Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = eleutherosides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4823 KB  
Article
Rhizosphere Bacillus proteolyticus Strain Enhances the Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. Growth in Roots and Soil Nutrient Status While Enriching the Plant-Beneficial Bacteria in Rhizosphere
by Ye Zhang, Xiaoqing Tang, Jiaying Qi, Weixue Zhong, Xiaohui Li, Zhonghua Tang, Ying Liu and Dewen Li
Biology 2025, 14(12), 1633; https://doi.org/10.3390/biology14121633 - 21 Nov 2025
Viewed by 594
Abstract
This study aimed to investigate the promoting mechanisms of Bacillus proteolyticus (B. proteolyticus) on Eleutherococcus senticosus (Rupr. and Maxim.) Maxim. (therm E. senticosus) root development. Using therm E. senticosus seeds as experimental material, soil was drenched with B. proteolyticus suspensions at [...] Read more.
This study aimed to investigate the promoting mechanisms of Bacillus proteolyticus (B. proteolyticus) on Eleutherococcus senticosus (Rupr. and Maxim.) Maxim. (therm E. senticosus) root development. Using therm E. senticosus seeds as experimental material, soil was drenched with B. proteolyticus suspensions at different concentrations v/v (water, 25%; 50%; 75%, and 100%). The results showed that the germination rate, root tip number (52 ± 2.97), total root length (23.7 ± 0.46 cm), and total root volume (57.36 ± 1.64 mm3) exhibited an initial increase, then a decrease after B. proteolyticus treatment (p < 0.05). Principal component analysis (PCA) indicated that the soil of B. proteolyticus at a 50% concentration was conducive to seed germination. Compared with CK, GC-MS analysis revealed that 16 differential primary metabolites were screened, primarily enriched in galactose metabolism, starch and sucrose metabolism, and TCA cycle pathways after 50% B. proteolyticus treatment. LC-MS analysis revealed that the contents of six main medicinal components were higher than those of CK, with the content of eleutheroside E being 2.62 times greater. In rhizosphere soil, the contents of NO3-N and NH4+-N were promoted, and the abundance of Gemmatimonadetes was increased in bacterial communities. Correlation analysis revealed significant correlations between the abundance of Gemmatimonadetes and the contents of NO3-N and NH4+-N, as well as between total root length and D-galactose content, suggesting that these relationships may contribute to the root growth. Therefore, the soil of B. proteolyticus at a 50% concentration could enhance both the biomass and medicinal value of cultivated therm E. senticosus. This study provided novel insight that B. proteolyticus would be expected to be developed as an effective microbial preparation, offering a sustainable strategy for its agricultural production. Full article
Show Figures

Figure 1

25 pages, 16990 KB  
Article
Integrative Transcriptomic and Metabolomic Analysis Reveals That Acanthopanax senticosus Fruit Ameliorates Cisplatin-Induced Acute Kidney Injury by Suppressing the NF-κB/PI3K-AKT Pathway via UGT1A1 Regulation
by Liu Han, Zebo Tang, Xiangyu Ma, Qiuyue Zhang, Yu Han, Qi Wang, Jinlong Liu, Xuefeng Bian, Liancong Gao, Mengran Xu and Xin Sun
Int. J. Mol. Sci. 2025, 26(22), 11131; https://doi.org/10.3390/ijms262211131 - 18 Nov 2025
Viewed by 855
Abstract
The chemical composition of the ethanol extract of Acanthopanax senticosus fruit (ASFEE) was systematically characterized using UPLC-MS/MS (Q Exactive Orbitrap), leading to the identification of 45 compounds. Through integrated network pharmacology and molecular docking analyses, the binding affinities between key bioactive constituents—such as [...] Read more.
The chemical composition of the ethanol extract of Acanthopanax senticosus fruit (ASFEE) was systematically characterized using UPLC-MS/MS (Q Exactive Orbitrap), leading to the identification of 45 compounds. Through integrated network pharmacology and molecular docking analyses, the binding affinities between key bioactive constituents—such as eleutheroside E (EE) and quercetin—and core therapeutic targets were predicted and validated. A total of 125 overlapping targets were identified between ASFEE and acute kidney injury (AKI), with significant enrichment observed in critical signaling pathways, including NF-κB, IL-17, and PI3K-Akt. To evaluate the protective effects of ASFEE, both in vitro (HK-2 cells) and in vivo (murine) models of cisplatin (DDP)-induced AKI were employed. Parameters assessed included cell viability, apoptosis, reactive oxygen species (ROS) production, activation of the NF-κB signaling pathway, kidney function, histopathological alterations, and levels of inflammatory cytokines. ASFEE treatment markedly enhanced HK-2 cell viability and reduced cellular apoptosis and ROS generation. In the murine model, DDP administration resulted in significantly elevated serum creatinine (Scr) and blood urea nitrogen (BUN) levels. Both low- and high-dose ASFEE treatments significantly attenuated these increases, improved overall kidney function, and alleviated kidney tubular damage. Furthermore, ASFEE reduced serum levels of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α. Multi-omics integration analysis enabled the identification of differentially expressed genes and metabolites. ASFEE was found to reverse 4689 DDP-induced gene expression changes and 323 metabolic disturbances, with the uridine diphosphate glucuronosyltransferase (UGT)-mediated ascorbic acid metabolism pathway emerging as the central regulatory axis. Key candidate genes and proteins were further validated via real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting. DDP significantly upregulated the expression of inflammatory markers and associated signaling molecules in kidney tissues, while concurrently downregulating UGT family genes and the UGT1A1 protein involved in uronic acid metabolism. Notably, ASFEE treatment effectively counteracted these alterations, confirming its role in enhancing UGT1A1-mediated metabolic processes and suppressing the NF-κB/PI3K-Akt/IL-17 signaling cascade. These mechanisms contribute to improved antioxidant capacity, mitigation of inflammatory responses, and restoration of metabolic homeostasis, thereby conferring protection against DDP-induced AKI. ASFEE exerts a protective effect on AKI caused by DDP by enhancing antioxidant capacity, inhibiting inflammation and restoring metabolic homeostasis, providing an experimental basis for its subsequent development and application. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

17 pages, 4973 KB  
Article
Eleutheroside E Ameliorates D-Gal-Induced Senescence in Human Skin Fibroblasts Through PI3K/AKT Signaling
by Xiangyu Ma, Liu Han, Mengran Xu, Yuling Feng, Changsheng Liu, Yida Zhao, Min Zhang, Guanghua Xu and Xin Sun
Curr. Issues Mol. Biol. 2025, 47(11), 895; https://doi.org/10.3390/cimb47110895 - 28 Oct 2025
Cited by 1 | Viewed by 954
Abstract
Eleutheroside E (EE), a natural compound, shows promise in mitigating cellular senescence—a key factor in skin aging—though its mechanisms remain incompletely understood. This study integrated network pharmacology, molecular docking, and cellular experiments to explore the protective effects and mechanistic basis of EE against [...] Read more.
Eleutheroside E (EE), a natural compound, shows promise in mitigating cellular senescence—a key factor in skin aging—though its mechanisms remain incompletely understood. This study integrated network pharmacology, molecular docking, and cellular experiments to explore the protective effects and mechanistic basis of EE against D-galactose (D-gal)-induced senescence in human skin fibroblasts (HSFs). Network pharmacology analyses suggested EE’s involvement in inflammation-related pathways, especially phosphatidylinositol 3-kinase and protein kinase B (PI3K-AKT) and hypoxia-inducible factor 1 (HIF-1) signaling, which were corroborated by molecular docking revealing strong binding affinities between EE and key targets such as hypoxia-inducible factor 1-alpha (HIF1A), AKT serine/threonine kinase 1 (AKT1), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma (PI3Kγ), and interleukin-6 (IL-6). Cellular assays showed that EE markedly lowered oxidative stress markers, including reactive oxygen species (ROS) and malondialdehyde (MDA), reduced senescence-associated beta-galactosidase (SA-β-gal) activity, and boosted antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT). Additionally, EE dose-dependently inhibited apoptosis and downregulated PI3K/AKT phosphorylation as well as the B-cell lymphoma 2-associated X protein/B-cell lymphoma-2 (Bax/Bcl-2) ratio. These findings suggest that EE alleviates cellular senescence in HSFs mainly via the PI3K/AKT pathway by attenuating oxidative stress and apoptosis, highlighting its potential as a therapeutic agent for anti-aging strategies. Full article
(This article belongs to the Section Bioorganic Chemistry and Medicinal Chemistry)
Show Figures

Figure 1

17 pages, 2912 KB  
Article
Environmental Influences on Growth and Secondary Metabolite Accumulation in Eleutherococcus sessiliflorus Across Korean Cultivation Sites
by Yonghwan Son, Dong Hwan Lee, Jun Hyuk Jang, Hyun-Jun Kim and Ji Ah Kim
Plants 2025, 14(20), 3175; https://doi.org/10.3390/plants14203175 - 16 Oct 2025
Viewed by 577
Abstract
Eleutherococcus sessiliflorus is a medicinal shrub widely used in East Asian traditional medicine, yet field-based studies on environmental influences remain limited. In this study, branches from 26 cultivation sites across South Korea were analyzed for relationships among growth traits, soil and climatic conditions, [...] Read more.
Eleutherococcus sessiliflorus is a medicinal shrub widely used in East Asian traditional medicine, yet field-based studies on environmental influences remain limited. In this study, branches from 26 cultivation sites across South Korea were analyzed for relationships among growth traits, soil and climatic conditions, and two major compounds, chlorogenic acid (CGA) and eleutheroside E (EleuE). Growth traits varied widely, with plant height ranging from 1.06 to 4.20 m. CGA content was relatively stable across sites (0.292–0.708 mg/g), while EleuE showed greater variability (0.038–0.264 mg/g). The combined content of CGA and EleuE showed a weak positive correlation with thorn density (r = 0.236, p = 0.037). Plant height and basal diameter were positively correlated with temperature indices (annual average temperature r = 0.410, p < 0.001; annual maximum temperature r = 0.341, p = 0.002), whereas thorn density decreased with soil electrical conductivity, potassium, and magnesium but increased with sand and precipitation. Principal component analysis and correlation networks highlighted distinct clusters separating growth traits from EleuE–environment associations. These findings demonstrate that growth performance in E. sessiliflorus is strongly influenced by thermal regimes, while EleuE accumulation responds to soil texture and light availability, providing an empirical foundation for site-specific cultivation strategies and standardized quality management. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

33 pages, 1830 KB  
Review
Eleutherococcus senticosus (Acanthopanax senticosus): An Important Adaptogenic Plant
by Grzegorz Kos, Katarzyna Czarnek, Ilona Sadok, Agnieszka Krzyszczak-Turczyn, Paweł Kubica, Karolina Fila, Gizem Emre, Małgorzata Tatarczak-Michalewska, Małgorzata Latalska, Eliza Blicharska, Daniel Załuski, Nazım Şekeroğlu and Agnieszka Szopa
Molecules 2025, 30(12), 2512; https://doi.org/10.3390/molecules30122512 - 8 Jun 2025
Cited by 12 | Viewed by 11063
Abstract
This comprehensive review focuses on Eleutherococcus senticosus (ES), examining the phytochemical composition, traditional medicinal roles, ecological traits, and pharmacological effects. Native to Northeast Asia, ES is used in traditional Chinese, Korean, and Japanese medicine. The rhizomes and bark are utilized medicinally and valued [...] Read more.
This comprehensive review focuses on Eleutherococcus senticosus (ES), examining the phytochemical composition, traditional medicinal roles, ecological traits, and pharmacological effects. Native to Northeast Asia, ES is used in traditional Chinese, Korean, and Japanese medicine. The rhizomes and bark are utilized medicinally and valued for their adaptogenic properties that enhance stress resistance, boost mental and physical endurance, and exhibit immunostimulatory effects that strengthen the immune system. Its pharmacological potential stems from a variety of bioactive compounds, including eleutherosides, lignans, saponins, flavonoids, and polysaccharides, which contribute to health benefits such as neuroprotective, antidiabetic, anticancer, and antioxidative activities. Neuroprotective properties may aid in the management of neurodegenerative conditions, such as Alzheimer’s and Parkinson’s disease, while antidiabetic effects support glucose regulation and insulin sensitivity. With increasing demands and conservation concerns, sustainable cultivation practices are essential, as ES is endangered in some areas. Plant biotechnology techniques offer solutions to enhance secondary metabolite yields while ensuring genetic stability and minimizing environmental impacts. ES is a promising natural resource for various industries because of its extensive benefits. Still, its conservation and sustainable production are critical and require ongoing research and innovative cultivation strategies. Full article
Show Figures

Graphical abstract

17 pages, 2339 KB  
Article
Multi-Component Characterization and Quality Evaluation Strategy of Sarcandrae Herba by Combining Dual-Column Tandem HPLC Fingerprint and UPLC-Q-TOF-MS/MS
by Zhijian Zhong, Pan Deng, Xiaorong Luo, Weifeng Zhu, Pengdi Cui, Zhe Li, Zhiqiang Xiao, Yu Shen and Xinyu Wu
Molecules 2025, 30(8), 1825; https://doi.org/10.3390/molecules30081825 - 18 Apr 2025
Cited by 3 | Viewed by 1869
Abstract
A dual-column tandem mode was used to establish the fingerprints of Sarcandrae herb from different origins, and their chemical compositions were characterized by UPLC-Q-TOF-MS/MS, which provided an experimental basis for the establishment of a rapid and efficient method for the overall quality control [...] Read more.
A dual-column tandem mode was used to establish the fingerprints of Sarcandrae herb from different origins, and their chemical compositions were characterized by UPLC-Q-TOF-MS/MS, which provided an experimental basis for the establishment of a rapid and efficient method for the overall quality control of Sarcandrae herba. For the first time, nine common components were identified from the Sarcandrae herba herbs of 24 origins, which were neochlorogenic acid, chlorogenic acid, 4-caffeoylquinic acid, eleutheroside B1, quercetin-3-O-β-D-glucuronide, neoastilbin, astilbin, isofraxidin, and rosmarinic acid, respectively. A total of 92 compounds were identified by liquid mass spectrometry. The quality of the Sarcandrae herb from 24 origins was analyzed by similarity evaluation, principal component analysis, and cluster analysis, and the chemical components of Sarcandrae herba were identified by UPLC-Q-TOF-MS/MS. The results showed that the overall analysis based on fingerprinting and mass spectrometry could differentiate the origins of the herbs. Full article
Show Figures

Figure 1

17 pages, 5589 KB  
Article
Eleutheroside B Ameliorates Cardiomyocytes Necroptosis in High-Altitude-Induced Myocardial Injury via Nrf2/HO-1 Signaling Pathway
by Huxinyue Duan, Yue Han, Hongying Zhang, Tianyue Zhou, Chunjie Wu, Zhenxing Wang and Yacong He
Antioxidants 2025, 14(2), 190; https://doi.org/10.3390/antiox14020190 - 7 Feb 2025
Cited by 6 | Viewed by 1592
Abstract
This study was designed to evaluate the protective effects of eleutheroside B (EB) in high-altitude-induced myocardial injury (HAMI) and to unravel the underlying molecular mechanisms. SD rats were used for in vivo experiments. Following pretreatment with EB, the SD rats were exposed to [...] Read more.
This study was designed to evaluate the protective effects of eleutheroside B (EB) in high-altitude-induced myocardial injury (HAMI) and to unravel the underlying molecular mechanisms. SD rats were used for in vivo experiments. Following pretreatment with EB, the SD rats were exposed to a hypobaric environment within a hypobaric chamber for 48 h. Electrocardiograms, H&E staining, and serum biochemical indices were measured to evaluate the protective effects of EB on HAMI. Immunofluorescence and Western blotting were utilized to detect the expression of associated proteins. In parallel, a hypobaric hypoxic cell incubator was used to establish an in vitro model of hypobaric hypoxia-induced cell injury. The anti-necroptotic effect and its potential underlying mechanisms were investigated and verified in vitro. Exposure to hypobaric hypoxia led to electrocardiogram disorders, pathological changes in myocardial tissue, increased concentrations of BNP and CK-MB, and elevated levels of oxidative stress indicators and inflammatory factors. Additionally, the expression of necroptosis-related proteins was upregulated. Pretreatment with EB effectively ameliorated myocardial injury caused by hypobaric hypoxia, mitigated oxidative stress and inflammation, and suppressed necroptosis. Furthermore, EB facilitated the translocation of Nrf2 into the nucleus. In conclusion, this study provides evidence suggesting that EB may exert a protective effect against HAMI by inhibiting cardiomyocyte necroptosis via the Nrf2/HO-1 signaling pathway. Full article
Show Figures

Figure 1

17 pages, 4176 KB  
Article
Influence of Intercropping Arisaema amurense with Acanthopanax senticosus on Soil Microbial Community and the Effective Ingredients of A. senticosus
by Jiapeng Zhu, Yayu Zhang, Cai Shao, Bochen Lv, Hao Liang, Weiyu Cao, Guojia Zhang and Hai Sun
Horticulturae 2024, 10(6), 592; https://doi.org/10.3390/horticulturae10060592 - 5 Jun 2024
Cited by 1 | Viewed by 2233
Abstract
Intercropping is an effective cultivation strategy for promoting soil health, changing microbial community, reducing fertiliser application and enhancing the quality of medicinal plants. Nevertheless, the interaction effect of intercropping between Arisaema amurense and Acanthopanax senticosus remains unknown. Herein, we investigated the difference in [...] Read more.
Intercropping is an effective cultivation strategy for promoting soil health, changing microbial community, reducing fertiliser application and enhancing the quality of medicinal plants. Nevertheless, the interaction effect of intercropping between Arisaema amurense and Acanthopanax senticosus remains unknown. Herein, we investigated the difference in soil properties, soil enzyme activities, microbial community diversity and active ingredients of A. senticosus in monoculturing versus intercropping of A. senticosus/A. amurense in a field experiment. High-throughput sequencing and liquid chromatography–mass spectrometry were employed to explore the growth promotion effect in the intercropping mode. Results revealed that intercropping benefitted the accumulation of ammonium nitrogen and total nitrogen in soil; total nitrogen and ammonium nitrogen increased by 33% (rhizosphere) and 65% (inter-row) and by 123% (rhizosphere) and 124% (inter-row) at 0–20 cm soil depths, respectively. Furthermore, intercropping increased the soil carbon/nitrogen ratio at the soil from 20 to 40 cm and promoted the growth of the root system of the deep-rooted plant A. senticosus. However, it exerted a certain inhibitory effect on the activities of urease, sucrase and neutral phosphatase on the soil surface. Intercropping increased bacterial diversity and inhibited fungal diversity in soil, potentially preventing the soil microflora changed from bacterial type to fungal type. In terms of community composition, intercropping exhibited a greater effect on bacteria than on fungi. At the phylum level, the relative abundance of microorganisms associated with nutrient cycling and increased ecosystem resistance increased in intercropped soils, such as those of Proteobacteria, Actinobacteriota and Bacteroidota. At the genus level, the bacterial genera that showed significantly increased relative abundance in intercropping soil included unclassified_Acidobacteriales, Sphingomonas, Gemmatimonas and Candidatus_Solibacter. Furthermore, the relative abundance of Cladosporium, a potential plant pathogen in intercropped rhizosphere soil, was 42% lower than that in monocultured rhizosphere soil. Additionally, intercropping can promote the accumulation of eleutheroside B, eleutheroside E, quercetin, protocatechuic acid and polysaccharide, which increased by 551%, 53%, 10%, 28% and 26%, respectively, compared with that after monoculturing. According to the Pearson correlation heat map, rapidly available phosphorus, rapidly available potassium, ammonium nitrogen, nitrate nitrogen, total nitrogen and urease exhibited the greatest impact on the soil microbial community and on the active ingredients of A. senticosus. In conclusion, intercropping altered the composition of the soil microbial community and increased the content of the active ingredients of A. senticosus, consequently begetting economic and ecological benefits. Full article
Show Figures

Figure 1

15 pages, 3155 KB  
Article
A Metabolomics Study of the Effects of Eleutheroside B on Glucose and Lipid Metabolism in a Zebrafish Diabetes Model
by Xuelian Dong, Qiang Chen, Wenyan Chi, Zhidong Qiu and Ye Qiu
Molecules 2024, 29(7), 1545; https://doi.org/10.3390/molecules29071545 - 29 Mar 2024
Cited by 10 | Viewed by 2874
Abstract
(1) Background: Diabetes is a common metabolic disease that seriously endangers human health. In the present study, we investigated the therapeutic effects of the active ingredient Eleutheroside B (EB) from the traditional Chinese medicine Eleutheroside on diabetes mellitus in a zebrafish model. Concomitant [...] Read more.
(1) Background: Diabetes is a common metabolic disease that seriously endangers human health. In the present study, we investigated the therapeutic effects of the active ingredient Eleutheroside B (EB) from the traditional Chinese medicine Eleutheroside on diabetes mellitus in a zebrafish model. Concomitant hepatic injury was also analysed, along with the study of possible molecular mechanisms using metabolomics technology. This work should provide some theoretical references for future experimental studies. (2) Methods: A zebrafish diabetes model was constructed by soaking in a 1.75% glucose solution and feeding a high-fat diet. The intervention drug groups were metformin (100 μg∙mL−1) and EB (50, 100, and 150 μg∙mL−1) via water-soluble exposure for 30 days. Glucose, TG, TC, LDL-C, and HDL-C were evaluated in different treatment groups. GLUT4 protein expression was also evaluated in each group, and liver injury was observed by HE staining. Metabolomics techniques were used to investigate the mechanism by which EB regulates endogenous markers and metabolic pathways during the development of diabetes. (3) Results: All EB treatment groups in diabetic zebrafish showed significantly reduced body mass index (BMI) and improved blood glucose and lipid profiles. EB was found to upregulate GLUT4 protein expression and ameliorate the liver injury caused by diabetes. Metabolomics studies showed that EB causes changes in the metabolic profile of diabetic zebrafish. These were related to the regulation of purine metabolism, cytochrome P450, caffeine metabolism, arginine and proline metabolism, the mTOR signalling pathway, insulin resistance, and glycerophospholipid metabolism. (4) Conclusions: EB has a hypoglycaemic effect in diabetic zebrafish as well as significantly improving disorders of glycolipid metabolism. The mechanism of action of EB may involve regulation of the mTOR signalling pathway, purine metabolism, caffeine metabolism, and glycerophospholipid metabolism. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

14 pages, 752 KB  
Article
Eleutherococcus divaricatus Fruits Decrease Hyaluronidase Activity in Blood Serum and Protect from Oxidative Damages in In Vitro Model
by Jakub Gębalski, Milena Małkowska, Dorota Gawenda-Kempczyńska, Artur Słomka, Maciej Strzemski, Jan Styczyński and Daniel Załuski
Int. J. Mol. Sci. 2024, 25(4), 2033; https://doi.org/10.3390/ijms25042033 - 7 Feb 2024
Cited by 7 | Viewed by 2459
Abstract
Fruits are very important dietary components and a source of biologically active compounds used in nutritional pharmacology. Particularly due to the presence of polyphenolic compounds, fruits play an important role in the prevention of diseases of civilization. Therefore, it is important to study [...] Read more.
Fruits are very important dietary components and a source of biologically active compounds used in nutritional pharmacology. Particularly due to the presence of polyphenolic compounds, fruits play an important role in the prevention of diseases of civilization. Therefore, it is important to study the phytochemicals and biological activity of fruits, especially those with a long-standing use in ethnomedicine. In this study, we determined the chemical profile and biological activity of a methanolic extract of the Eleutherococcus divaricatus fruits. Amongst nine polyphenols studied, only chlorogenic acid, protocatechuic acid, and eleutheroside E have been detected. The extract showed a weak anti-hyaluronidase activity from bovine testicular in a range of 9.06–37.70% and quite high for human serum hyaluronidase from children diagnosed with acute leukemia in a range of 76–86%. A weak anti-tyrosinase activity was obtained in a range of 2.94–12.46%. Moreover, the extract showed antioxidant properties against DPPH radical, ABTS radical, and O2•−. In addition, the antioxidant activity of the extract was evaluated by FRAP assay and Fe2+ ion chelation assay. These preliminary studies partially justify the traditional use of the plant in inflammatory- and immune-related diseases, in which hyaluronidase and free radicals can participate. A difference in human serum hyaluronidase inhibition may result from the inter-patient variability. Regardless of that, the results mean that polyphenolic compounds may stimulate activity of hyaluronidase, as well as to protect cells from the oxidative damages. However, further studies in ex vivo and in vivo models are needed, including blood isolated from a larger number of patients. Full article
(This article belongs to the Special Issue Health Promoting Benefits of Natural Products and Functional Foods)
Show Figures

Graphical abstract

19 pages, 6676 KB  
Article
Anti-Ulcerative Colitis Effects and Active Ingredients in Ethyl Acetate Extract from Decoction of Sargentodoxa cuneata
by Piao Yu, Feng Xu, Hongmei Wu, Xiangpei Wang, Qin Ding, Mei Zhang, Rongze Fang and Ping Qin
Molecules 2023, 28(22), 7663; https://doi.org/10.3390/molecules28227663 - 19 Nov 2023
Cited by 7 | Viewed by 2891
Abstract
Ulcerative colitis (UC) is an intractable disease prevalent worldwide. While ethyl acetate extract from decoction of Sargentodoxa cuneata (EAdSc) has potential anti-inflammatory activity, its effects on UC remain unknown. In this study, the constituent compounds discussed in the literature and identified by gas [...] Read more.
Ulcerative colitis (UC) is an intractable disease prevalent worldwide. While ethyl acetate extract from decoction of Sargentodoxa cuneata (EAdSc) has potential anti-inflammatory activity, its effects on UC remain unknown. In this study, the constituent compounds discussed in the literature and identified by gas chromatography and mass spectrometry (GC–MS) were collected, and the blood-soluble components of EAdSc were identified by liquid chromatography–mass spectrometry. The network pharmacology analysis and molecular docking analysis were performed to explore the potential underlying mechanism and active ingredients of EAdSc against UC. Furthermore, mice with dextran sulfate sodium (DSS)-induced UC were used to study the therapeutic effects and validate the mechanism of EAdSc against UC. A total of 53 compounds from EAdSc were identified in the literature and by GC–MS, and 22 blood-soluble EAdSc components were recognized. Network pharmacology analysis revealed that multiple inflammatory signaling pathways are involved in EAdSc’s anti-UC activity. Furthermore, molecular docking analysis showed that the eleutheroside A, liriodendrin, epicatechin, 2-methoxy-4-vinylphenol, catechin, androsin, coumaroyltyramine, and catechol may be active against UC through the TLR4/NF-κB/NLRP3 pathway. EAdSc reduced the disease activity, macroscopic colon damage, and histological damage indices, as well as inhibiting DSS-induced spleen enlargement and colon shortening. In addition, EAdSc decreased the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-17, as well as the expression of TLR4, NF-κB p65, NLRP3, and Caspase-1 mRNA in colon tissues. These results provide insights into the anti-UC effects and underlying mechanisms of EAdSc and help elucidate the active ingredients of EAdSc in the treatment of UC. Full article
Show Figures

Graphical abstract

16 pages, 1885 KB  
Article
Evaluation of the Antioxidant and Anti-Lipoxygenase Activity of Berberis vulgaris L. Leaves, Fruits, and Stem and Their LC MS/MS Polyphenolic Profile
by Anna Och, Marta Olech, Kamil Bąk, Sebastian Kanak, Anna Cwener, Marek Cieśla and Renata Nowak
Antioxidants 2023, 12(7), 1467; https://doi.org/10.3390/antiox12071467 - 21 Jul 2023
Cited by 16 | Viewed by 4079
Abstract
Berberis vulgaris L. is currently widely studied for its antioxidant and chemopreventive properties, especially with regard to the beneficial properties of its fruits. Although the bark and roots have been well known and used in traditional medicine since ancient times, little is known [...] Read more.
Berberis vulgaris L. is currently widely studied for its antioxidant and chemopreventive properties, especially with regard to the beneficial properties of its fruits. Although the bark and roots have been well known and used in traditional medicine since ancient times, little is known about the other parts of this plant. The aim of the research was to determine the antioxidant and LOX inhibitory activity effects of extracts obtained from the leaves, fruits, and stems. Another aim of the work was to carry out the quantitative and qualitative analysis of phenolic acids, flavonoid aglycones, and flavonoid glycosides. The extracts were obtained with the use of ASE (accelerated solvent extraction). The total content of polyphenols was determined and was found to vary depending on the organ, with the highest amount of polyphenols found in the leaf extracts. The free radical scavenging activity of the extracts was determined spectrophotometrically in relation to the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical, with results ranging from 63.9 mgTE/g for the leaves to 65.2 mgTE/g for the stem. Antioxidant activity was also assessed using the ABTS test. The lowest value was recorded for the barberry fruit (117.9 mg TE/g), and the highest level was found for the barberry leaves (140.5 mgTE/g). The oxygen radical absorbance capacity test (ORAC) showed the lowest value for the stem (167.7 mgTE/g) and the highest level for the leaves (267.8 mgTE/g). The range of the percentage inhibition of LOX was determined as well. The percentage inhibition of the enzyme was positively correlated with the sum of the flavonoids, TPC, TFC, and the content of selected flavonoids. Phenolic acids, flavonoid aglycones, and flavonoid glycosides were determined qualitatively and quantitatively in individual parts of Berberis vulgaris L. The content of phenolic acids, flavonoid aglycones, and flavonoid glycosides was determined with the LC-MS/MS method. The following phenolic acids were quantitatively and qualitatively identified in individual parts of Berberis vulgaris L.: gallic acid, 3-caffeoylquinic acid, protocatechuic acid, 5-caffeoylquinic acid, 4-caffeoylquinic acid, and caffeic acid. The flavonoid glycosides determined were: eleutheroside E, Eriodictyol-7-glucopyranoside, rutin, hyperoside, isoquercitin, luteoloside, narcissoside, naringenin-7-glucoside, isorhamnetin-3-glucoside, afzeline, and quercitrin. Flavonoid aglycones such as catechin, luteolin, quercetin, and eriodictyol were also determined qualitatively and quantitatively. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

12 pages, 2188 KB  
Article
Effect of Eleutheroside E on an MPTP-Induced Parkinson’s Disease Cell Model and Its Mechanism
by Yi Yao, Caiyu Liao, Honghao Qiu, Lishan Liang, Wenying Zheng, Liyan Wu and Fanxin Meng
Molecules 2023, 28(9), 3820; https://doi.org/10.3390/molecules28093820 - 29 Apr 2023
Cited by 7 | Viewed by 2970
Abstract
This research investigated the effects of eleutheroside E (EE) on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease cell model and its mechanism. Methods: To create a cell model of Parkinson’s disease, MPTP (2500 μmol/L) was administered to rat adrenal pheochromocytoma cells (PC-12) to produce an [...] Read more.
This research investigated the effects of eleutheroside E (EE) on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease cell model and its mechanism. Methods: To create a cell model of Parkinson’s disease, MPTP (2500 μmol/L) was administered to rat adrenal pheochromocytoma cells (PC-12) to produce an MPTP group. Selegiline (50 μmol/L) and MPTP had been administered to the positive group beforehand. The eleutheroside E group was divided into low-, medium-, and high-concentration groups, in which the cells were pretreated with eleutheroside E at concentrations of 100 μmol/L, 300 μmol/L, and 500 μmol/L. Next, MPTP was added to the cells separately. The CCK-8 method was used to measure the cell survival rate. Apart from the CCK-8 method, mitochondrial membrane potential detection, cell reactive oxygen species (ROS) detection, and other methods were also adopted to verify the effect of low, medium, and high concentrations of eleutheroside E on the MPTP-induced cell model. Western blot analysis was used to detect changes in the expression of intracellular proteins CytC, Nrf2, and NQO1 to clarify the mechanism. The results are as follows. Compared with the MPTP group, the survival rates of cells at low, medium, and high concentrations of eleutheroside E all increased. The mitochondrial membrane potential at medium and high concentrations of eleutheroside E increased. The ROS levels at medium and high concentrations of eleutheroside E decreased. Moreover, the apoptosis rate decreased and the expression levels of the intracellular proteins CytC, Nrf2, and NQO1 were upregulated. Conclusion: Eleutheroside E can improve the MPTP-induced apoptosis of PC-12 cells by increasing the mitochondrial membrane potential and reducing the level of intracellular reactive oxygen species (ROS). Moreover, the apoptosis of cells is regulated by the expression of CytC, Nrf2, and NQO1 proteins. Full article
Show Figures

Figure 1

14 pages, 21136 KB  
Article
Extract of Acanthopanax senticosus and Its Components Interacting with Sulfide, Cysteine and Glutathione Increase Their Antioxidant Potencies and Inhibit Polysulfide-Induced Cleavage of Plasmid DNA
by Anton Misak, Marian Grman, Lenka Tomasova, Ondrej Makara, Miroslav Chovanec and Karol Ondrias
Molecules 2022, 27(17), 5735; https://doi.org/10.3390/molecules27175735 - 5 Sep 2022
Cited by 1 | Viewed by 2646
Abstract
Aqueous root extract from Acanthopanax senticosus (ASRE) has a wide range of medicinal effects. The present work was aimed at studying the influence of sulfide, cysteine and glutathione on the antioxidant properties of ASRE and some of its selected phytochemical components. Reduction of [...] Read more.
Aqueous root extract from Acanthopanax senticosus (ASRE) has a wide range of medicinal effects. The present work was aimed at studying the influence of sulfide, cysteine and glutathione on the antioxidant properties of ASRE and some of its selected phytochemical components. Reduction of the 2-(4-carboxyphenyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazol-1-yloxy-3-oxide (cPTIO) stable radical and plasmid DNA (pDNA) cleavage in vitro assays were used to evaluate antioxidant and DNA-damaging properties of ASRE and its individual components. We found that the interaction of ASRE and its two components, caffeic acid and chlorogenic acid (but not protocatechuic acid and eleutheroside B or E), with H2S/HS, cysteine or glutathione significantly increased the reduction of the cPTIO radical. In contrast, the potency of ASRE and its selected components was not affected by Na2S4, oxidized glutathione, cystine or methionine, indicating that the thiol group is a prerequisite for the promotion of the antioxidant effects. ASRE interacting with H2S/HS or cysteine displayed a bell-shaped effect in the pDNA cleavage assay. However, ASRE and its components inhibited pDNA cleavage induced by polysulfides. In conclusion, we suggest that cysteine, glutathione and H2S/HS increase antioxidant properties of ASRE and that changes of their concentrations and the thiol/disulfide ratio can influence the resulting biological effects of ASRE. Full article
Show Figures

Graphical abstract

13 pages, 1510 KB  
Article
The Therapeutic Effect of Acanthopanax senticosus Components on Radiation-Induced Brain Injury Based on the Pharmacokinetics and Neurotransmitters
by Chen Song, Sijia Li, Fangyuan Duan, Mengyao Liu, Shan Shan, Ting Ju, Yingchun Zhang and Weihong Lu
Molecules 2022, 27(3), 1106; https://doi.org/10.3390/molecules27031106 - 7 Feb 2022
Cited by 23 | Viewed by 4765
Abstract
Acanthopanax senticosus (AS) is a medicinal and food homologous plant with many biological activities. In this research, we generated a brain injury model by 60Co -γ ray radiation at 4 Gy, and gavaged adult mice with the extract with AS, Acanthopanax senticocus [...] Read more.
Acanthopanax senticosus (AS) is a medicinal and food homologous plant with many biological activities. In this research, we generated a brain injury model by 60Co -γ ray radiation at 4 Gy, and gavaged adult mice with the extract with AS, Acanthopanax senticocus polysaccharides (ASPS), flavones, syringin and eleutheroside E (EE) to explore the therapeutic effect and metabolic characteristics of AS on the brain injury. Behavioral tests and pathological experiments showed that the AS prevented the irradiated mice from learning and memory ability impairment and protected the neurons of irradiated mice. Meanwhile, the functional components of AS increased the antioxidant activity of irradiated mice. Furthermore, we found the changes of neurotransmitters, especially in the EE and syringin groups. Finally, distribution and pharmacokinetic analysis of AS showed that the functional components, especially EE, could exert their therapeutic effects in brain of irradiated mice. This lays a theoretical foundation for the further research on the treatment of radiation-induced brain injury by AS. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

Back to TopTop