure 1

15 pages, 587 KiB  
Review
Bioactive Peptides from Lupinus spp. Seed Proteins-State-of-the-Art and Perspectives
by Aleksandra Garmidolova, Ivelina Desseva, Dasha Mihaylova and Anna Lante
Appl. Sci. 2022, 12(8), 3766; https://doi.org/10.3390/app12083766 - 8 Apr 2022
Cited by 18 | Viewed by 3980
Abstract
Nowadays, the search for food-suitable plant proteins is a great challenge. In addition to their sustainability and nutritional value, the focus is more and more on possible positive interactions with human health. To date, the presence of bioactive peptides encrypted in the structure [...] Read more.
Nowadays, the search for food-suitable plant proteins is a great challenge. In addition to their sustainability and nutritional value, the focus is more and more on possible positive interactions with human health. To date, the presence of bioactive peptides encrypted in the structure of protein opens new perspectives, addressing the food industry’s request for new ingredients with technological properties and also the nutraceutical and pharmaceutical sectors based on multifunctional health applications. Lupinus is a sustainable genus of the legume family Fabaceae, and the lupin seed-derived bioactive peptides have demonstrated different effects including anti-inflammatory, antidiabetic, antioxidant, antibacterial, hypocholesterolemic, and antihypertensive activities. This review aims to discuss the current knowledge on lupin protein and their bioactive peptides, highlighting the documented health claims, but also the possibility of allergenicity and the work to be done for the development of new functional products. Full article
Show Figures

Figure 1

19 pages, 866 KiB  
Article
Identification of Antibacterial Peptide Candidates Encrypted in Stress-Related and Metabolic Saccharomyces cerevisiae Proteins
by Maria Fernanda da Silva Santos, Cyntia Silva Freitas, Giovani Carlo Verissimo da Costa, Patricia Ribeiro Pereira and Vania Margaret Flosi Paschoalin
Pharmaceuticals 2022, 15(2), 163; https://doi.org/10.3390/ph15020163 - 28 Jan 2022
Cited by 9 | Viewed by 3781
Abstract
The protein-rich nature of Saccharomyces cerevisiae has led this yeast to the spotlight concerning the search for antimicrobial peptides. Herein, a <10 kDa peptide-rich extract displaying antibacterial activity was obtained through the autolysis of yeast biomass under mild thermal treatment with self-proteolysis by [...] Read more.
The protein-rich nature of Saccharomyces cerevisiae has led this yeast to the spotlight concerning the search for antimicrobial peptides. Herein, a <10 kDa peptide-rich extract displaying antibacterial activity was obtained through the autolysis of yeast biomass under mild thermal treatment with self-proteolysis by endogenous peptidases. Estimated IC50 for the peptide pools obtained by FPLC gel filtration indicated improved antibacterial activities against foodborne bacteria and bacteria of clinical interest. Similarly, the estimated cytotoxicity concentrations against healthy human fibroblasts, alongside selective indices ≥10, indicates the fractions are safe, at least in a mixture format, for human tissues. Nano-LC-MS/MS analysis revealed that the peptides in FPLC fractions could be derived from both induced-proteolysis and proteasome activity in abundant proteins, up-regulated under stress conditions during S. cerevisiae biomass manufacturing, including those coded by TDH1/2/3, HSP12, SSA1/2, ADH1/2, CDC19, PGK1, PPI1, PDC1, and GMP1, as well as by other non-abundant proteins. Fifty-eight AMP candidate sequences were predicted following an in silico analysis using four independent algorithms, indicating their possible contribution to the bacterial inactivation observed in the peptides pool, which deserve special attention for further validation of individual functionality. S. cerevisiae-biomass peptides, an unconventional but abundant source of pharmaceuticals, may be promissory adjuvants to treat infectious diseases that are poorly sensitive to conventional antibiotics. Full article
(This article belongs to the Special Issue Novel Antibacterial Agents 2022)
Show Figures

Figure 1

21 pages, 1294 KiB  
Review
Natural Peptides Inducing Cancer Cell Death: Mechanisms and Properties of Specific Candidates for Cancer Therapeutics
by Plinio A. Trinidad-Calderón, Carlos Daniel Varela-Chinchilla and Silverio García-Lara
Molecules 2021, 26(24), 7453; https://doi.org/10.3390/molecules26247453 - 9 Dec 2021
Cited by 32 | Viewed by 5122
Abstract
Nowadays, cancer has become the second highest leading cause of death, and it is expected to continue to affect the population in forthcoming years. Additionally, treatment options will become less accessible to the public as cases continue to grow and disease mechanisms expand. [...] Read more.
Nowadays, cancer has become the second highest leading cause of death, and it is expected to continue to affect the population in forthcoming years. Additionally, treatment options will become less accessible to the public as cases continue to grow and disease mechanisms expand. Hence, specific candidates with confirmed anticancer effects are required to develop new drugs. Among the novel therapeutic options, proteins are considered a relevant source, given that they have bioactive peptides encrypted within their sequences. These bioactive peptides, which are molecules consisting of 2–50 amino acids, have specific activities when administered, producing anticancer effects. Current databases report the effects of peptides. However, uncertainty is found when their molecular mechanisms are investigated. Furthermore, analyses addressing their interaction networks or their directly implicated mechanisms are needed to elucidate their effects on cancer cells entirely. Therefore, relevant peptides considered as candidates for cancer therapeutics with specific sequences and known anticancer mechanisms were accurately reviewed. Likewise, those features which turn certain peptides into candidates and the mechanisms by which peptides mediate tumor cell death were highlighted. This information will make robust the knowledge of these candidate peptides with recognized mechanisms and enhance their non-toxic capacity in relation to healthy cells and further avoid cell resistance. Full article
Show Figures

Graphical abstract

24 pages, 3603 KiB  
Review
The Role of Bioactive Peptides in Diabetes and Obesity
by Ramachandran Chelliah, Shuai Wei, Eric Banan-Mwine Daliri, Fazle Elahi, Su-Jung Yeon, Akanksha Tyagi, Shucheng Liu, Inamul Hasan Madar, Ghazala Sultan and Deog-Hwan Oh
Foods 2021, 10(9), 2220; https://doi.org/10.3390/foods10092220 - 18 Sep 2021
Cited by 56 | Viewed by 10935
Abstract
Bioactive peptides are present in most soy products and eggs and have essential protective functions. Infection is a core feature of innate immunity that affects blood pressure and the glucose level, and ageing can be delayed by killing senescent cells. Food also encrypts [...] Read more.
Bioactive peptides are present in most soy products and eggs and have essential protective functions. Infection is a core feature of innate immunity that affects blood pressure and the glucose level, and ageing can be delayed by killing senescent cells. Food also encrypts bioactive peptides and protein sequences produced through proteolysis or food processing. Unique food protein fragments can improve human health and avoid metabolic diseases, inflammation, hypertension, obesity, and diabetes mellitus. This review focuses on drug targets and fundamental mechanisms of bioactive peptides on metabolic syndromes, namely obesity and type 2 diabetes, to provide new ideas and knowledge on the ability of bioactive peptide to control metabolic syndromes. Full article
(This article belongs to the Special Issue Food Bioactive Compounds as Functional Ingredient)
Show Figures

Graphical abstract

16 pages, 13138 KiB  
Article
Amino Acid Sequences of Lactoferrin from Red Deer (Cervus elaphus) Milk and Antimicrobial Activity of Its Derived Peptides Lactoferricin and Lactoferrampin
by Ye Wang, James D. Morton, Alaa EL-Din A. Bekhit, Alan Carne and Susan L. Mason
Foods 2021, 10(6), 1305; https://doi.org/10.3390/foods10061305 - 7 Jun 2021
Cited by 12 | Viewed by 3740
Abstract
Although the bioactivities of bovine lactoferrin have been extensively investigated, little is known about deer milk lactoferrin bioactivity and its amino acid sequence. This research investigated the amino acid sequence of deer lactoferrin and the antimicrobial activities of two lactoferrin-encrypted peptides; lactoferricin (Lfcin) [...] Read more.
Although the bioactivities of bovine lactoferrin have been extensively investigated, little is known about deer milk lactoferrin bioactivity and its amino acid sequence. This research investigated the amino acid sequence of deer lactoferrin and the antimicrobial activities of two lactoferrin-encrypted peptides; lactoferricin (Lfcin) and lactoferrampin (Lfampin). Deer lactoferrin was found to have a molecular weight of 77.1 kDa and an isoelectric point of 7.99, which are similar to that of bovine lactoferrin, 78 kDa and pI 7.9. Deer lactoferrin contains 707 amino acids, one amino acid less than bovine lactoferrin, and has 92% homology with bovine lactoferrin. Deer lactoferricin exhibited strong antimicrobial activity against E. coli American Type Culture Collection (ATCC) 25922 and L. acidophilus ATCC 4356. The antimicrobial activities of deer and bovine Lfcin and Lfampin were compared. Based on MIC, deer Lfcin was found to be a more effective inhibitor of L. acidophilus ATCC 4356 than bovine Lfcin, but bovine Lfcin and Lfampin were more effective against E. coli ATCC 25922 than deer Lfcin and Lfampin. The deer Lfcin sequence differed at seven amino acids from bovine Lfcin and this decreased the net positive charge and increased the hydrophobicity. Deer Lfampin contained two differences in amino acid sequence compared to bovine Lfampin which decreased the net positive charge. These amino acid sequence differences likely account for differences in antibacterial activity. Positive charge and hydrophobic residues provide the amphipathic character of these helical peptides, and are considered important for binding of antimicrobial peptides. In silico modelling of deer Lfcin indicated an identical α-helical structure compared to bovine Lfcin. Full article
Show Figures

Figure 1

21 pages, 1858 KiB  
Article
Salmon (Salmo salar) Side Streams as a Bioresource to Obtain Potential Antioxidant Peptides after Applying Pressurized Liquid Extraction (PLE)
by Beatriz de la Fuente, Noelia Pallarés, Houda Berrada and Francisco J. Barba
Mar. Drugs 2021, 19(6), 323; https://doi.org/10.3390/md19060323 - 3 Jun 2021
Cited by 28 | Viewed by 5057
Abstract
The pressurized liquid extraction (PLE) technique was used to obtain protein extracts with antioxidant capacity from salmon muscle remains, heads, viscera, skin, and tailfins. A protein recovery percentage ≈28% was obtained for all samples except for viscera, which was ≈92%. These values represented [...] Read more.
The pressurized liquid extraction (PLE) technique was used to obtain protein extracts with antioxidant capacity from salmon muscle remains, heads, viscera, skin, and tailfins. A protein recovery percentage ≈28% was obtained for all samples except for viscera, which was ≈92%. These values represented an increase of 1.5–4.8-fold compared to stirring extraction (control). Different SDS-PAGE profiles in control and PLE extracts revealed that extraction conditions affected the protein molecular weight distribution of the obtained extracts. Both TEAC (Trolox equivalent antioxidant capacity) and ORAC (oxygen radical antioxidant capacity) assays showed an outstanding antioxidant activity for viscera PLE extract. Through liquid chromatography coupled with electrospray ionization triple time-of-flight (nanoESI qQTOF) mass spectrometry, 137 and 67 peptides were identified in control and PLE extracts from salmon viscera, respectively None of these peptides was found among the antioxidant peptides inputted in the BIOPEP-UMP database. However, bioinformatics analysis showed several antioxidant small peptides encrypted in amino acid sequences of viscera extracts, especially GPP (glycine-proline-proline) and GAA (glycine-alanine-alanine) for PLE extracts. Further research on the relationship between antioxidant activity and specific peptides from salmon viscera PLE extracts is required. In addition, the salmon side streams studied presented non-toxic levels of As, Hg, Cd, and Pb, as well as the absence of mycotoxins or related metabolites. Overall, these results confirm the feasible use of farmed salmon processing side streams as alternative sources of protein and bioactive compounds for human consumption. Full article
Show Figures

Graphical abstract

11 pages, 1751 KiB  
Article
Nanostructure, Self-Assembly, Mechanical Properties, and Antioxidant Activity of a Lupin-Derived Peptide Hydrogel
by Raffaele Pugliese, Anna Arnoldi and Carmen Lammi
Biomedicines 2021, 9(3), 294; https://doi.org/10.3390/biomedicines9030294 - 13 Mar 2021
Cited by 19 | Viewed by 4506
Abstract
Naturally occurring food peptides are frequently used in the life sciences due to their beneficial effects through their impact on specific biochemical pathways. Furthermore, they are often leveraged for applications in areas as diverse as bioengineering, medicine, agriculture, and even fashion. However, progress [...] Read more.
Naturally occurring food peptides are frequently used in the life sciences due to their beneficial effects through their impact on specific biochemical pathways. Furthermore, they are often leveraged for applications in areas as diverse as bioengineering, medicine, agriculture, and even fashion. However, progress toward understanding their self-assembling properties as functional materials are often hindered by their long aromatic and charged residue-enriched sequences encrypted in the parent protein sequence. In this study, we elucidate the nanostructure and the hierarchical self-assembly propensity of a lupin-derived peptide which belongs to the α-conglutin (11S globulin, legumin-like protein), with a straightforward N-terminal biotinylated oligoglycine tag-based methodology for controlling the nanostructures, biomechanics, and biological features. Extensive characterization was performed via Circular Dichroism (CD) spectroscopy, Fourier Transform Infrared spectroscopy (FT-IR), rheological measurements, and Atomic Force Microscopy (AFM) analyses. By using the biotin tag, we obtained a thixotropic lupin-derived peptide hydrogel (named BT13) with tunable mechanical properties (from 2 to 11 kPa), without impairing its spontaneous formation of β-sheet secondary structures. Lastly, we demonstrated that this hydrogel has antioxidant activity. Altogether, our findings address multiple challenges associated with the development of naturally occurring food peptide-based hydrogels, offering a new tool to both fine tune the mechanical properties and tailor the antioxidant activities, providing new research directions across food chemistry, biochemistry, and bioengineering. Full article
Show Figures

Figure 1

19 pages, 1783 KiB  
Article
OctoPartenopin: Identification and Preliminary Characterization of a Novel Antimicrobial Peptide from the Suckers of Octopus vulgaris
by Valeria Maselli, Emilia Galdiero, Anna Maria Salzano, Andrea Scaloni, Angela Maione, Annarita Falanga, Daniele Naviglio, Marco Guida, Anna Di Cosmo and Stefania Galdiero
Mar. Drugs 2020, 18(8), 380; https://doi.org/10.3390/md18080380 - 23 Jul 2020
Cited by 24 | Viewed by 4852
Abstract
Microorganism resistance to conventional antibiotics represents one of the major global health concerns. This paper focuses on a peptide (OctoPartenopin) extracted from suckers of Octopus vulgaris; bioassay-guided chromatographic fractionation was used to identify this sequence, which holds significant antibacterial activity against Gram-positive and [...] Read more.
Microorganism resistance to conventional antibiotics represents one of the major global health concerns. This paper focuses on a peptide (OctoPartenopin) extracted from suckers of Octopus vulgaris; bioassay-guided chromatographic fractionation was used to identify this sequence, which holds significant antibacterial activity against Gram-positive and Gram-negative bacteria. OctoPartenopin is encrypted within the calponin sequence and was associated with the high levels of proteolytic activity already reported in octopus arm suckers. We synthesized the parent peptide and four analogues; all peptide were tested for their antibacterial and antibiofilm activities. Preliminary antibiofilm experiments showed that that one of the analogues had the best activity in both inhibition and eradication of biofilm of all three microorganisms tested. The occurrence of OctoPartenopin in arm suckers provided novel speculative information on animal behavior, as concerns maternal care of fertilized eggs. Our results highlight that suckers are a rich source of multifaceted peptides to develop alternative antimicrobial agents and food preservatives. Full article
Show Figures

Figure 1

17 pages, 1210 KiB  
Article
A Comprehensive Peptidomic Approach to Characterize the Protein Profile of Selected Durum Wheat Genotypes: Implication for Coeliac Disease and Wheat Allergy
by Rosa Pilolli, Agata Gadaleta, Luigia Di Stasio, Antonella Lamonaca, Elisabetta De Angelis, Domenica Nigro, Maria De Angelis, Gianfranco Mamone and Linda Monaci
Nutrients 2019, 11(10), 2321; https://doi.org/10.3390/nu11102321 - 1 Oct 2019
Cited by 11 | Viewed by 4077
Abstract
The wheat varietal selection undertaken by breeders in recent decades has been tailored mainly to improve technological and productivity-related traits; however, the latter has resulted in a considerable impoverishment of the genetic diversity of wheat-based products available on the market. This pitfall has [...] Read more.
The wheat varietal selection undertaken by breeders in recent decades has been tailored mainly to improve technological and productivity-related traits; however, the latter has resulted in a considerable impoverishment of the genetic diversity of wheat-based products available on the market. This pitfall has encouraged researchers to revalue the natural diversity of cultivated and non-cultivated wheat genotypes in light of their different toxic/immunogenic potential for celiac disease and wheat-allergic patients. In the present investigation, an advanced proteomic approach was designed for the global characterization of the protein profile of selected tetraploid wheat genotypes (Triticum turgidum). The approach combined proteins/peptides sequence information retrieved by specific enzymatic digestions (single and dual proteolytic enzymes) with protein digestibility information disclosed by means of in-vitro simulated human gastroduodenal digestion experiments. In both cases, the peptide pools were characterized by discovery analysis with liquid chromatography high-resolution tandem mass spectrometry, and specific amino acid sequences were identified via commercial software. The peptide list was screened for in silico toxicity/immunogenicity risk assessment, with the aid of various open-source bioinformatics tools for epitopes matching. Given the global information provided by the designed proteomic approach, the in silico risk assessment not only tackled toxicity implication for celiac disease patients, but also scouted for immunogenic sequences relevant for wheat allergic patients, achieving a comprehensive characterization of the protein profile of the selected genotypes. These latter were assessed to encrypt a variable number of toxic/immunogenic epitopes for celiac disease and wheat allergy, and as such they could represent convenient bases for breeding practices and for the development of new detoxification strategies. Full article
(This article belongs to the Special Issue Contributions of Diet and Gastrointestinal Digestion to Food Allergy)
Show Figures

Graphical abstract

Back to TopTop