Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (269)

Search Parameters:
Keywords = elevated alkaline phosphatase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 540 KiB  
Article
Comparison of Dietary Inorganic and Small-Peptide Chelating Trace Minerals on Growth Performance, Immunity, Meat Quality, and Environmental Release in Litopenaeus vannamei
by Jingshen Chen, Nan Liu, Shumeng Wang, Hailong Wang, Kun Ouyang, Yuxuan Wang, Junyi Luo, Jiajie Sun, Qianyun Xi, Yuping Sun, Yongguo Si, Yongliang Zhang and Ting Chen
Animals 2025, 15(15), 2297; https://doi.org/10.3390/ani15152297 - 6 Aug 2025
Abstract
The present study evaluated the effect of adding 0% (control), 30%, 40% and 50% SPMs (small-peptide chelating trace minerals) to replace ITMs (inorganic trace minerals) in the diets of Litopenaeus vannamei; 720 shrimp were randomly assigned to four treatments (six replicates per [...] Read more.
The present study evaluated the effect of adding 0% (control), 30%, 40% and 50% SPMs (small-peptide chelating trace minerals) to replace ITMs (inorganic trace minerals) in the diets of Litopenaeus vannamei; 720 shrimp were randomly assigned to four treatments (six replicates per group, 30 shrimp per replicate) in a 42-day feeding trial. There were no significant differences (p > 0.05) among the control, 40% SPM and 50% SPM groups in terms of the survival rate, weight gain rate, specific growth rate, hepatosomatic index, condition factor, feed intake, feed conversion ratio, or protein efficiency ratio; however, protein efficiency ratio was reduced in the 30% SPM group (p < 0.05). Glucose, triglyceride, and aspartate aminotransferase levels in the hemolymph of the 30% SPM group were significantly increased (p < 0.05), while the glucose and aspartate aminotransferase levels were also significantly increased in the 40% SPM group (p < 0.05). In the 50% SPM group, the glucose and triglyceride levels were also significantly increased (p < 0.05). Hepatopancreatic alkaline phosphatase activity was elevated at 40% SPM, and alkaline phosphatase, acid phosphatase, glutathione peroxidase, and total antioxidant capacity activities were significantly increased in the 50% SPM group (p < 0.05). The moisture content and drip loss were reduced in both the 40% and 50% SPM groups (p < 0.05). Therefore, replacing 40–50% ITMs with SPMs can maintain growth performance while enhancing physiological functions. In conclusion, the results of this study demonstrate that the incorporation of 30–50% SPMs into one’s diet constitutes a viable alternative to 100% ITMs. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

19 pages, 4753 KiB  
Article
Biosynthesized Gold Nanoparticles from Eruca sativa Mill. Leaf Extract Exhibit In Vivo Biocompatibility, Antimicrobial, and Antioxidant Activities
by Abdullah Muhsin Hazbar, Abdulkadir Mohammed Noori Jassim, Mustafa Taha Mohammed and Younis Baqi
Antibiotics 2025, 14(8), 776; https://doi.org/10.3390/antibiotics14080776 - 31 Jul 2025
Viewed by 262
Abstract
Background/Objectives: Antimicrobial resistance (AMR) is a health related threat world-wide. Biosynthesized gold nanoparticles (AuNPs) using plant extracts have been reported to exhibit certain biological activity. This study aimed to biosynthesize AuNPs using an aqueous extract of Eruca sativa leaves and to evaluate their [...] Read more.
Background/Objectives: Antimicrobial resistance (AMR) is a health related threat world-wide. Biosynthesized gold nanoparticles (AuNPs) using plant extracts have been reported to exhibit certain biological activity. This study aimed to biosynthesize AuNPs using an aqueous extract of Eruca sativa leaves and to evaluate their biocompatibility, antimicrobial activity, and antioxidant properties. Methods: AuNPs were biosynthesized using an aqueous extract of Eruca sativa leaves. Their biocompatibility was evaluated through hemolytic activity and assessments of hepatic and renal functions in rats. AuNPs were biologically evaluated as antimicrobial and antioxidant agents. Results: The AuNPs exhibited particle sizes of 27.78 nm (XRD) and 69.41 nm (AFM). Hemolysis assays on red blood cells revealed negligible hemolytic activity (<1%). Hepatic enzyme levels, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) were studied. ALT, AST, and ALP levels showed no significant changes compared to the negative control. However, LDH levels were elevated at higher concentration (52.8 µg/mL), while the lower concentration (26.4 µg/mL) appeared to be safer. Renal biomarkers, urea and creatinine, showed no significant changes at either concentration, indicating minimal nephrotoxicity. The antimicrobial activity of AuNPs, plant extract, and gold salt was tested against five microorganisms: two Gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumoniae), two Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa), and a fungal strain (Candida albicans). The AuNPs exhibited minimum inhibition concentrations (MICs) of 13.2 µg/mL against S. aureus and S. pneumoniae, 26.4 µg/mL against E. coli and C. albicans, and 39.6 µg/mL against P. aeruginosa, suggesting selectivity towards Gram-positive bacteria. Furthermore, the AuNPs demonstrated strong antioxidant activity, surpassing that of vitamin C. Conclusions: The biosynthesized AuNPs exhibited promising biocompatibility, selective antimicrobial properties, and potent antioxidant activity, supporting their potential application in combating the AMR. Full article
Show Figures

Figure 1

21 pages, 2263 KiB  
Article
Elevational Patterns and Drivers of Soil Total, Microbial, and Enzymatic C:N:P Stoichiometry in Karst Peak-Cluster Depressions in Southwestern China
by Siyu Chen, Chaohao Xu, Cong Hu, Chaofang Zhong, Zhonghua Zhang and Gang Hu
Forests 2025, 16(8), 1216; https://doi.org/10.3390/f16081216 - 24 Jul 2025
Viewed by 294
Abstract
Elevational gradients in temperature, moisture, and vegetation strongly influence soil nutrient content and stoichiometry in mountainous regions. However, exactly how total, microbial, and enzymatic carbon (C), nitrogen (N), and phosphorus (P) stoichiometry vary with elevation in karst peak-cluster depressions remains poorly understood. To [...] Read more.
Elevational gradients in temperature, moisture, and vegetation strongly influence soil nutrient content and stoichiometry in mountainous regions. However, exactly how total, microbial, and enzymatic carbon (C), nitrogen (N), and phosphorus (P) stoichiometry vary with elevation in karst peak-cluster depressions remains poorly understood. To address this, we studied soil total, microbial, and enzymatic C:N:P stoichiometry in seasonal rainforests within karst peak-cluster depressions in southwestern China at different elevations (200, 300, 400, and 500 m asl) and depths (0–20 and 20–40 cm). We found that soil organic carbon (SOC), total nitrogen (TN), and the C:P and N:P ratios increased significantly with elevation, whereas total phosphorus (TP) decreased. Microbial phosphorus (MBP) also declined with elevation, while the microbial N:P ratio rose. Activities of nitrogen- (β-N-acetylglucosaminidase and L-leucine aminopeptidase combined) and phosphorus-related enzymes (alkaline phosphatase) increased markedly with elevation, suggesting potential phosphorus limitation for plant growth at higher elevations. Our results suggest that total, microbial, and enzymatic soil stoichiometry are collectively shaped by topography and soil physicochemical properties, with elevation, pH, and exchangeable calcium (ECa) acting as the key drivers. Microbial stoichiometry exhibited positive interactions with soil stoichiometry, while enzymatic stoichiometry did not fully conform to the expectations of resource allocation theory, likely due to the functional specificity of phosphatase. Overall, these findings enhance our understanding of C–N–P biogeochemical coupling in karst ecosystems, highlight potential nutrient limitations, and provide a scientific basis for sustainable forest management in tropical karst regions. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

16 pages, 4256 KiB  
Article
Physiological Stress Responses Associated with Microplastic Ingestion in the Benthic Flatfish Bothus podas
by Amanda Cohen-Sánchez, Montserrat Compa, Jessica Lombardo, Maria Magdalena Quetglas-Llabrés, Maria del Mar Ribas-Taberner, Manuel Jiménez-García, Silvia Tejada and Antoni Sureda
Toxics 2025, 13(7), 584; https://doi.org/10.3390/toxics13070584 - 13 Jul 2025
Viewed by 581
Abstract
Bothus podas (wide-eyed flounder) is a benthic flatfish likely exposed to microplastic (MP) pollution. We investigated MP ingestion and associated physiological effects in wild B. podas collected from Mallorca (Balearic Islands), Spain. Markers of oxidative stress, detoxification, and immunity were quantified in intestinal, [...] Read more.
Bothus podas (wide-eyed flounder) is a benthic flatfish likely exposed to microplastic (MP) pollution. We investigated MP ingestion and associated physiological effects in wild B. podas collected from Mallorca (Balearic Islands), Spain. Markers of oxidative stress, detoxification, and immunity were quantified in intestinal, hepatic, and splenic tissues. MPs were observed in the gastrointestinal tracts of 87.5% of the 24 specimens analyzed, with an average of 3.8 ± 0.6 items per fish. Fiber-type MPs predominated in both the gastrointestinal tract (69.6%) and sediment samples (97%). Additionally, micro-Fourier transform infrared spectroscopy analysis confirmed that the majority of ingested MPs were composed of polyethylene, polypropylene, and polyester. Fish were categorized into low (<3 items) and high (≥3 items) MP groups based on the median number of plastic items found in the gastrointestinal tract to assess sublethal impacts. In the gut, high-MP fish exhibited significantly elevated activities of detoxification enzymes: ethoxyresorufin-O-deethylase (phase I) and glutathione s-transferase (phase II), along with increased antioxidant enzyme superoxide dismutase and inflammatory myeloperoxidase. Gut catalase and malondialdehyde (MDA) were not significantly different between groups. In liver tissues, no biomarkers differed significantly with MP exposure. In the spleen, lysozyme and alkaline phosphatase activities were significantly higher in high-MP fish, while splenic MDA remained unchanged. These results indicate that gastrointestinal MP exposure triggers local oxidative stress responses and systemic immune activation in B. podas. Overall, ingestion of environmentally relevant MP levels elicited detoxification and inflammatory responses without significant increases in MDA, an indicator of oxidative damage, highlighting the physiological stress imposed by plastic pollution on benthic fish. Full article
Show Figures

Graphical abstract

20 pages, 1588 KiB  
Article
Predictors of Hungry Bone Syndrome and Reintervention After Subtotal Versus Total Parathyroidectomy for Secondary Hyperparathyroidism in Dialysis Patients: A Single-Center Cohort
by Adina Coman, Cristi Tarta, Gigi Adrian Aiordachioae, Dan Goldis, Diana Utu, Marco Marian, Amadeus Dobrescu, Florina Buleu and Sorin Olariu
J. Clin. Med. 2025, 14(14), 4944; https://doi.org/10.3390/jcm14144944 - 12 Jul 2025
Viewed by 408
Abstract
Background/Objectives: Secondary hyperparathyroidism (SHPT) is a prevalent complication in end-stage renal disease, often necessitating surgical intervention when refractory to medical therapy. The optimal surgical strategy—subtotal parathyroidectomy (SPTX) versus total parathyroidectomy with/without autotransplantation (TPTX ± AT)—remains debated, especially considering postoperative complications like persistent [...] Read more.
Background/Objectives: Secondary hyperparathyroidism (SHPT) is a prevalent complication in end-stage renal disease, often necessitating surgical intervention when refractory to medical therapy. The optimal surgical strategy—subtotal parathyroidectomy (SPTX) versus total parathyroidectomy with/without autotransplantation (TPTX ± AT)—remains debated, especially considering postoperative complications like persistent HPT and hungry bone syndrome (HBS). This study aimed to compare early surgical outcomes and identify predictors for postoperative complications in patients undergoing SPTX and TPTX + AT. Methods: We conducted a retrospective, single-center observational study involving 93 dialysis patients who underwent PTX for drug-refractory SHPT. Patients were analyzed according to surgical procedure (SPTX vs. TPTX + AT), focusing on postoperative complications such as cervical bleeding, reintervention rates, and the incidence of HBS. Multivariate logistic regression was utilized to identify predictors of these outcomes. Results: TPTX + AT demonstrated superior control of HPT, with significantly lower rates of reintervention compared to SPTX (7.1% vs. 23.5%, p = 0.037). However, TPTX + AT was associated with a higher incidence of HBS (57.1% vs. 35.3%, p = 0.039). Independent predictors of reintervention included absence of concomitant thymectomy, preoperative hypercalcemia, fewer visualized glands preoperatively, and preoperative PTH > 2000 pg/mL. Elevated alkaline phosphatase levels (>300 U/L), severe bone pain, and the TPTX procedure itself were significant predictors of HBS. Conclusions: Surgical strategy for SHPT should be individualized, balancing the lower recurrence risk associated with TPTX + AT against its higher likelihood of postoperative hypocalcemia. Preoperative biochemical markers and clinical features could potentially influence operative decision-making and optimize patient outcomes. Full article
(This article belongs to the Special Issue Recent Advances in Endocrine Surgery)
Show Figures

Figure 1

22 pages, 4324 KiB  
Article
Effect of Grassland Vegetation Units on Soil Biochemical Properties and the Abundance of Selected Microorganisms in the Obra River Valley
by Justyna Mencel, Anna Wojciechowska and Agnieszka Mocek-Płóciniak
Agronomy 2025, 15(7), 1573; https://doi.org/10.3390/agronomy15071573 - 27 Jun 2025
Viewed by 260
Abstract
The study examined seasonal variability in soil enzymatic activity and microbial abundance across five grassland vegetation units: Molinietum caeruleae, Alopecuretum pratensis, Arrhenatheretum elatioris, LolioCynosuretum, and com. Poa pratensisFestuca rubra. Soils under Molinietum caeruleae showed [...] Read more.
The study examined seasonal variability in soil enzymatic activity and microbial abundance across five grassland vegetation units: Molinietum caeruleae, Alopecuretum pratensis, Arrhenatheretum elatioris, LolioCynosuretum, and com. Poa pratensisFestuca rubra. Soils under Molinietum caeruleae showed higher fungal abundance and greater plant diversity, while LolioCynosuretum was notable for elevated Azotobacter spp. populations. Actinobacteria preferred soils with more organic matter, whereas Azotobacter spp. favored higher pH. A negative correlation was observed between the Shannon diversity index (H′) and heterotrophic bacterial abundance in Arrhenatheretum elatioris and with fungal abundance in com. Poa pratensisFestuca rubra. Acid and alkaline phosphatase and catalase activities were also negatively correlated with H′. Redundancy analysis showed these enzymes were related to total nitrogen content, and enzyme activity decreased with rising soil pH. In autumn 2022, high fungal abundance coincided with a reduction in other microorganisms. Seasonal trends were evident: catalase and urease activities peaked in autumn 2023, while other enzymes were more active in spring 2022. The results emphasize the significance of seasonal shifts in shaping microbial and enzymatic soil processes, which are vital for nutrient cycling, carbon sequestration, and climate regulation. Further research is essential to guide sustainable grassland soil management. Full article
Show Figures

Figure 1

19 pages, 3523 KiB  
Systematic Review
HIV Infection and Antiretroviral Therapy Impair Liver Function in People Living with HIV: Systematic Review and Meta-Analysis
by Kay-Lee E. Strauss, Wendy N. Phoswa, Sidney Hanser and Kabelo Mokgalaboni
Pharmaceuticals 2025, 18(7), 955; https://doi.org/10.3390/ph18070955 - 25 Jun 2025
Cited by 1 | Viewed by 628
Abstract
Background: The use of antiretroviral therapy (ART) has improved the lives of people living with HIV (PLWH). However, its use is associated with secondary complications, notably hepatotoxicity. This systematic review and meta-analysis assess the effects of HIV infection and ART on liver function [...] Read more.
Background: The use of antiretroviral therapy (ART) has improved the lives of people living with HIV (PLWH). However, its use is associated with secondary complications, notably hepatotoxicity. This systematic review and meta-analysis assess the effects of HIV infection and ART on liver function in PLWH. Method: A comprehensive literature search was performed in PubMed, Scopus, and Google Scholar from inception to 12 February 2025. Studies analyzing liver enzymes such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) in PLWH undergoing ART, those who are ART-naïve, and HIV-negative individuals were considered. Data analysis was performed using a meta-analysis web tool, and the results were reported as standardized mean differences (SMDs) and 95% confidence intervals (CIs). Results: Twenty-six studies were included in the meta-analysis. The findings showed an increase in AST, SMD = 1.85 (0.93 to 2.78, p < 0.0001, I2 = 93.8%), and ALT, SMD = 2.65 (1.25 to 4.04, p = 0.0002, I2 = 97.8%) in PLWH who were naïve compared with those who were HIV negative. Additionally, there was a pronounced elevation in AST, SMD = 1.49 (0.48 to 2.50, p = 0.0038, I2 = 98%); ALT, SMD = 2.30 (1.14 to 3.45, p < 0.0001, I2 = 98%); and ALP, SMD = 1.40 (0.55 to 2.26, p < 0.01, I2 = 97%) in PLWH exposed to ART compared with HIV-negative individuals. However, there was no significant difference in ALP, SMD = 0.53 (–0.92 to 1.98, p = 0.4726, I2 = 98%) between PLWH who were ART-naïve and HIV-negative individuals. Conclusions: The results show that HIV infection and ART administration are associated with elevated liver function test enzymes, suggesting that each may contribute to liver dysfunction among PLWH. These results highlight the dual risk posed by HIV infection and ART exposure. Full article
(This article belongs to the Special Issue HIV and Viral Hepatitis: Prevention, Treatment and Coinfection)
Show Figures

Figure 1

23 pages, 4493 KiB  
Article
Low-Temperature Stress-Induced Hepatic Injury in Darkbarbel Catfish (Pelteobagrus vachelli): Mediated by Gut–Liver Axis Dysregulation
by Amei Liu, Guoqing Duan, Libo Yang, Yuting Hu, Huaxing Zhou and Huan Wang
Antioxidants 2025, 14(7), 762; https://doi.org/10.3390/antiox14070762 - 21 Jun 2025
Viewed by 553
Abstract
Low-temperature stress serves as a critical abiotic stressor that severely restricts fish survival, biogeographic distribution, and aquaculture productivity. Pelteobagrus vachelli, an economically significant freshwater fish species, displays marked sensitivity to low-temperature stress; however, its molecular adaptive mechanisms remain poorly characterized. In this [...] Read more.
Low-temperature stress serves as a critical abiotic stressor that severely restricts fish survival, biogeographic distribution, and aquaculture productivity. Pelteobagrus vachelli, an economically significant freshwater fish species, displays marked sensitivity to low-temperature stress; however, its molecular adaptive mechanisms remain poorly characterized. In this study, we systematically investigated hepatic and intestinal cold stress responses in P. vachelli through a 7-day acute low-temperature exposure trial (6 °C and 11 °C), integrating histopathological examination, physiological–biochemical assays, metabolomics, and 16S rRNA sequencing. Histopathological observations revealed pronounced hepatic vacuolar degeneration, nuclear dissolution, and enhanced inflammatory cell infiltration under low-temperature conditions. Concurrently, immune-related enzymatic activities—including aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (APK)—were significantly elevated. Furthermore, substantial perturbations in antioxidant defense systems were detected, as indicated by altered superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities, alongside malondialdehyde (MDA) accumulation. Metabolomic profiling identified 539 differentially abundant metabolites, with pathway enrichment analysis highlighting marked alterations in FoxO signaling, amino acid metabolism, glycerophospholipid metabolism, ABC transporter, and Purine metabolism. Gut microbiome sequencing demonstrated cold-induced structural dysbiosis within the intestinal microbiota. Correlation analyses revealed robust linkages between hepatic injury biomarkers/metabolites and specific intestinal microbial taxa. Collectively, this study delineates the interplay between hepatic metabolic reprogramming and gut microbiota dysbiosis during cold adaptation in P. vachelli, establishing a theoretical framework for developing gut–liver axis-targeted strategies to augment cold tolerance in aquatic species. Full article
Show Figures

Figure 1

15 pages, 4104 KiB  
Article
Metabolic and Biochemical Responses of Juvenile Babylonia areolata to Hypoxia Stress
by Baojun Tang, Xiaoyao Ren, Zhiguo Dong, Hanfeng Zheng, Yujia Liu and Tao Wei
Biology 2025, 14(6), 727; https://doi.org/10.3390/biology14060727 - 19 Jun 2025
Viewed by 369
Abstract
As an important aquaculture species, the marine snail Babylonia areolata is frequently subjected to fluctuation in dissolved oxygen concentration during farming and transportation processes. In the present study, we investigated the metabolic rates, transcription, and enzyme level responses of juvenile B. areolata exposed [...] Read more.
As an important aquaculture species, the marine snail Babylonia areolata is frequently subjected to fluctuation in dissolved oxygen concentration during farming and transportation processes. In the present study, we investigated the metabolic rates, transcription, and enzyme level responses of juvenile B. areolata exposed to long-term stress (144 h). The results showed that the mortality rate of juvenile B. areolata was higher in the 0.5 mg O2/L group compared to the 2 mg O2/L group. During the hypoxic stress period, both oxygen consumption and ammonia excretion rates were observed to be lower in juvenile B. areolata than those in the control group. As hypoxic stress duration prolonged, juvenile B. areolata demonstrated significantly elevated activities of pyruvate kinase (PK) and alkaline phosphatase (AKP), alongside reduced activities of lactic dehydrogenase (LDH), acid phosphatase (ACP), and superoxide dismutase (SOD). Significant changes in the expression levels of PK and LDH genes were observed during the hypoxic stress. The expression levels of ACP and SOD genes were significantly downregulated, while juvenile B. areolata exhibited elevated AKP gene expression levels under 0.5 mg O2/L. Our findings suggest that under long-term exposure to hypoxia, B. areolata failed to maintain energy homeostasis and suffered biochemical disruptions, leading to a reduction in survival. The mortality rate of B. areolata can be substantially decreased by ensuring that transportation time does not exceed 48 h. Full article
(This article belongs to the Special Issue Global Fisheries Resources, Fisheries, and Carbon-Sink Fisheries)
Show Figures

Figure 1

14 pages, 1816 KiB  
Article
Prognostic Nutritional Index and a Blood-Based Prognostic Tool in Prostate Cancer Treated with Abiraterone, Enzalutamide or Cabazitaxel
by Hakan Taban, Mustafa Erman, Deniz Can Guven, Burak Yasin Aktas, Feride Yilmaz, Serkan Yaşar, Hasan Cagri Yildirim, Ferit Aslan and Sercan Aksoy
Medicina 2025, 61(6), 1105; https://doi.org/10.3390/medicina61061105 - 18 Jun 2025
Viewed by 517
Abstract
Background and Objectives: The prognostic nutritional index (PNI), a marker reflecting both nutritional and immune status, has been associated with prognosis in various malignancies. However, evidence in metastatic castration-resistant prostate cancer (mCRPC), particularly from non-Asian populations, remains limited. This study aimed to [...] Read more.
Background and Objectives: The prognostic nutritional index (PNI), a marker reflecting both nutritional and immune status, has been associated with prognosis in various malignancies. However, evidence in metastatic castration-resistant prostate cancer (mCRPC), particularly from non-Asian populations, remains limited. This study aimed to evaluate the prognostic value of baseline PNI and to develop a blood-based prognostic model in mCRPC patients treated with abiraterone acetate (AA), enzalutamide (ENZA), or cabazitaxel (CABA). Materials and Methods: This retrospective study included mCRPC patients treated with AA, ENZA, or CABA before or after docetaxel. PNI was calculated as: 10 × serum albumin (g/dL) + 0.005 × total lymphocyte count (/mm3). Patients were classified into low-PNI (≤40.8) and high-PNI (>40.8) groups using the median PNI value. Survival outcomes were analyzed using Kaplan–Meier and Cox regression methods. Results: A total of 299 patients were analyzed: 133 (44.5%) received AA, 106 (35.5%) ENZA, and 60 (20.0%) CABA. Patients with high PNI had significantly longer median overall survival (OS; 30.2 vs. 12.6 months, p < 0.001), radiologic progression-free survival (rPFS; 13.5 vs. 6.7 months, p < 0.001), and PSA progression-free survival (PSA-PFS; 10.2 vs. 5.1 months, p < 0.001). These associations remained significant across all treatment subgroups. In multivariate analysis, prostate surgery (HR: 0.6), high PNI (HR: 0.5), PSA response (HR: 0.5), and elevated ALP (HR: 1.6) were independent predictors of OS. A prognostic model incorporating PNI, alkaline phosphatase, and anemia stratified patients into four risk groups with distinct OS: 49.1, 30.8, 18.8, and 9.1 months, respectively. Conclusions: This is the largest study to date in a non-Asian mCRPC population showing that baseline PNI is a strong, independent prognostic factor for survival. The proposed blood-based tool may aid in clinical risk stratification, pending prospective validation. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

18 pages, 4958 KiB  
Article
Exogenous Carbon Type Determines the Structure and Stability of Soil Organic Carbon in Dryland Farmlands Under a Continental Semi-Arid Climate
by Huanjun Qi, Jinyin Lei, Jinqin He, Xiaoting Lei, Jianxin Jin, Lina Zhou and Jian Wang
Agronomy 2025, 15(6), 1425; https://doi.org/10.3390/agronomy15061425 - 11 Jun 2025
Viewed by 1008
Abstract
The effects of different exogenous carbon types on the chemical structural characteristics and stability of soil organic carbon in dryland farmland remain unclear. Based on a four-year fixed-site experiment in a typical dryland farmland on China’s Loess Plateau, this study systematically analyzed the [...] Read more.
The effects of different exogenous carbon types on the chemical structural characteristics and stability of soil organic carbon in dryland farmland remain unclear. Based on a four-year fixed-site experiment in a typical dryland farmland on China’s Loess Plateau, this study systematically analyzed the impacts of different carbon sources on soil enzyme activities, organic carbon content, chemical structural characteristics, and their interrelationships under five treatments: (i) no fertilization (T0); (ii) 100% chemical nitrogen, phosphorus, and potassium fertilizers (CK); (iii) 50% CK + fermented cattle manure (T1); (iv) 50% CK + corn straw (T2); (v) 50% CK + mixed fermented cattle manure/corn straw (T3). The results showed that the activities of β-glucosidase and N-acetylglucosidase ranked in the order T1 > T2 > T3 and T3 > T2 > T1, respectively. Specifically, β-glucosidase activity under T1 increased by 35.26% compared to CK, while N-acetylglucosidase activity under T3 increased by 30.78% relative to CK. Compared to CK, the T1, T2, and T3 treatments increased soil organic carbon by 26.84%, 11.27%, and 18.63%, and alkyl carbon content by 7.67%, 2.91%, and 5.57%, respectively. Additionally, T1 and T3 treatments elevated aromatic carbon content by 20.59% and 176.47% relative to CK. The organic carbon activity index under T1 was the lowest, decreasing by 10.04% compared to CK. Structural equation modeling (SEM) path analysis revealed that the addition of different exogenous carbon sources in dryland farming primarily influenced the structure and stability of soil organic carbon by directly or indirectly enhancing the activities of glucosidase, β-acetylglucosidase, and alkaline phosphatase, with T1 demonstrating the most significant improvement. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

21 pages, 790 KiB  
Article
Influence of Capsaicin Supplementation on the Enhancement of Passive Immunity Transfer Through Modulation of Immunoglobulin Absorption in Neonatal Calves
by Ermes R. Rodas, Luis E. Ayala, Jorge B. Dután, Gissela E. Gañan, José L. Pesántez and Juan V. González-Martín
Animals 2025, 15(12), 1676; https://doi.org/10.3390/ani15121676 - 6 Jun 2025
Viewed by 505
Abstract
In cattle, the transfer of passive immunity from mother to calf across the placenta is limited. Therefore, providing quality colostrum or supplementing with additives that enhance this attribute is crucial to optimise the transfer of passive immunity (TPI). The objective of the present [...] Read more.
In cattle, the transfer of passive immunity from mother to calf across the placenta is limited. Therefore, providing quality colostrum or supplementing with additives that enhance this attribute is crucial to optimise the transfer of passive immunity (TPI). The objective of the present study was to investigate the effect of capsaicin on the absorption of immunoglobulins, metabolites, and enzymes to optimise TPI in neonatal calves, and to assess its impact on selected physiological parameters. Two experimental groups were established: a control group (CON; n = 8), which received colostrum in three feedings (at 1, 12, and 20 h after calving), and a capsaicin group (CAP; n = 8) which received 40 mg of capsaicin per kilogram of body weight added to the colostrum. Birth weight (CON = 36.7 ± 1.10 kg; CAP = 36.2 ± 2.64 kg) and weight at 48 h of age (CON = 38.5 ± 1.11 kg; CAP = 38.0 ± 2.82 kg) were similar between the two experimental groups. At 48 h post-colostrum feeding, the CAP group exhibited significantly higher serum concentrations of IgG, total protein, and albumin—up to 23.4 times greater than those observed in the CON group (p < 0.001). Moreover, levels of glucose, cholesterol, and triglycerides were significantly elevated in the CAP group compared to the CON group (p < 0.05). Similarly, higher concentrations of alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase were observed in the CAP group. These findings suggest that the inclusion of 40 mg of capsaicin per kilogram of body weight in colostrum is safe and contributes positively to improving TPI in crossbred Holstein calves raised at altitudes higher than 2500 m above sea level. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

25 pages, 3875 KiB  
Article
Characteristics and Functions of Different Intestinal Segments in Juvenile Greater Amberjack (Seriola dumerili)
by Kunfeng Zhu, Mouyan Jiang, Mengyao Yan, Yang Huang, Tonglin Yang and Chunhua Zhu
Animals 2025, 15(11), 1672; https://doi.org/10.3390/ani15111672 - 5 Jun 2025
Viewed by 549
Abstract
The greater amberjack (Seriola dumerili), a key species in marine aquaculture, relies heavily on its intestine for nutrient absorption and immune function. However, the structural and functional specialization of its intestinal segments remains poorly understood. In this study, we divided the [...] Read more.
The greater amberjack (Seriola dumerili), a key species in marine aquaculture, relies heavily on its intestine for nutrient absorption and immune function. However, the structural and functional specialization of its intestinal segments remains poorly understood. In this study, we divided the intestine of S. dumerili into foregut, midgut, and hindgut, and conducted a multi-omics analysis integrating histological staining (H&E/AB-PAS), digestive enzyme assays, transcriptome sequencing, and 16S rRNA microbiota profiling to characterize structural, functional, molecular, and microbial differences across intestinal segments. Histological examinations revealed that brush border microvillus length, muscle layer thickness, and folding height were significantly greater in the foregut and hindgut compared to the midgut, while mucus and goblet cell density was higher in the foregut and midgut. Digestive enzyme assays showed that lipase activity peaked in the foregut, α-amylase in the midgut, and protease in the midgut and hindgut. Alkaline phosphatase (AKP) and acid phosphatase (ACP) activities were highest in the foregut and midgut. Immune-related enzyme activities (SOD (Superoxide dismutase), GSH-Px (Glutathione peroxidase), T-AOC (Total Antioxidant Capacity)) were elevated and MDA levels were lower in the midgut, indicating its role as the primary immune site. Transcriptome analysis identified segment-specific expression of nutrient transporters, such as slc6a19b (hindgut, protein), apoa1b (foregut, lipid), and slc37a4 (midgut, carbohydrate). Microbiome analysis revealed Ruminococcus dominance in the foregut (lipid digestion) and Prevotella, Bifidobacterium, and Lactobacillus enrichment in the midgut (carbohydrate metabolism and immunity). These findings highlight functional zonation in S. dumerili: the foregut specializes in lipid digestion, the midgut in carbohydrate metabolism and immunity, and the hindgut in protein digestion. This study provides foundational insights for optimizing aquaculture practices and advancing research in nutrition, immunology, and disease modeling in S. dumerili. Full article
(This article belongs to the Special Issue Omics in Economic Aquatic Animals)
Show Figures

Figure 1

15 pages, 747 KiB  
Article
Influence of Eucommia ulmoides Extract on the Growth, Glucose Metabolism, and Antioxidant Capacity of Largemouth Bass (Micropterus salmoides)
by Shengqi Zhao, Dongyu Huang, Mingchun Ren, Jiaze Gu and Hualiang Liang
Fishes 2025, 10(6), 269; https://doi.org/10.3390/fishes10060269 - 3 Jun 2025
Viewed by 395
Abstract
This study aimed to evaluate the impact of Eucommia ulmoides extract (EE) supplementation on the expression of genes related to glucose metabolism and antioxidant capacity of M. salmoides in response to different starch levels. In order to evaluate the effect of EE on [...] Read more.
This study aimed to evaluate the impact of Eucommia ulmoides extract (EE) supplementation on the expression of genes related to glucose metabolism and antioxidant capacity of M. salmoides in response to different starch levels. In order to evaluate the effect of EE on fish metabolism and especially to enhance the metabolism of M. salmoides towards glucose metabolism, especially in high and low starch formulations, we designed six experimental feed groups: PC (high-starch control), NC (low-starch control), and four groups supplemented with EE on the basis of PC, with EE concentrations of 0.05%, 0.10%, 0.15%, and 0.20%, respectively. Each feed was administered to fish with an average weight of 36.98 ± 0.08 g, which were cultured for seven weeks, and the water temperature was 31–33 °C. The results demonstrated that increasing the EE concentration in the feed significantly influenced fish growth without affecting the body composition. Regarding the antioxidant activity, the highest CAT (catalase) enzyme activity in the intestine was recorded in the 0.15% EE group. Additionally, the mRNA expression of the antioxidant gene keap1 (kelch-like ECH-associated protein1) increased with higher EE supplementation, and sod (superoxide dismutase) mRNA expression was significantly elevated in the 0.10% EE group compared to that in the PC group. A plasma biochemical analysis revealed a significant increase in the ALP (alkaline phosphatase) activity in the 0.05% EE group relative to the PC group, while the TG (triglycerides) levels progressively decreased as the EE levels increased. Furthermore, the GLU (glucose) levels were significantly reduced in both the EE-supplemented and NC groups compared to those in the PC group. Among the genes associated with glucose metabolism, both gk (glucokinase) and pepck (phosphoenol pyruvate carboxykinase) exhibited a pattern of initially decreasing, followed by an increase, as the EE levels rose, with the pepck (phosphoenol pyruvate carboxykinase) expression being lowest in the 0.10% EE group. In conclusion, appropriate EE supplementation in the diet may promote growth performance, enhance antioxidant capacity, and support the expression of genes related to glucose metabolism of M.salmoides in response to different starch levels. Full article
(This article belongs to the Special Issue Largemouth Bass Aquaculture)
Show Figures

Graphical abstract

20 pages, 3720 KiB  
Article
Belowground Interaction in Tea/Soybean Intercropping Enhances Tea Quality by Improving Soil Nutrient Dynamics
by Tianqi Wang, Xiaoyu Mu, Erdong Ni, Qinwen Wang, Shuyue Li, Jingying Mao, Dandan Qing, Bo Li, Yuan Chen, Wenjie Chen, Cuiyue Liang, Hualing Wu, Xing Lu and Jiang Tian
Plants 2025, 14(11), 1691; https://doi.org/10.3390/plants14111691 - 31 May 2025
Viewed by 516
Abstract
Although tea (Camellia sinensis)/soybean (Glycine max) intercropping is widely applied in tea gardens, the underlying mechanisms driving tea quality promotion remain largely unclear. This study explores the effects of intercropping on tea quality, soil nutrient availability, and soybean growth [...] Read more.
Although tea (Camellia sinensis)/soybean (Glycine max) intercropping is widely applied in tea gardens, the underlying mechanisms driving tea quality promotion remain largely unclear. This study explores the effects of intercropping on tea quality, soil nutrient availability, and soybean growth and analyzes their mutual relationship. Field experiments revealed that intercropping increased tea leaf water extracts, polyphenols, and amino acids by 4.36–8.99%, 14.76–15.23%, and 14.73–16.36%, respectively, across two growth stages. Furthermore, intercropping boosted organic matter, available nitrogen (N), phosphorus (P), and potassium (K) in the tea rhizosphere. Enzyme activities, including acid phosphatase, alkaline phosphatase, urease, and β-glucosidase, were also elevated in tea/soybean intercropping. In soybean, shoot and root biomass, weight and number of nodules, and N, P, and K content increased over cultivation time. Correlation analysis showed that tea water extracts and polyphenols were positively linked to soil available P and alkaline phosphatase activities. Soybean root and nodule growth were correlated with soil N and P activation and tea water extracts, indicating that soybean-mediated underground interactions drive mineral nutrient mobilization in rhizosphere, further improving tea quality. This study provides mechanistic insights into tea/soybean intercropping, offering practical implications for sustainable tea cultivation practices. Full article
(This article belongs to the Special Issue Crop and Soil Management for Sustainable Agriculture)
Show Figures

Figure 1

Back to TopTop