Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = electrostatic sheath

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 862 KB  
Article
Sheath Formation in a Plasma with Regularized Kappa Distribution
by Rui Huo
Entropy 2026, 28(2), 142; https://doi.org/10.3390/e28020142 - 27 Jan 2026
Abstract
Debye shielding in an electron–ion plasma with regularized kappa distribution is examined. An unmagnetized collisionless plasma sheath with regularized kappa distributed electrons is investigated and the modified Bohm criterion is derived. It is found that the variation of the electrostatic potential depends significantly [...] Read more.
Debye shielding in an electron–ion plasma with regularized kappa distribution is examined. An unmagnetized collisionless plasma sheath with regularized kappa distributed electrons is investigated and the modified Bohm criterion is derived. It is found that the variation of the electrostatic potential depends significantly on the superthermal index κ and cutoff parameter α. If κ < 3/2, a plasma sheath with a regularized kappa distribution exists. Our present work may be useful in understanding plasma processing and plasma sheaths in related plasma regions (i.e., Earth’s inner magnetosphere). Full article
(This article belongs to the Special Issue Nonextensive Statistical Mechanics in Astrophysics)
Show Figures

Figure 1

20 pages, 1317 KB  
Review
Overview of Target Normal Sheath Acceleration Experiments and Diagnostics at SPARC_LAB
by Federica Stocchi, Maria Pia Anania, Fabrizio Bisesto, Alessandro Cianchi, Mattia Cipriani, Fabrizio Consoli, Gemma Costa, Alessandro Curcio, Mario Galletti, Riccardo Pompili, Martina Salvadori, Claudio Verona, Arie Zigler and Massimo Ferrario
Appl. Sci. 2025, 15(24), 13001; https://doi.org/10.3390/app152413001 - 10 Dec 2025
Viewed by 285
Abstract
The interaction of an ultra-short, high-power laser pulse with a solid target, in the so-called Target Normal Sheath Acceleration (TNSA) configuration, produces particles in the MeV range. Fast electrons can escape from the target after the interaction, inducing electrostatic fields on the order [...] Read more.
The interaction of an ultra-short, high-power laser pulse with a solid target, in the so-called Target Normal Sheath Acceleration (TNSA) configuration, produces particles in the MeV range. Fast electrons can escape from the target after the interaction, inducing electrostatic fields on the order of TV/m close to the target surface. These fields accelerate MeV protons and heavy ions at the rear of the target, allowing them to escape. The complete process is difficult to probe, as it occurs on the sub-ps timescale. At the INFN-LNF SPARC_LAB test facility, single-shot diagnostics such as the Electro-Optic Sampling (EOS) are being developed and tested for time-resolved direct measurements of the produced electrons and associated longitudinal electric fields. Electrons are the core of the process, and their properties determine the following production of positive charge particles and electromagnetic radiation. Different target geometries and materials are being investigated to analyze the enhancement of fast electron emission and the correlation with positive charge production. Simultaneous observations of electron and proton beams have been performed using two diagnostic lines, the EOS for electrons and a time-of-flight (TOF) detector for protons. This work provides an overview of the previous experiments performed at SPARC_LAB dedicated to the TNSA characterization. Full article
(This article belongs to the Special Issue Trends and Prospects in Laser–Plasma Accelerator)
Show Figures

Figure 1

20 pages, 5076 KB  
Article
Understanding the Interfacial Behavior of Cycloaliphatic-like Epoxy Resin with Optical Fibers: Insights from Experiments and Molecular Simulations
by Jianbing Fu, Zhifan Lin, Junhao Luo, Yufan Zheng, Yuhao Liu, Bin Cao, Fanghui Yin and Liming Wang
Materials 2025, 18(16), 3830; https://doi.org/10.3390/ma18163830 - 15 Aug 2025
Viewed by 837
Abstract
Optical fiber composite insulators are essential for photoelectric current measurement, yet insulation failure at embedded optical fiber interfaces remains a major challenge to long-term stability. This study proposes a strategy to replace conventional silicone rubber with cycloaliphatic-like epoxy resin (CEP) as the shed-sheathing [...] Read more.
Optical fiber composite insulators are essential for photoelectric current measurement, yet insulation failure at embedded optical fiber interfaces remains a major challenge to long-term stability. This study proposes a strategy to replace conventional silicone rubber with cycloaliphatic-like epoxy resin (CEP) as the shed-sheathing material. Three optical fibers with distinct outer coatings, ethylene-tetrafluoroethylene copolymer (ETFE), thermoplastic polyester elastomer (TPEE), and epoxy acrylate resin (EA), were evaluated for their interfacial compatibility with CEP. ETFE, with low surface energy and weak polarity, exhibited poor wettability with CEP, resulting in an interfacial tensile strength of 0 MPa, pronounced dye penetration, and rapid electrical tree propagation. Its average interfacial breakdown voltage was only 8 kV, and the interfacial leakage current reached 35 μA after hygrothermal aging. In contrast, TPEE exhibited high surface energy and strong polarity, enabling strong bonding with CEP, yielding an average interfacial tensile strength of approximately 46 MPa. Such a strong interface effectively suppressed electrical tree growth, increased the average interfacial breakdown voltage to 27 kV, and maintained the interfacial leakage current below 5 μA even after hygrothermal aging. EA exhibited moderate interfacial performance. Mechanism analysis revealed that polar ester and ether groups in TPEE enhanced interfacial electrostatic interactions, restricted the mobility of CEP molecular chain segments, and increased charge traps. These synergistic effects suppressed interfacial charge transport and improved insulation strength. This work offers valuable insight into structure–property relationships at fiber–resin interfaces and provides a useful reference for the design of composite insulation materials. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

29 pages, 7672 KB  
Article
Electric Sail Test Cube–Lunar Nanospacecraft, ESTCube-LuNa: Solar Wind Propulsion Demonstration Mission Concept
by Andris Slavinskis, Mario F. Palos, Janis Dalbins, Pekka Janhunen, Martin Tajmar, Nickolay Ivchenko, Agnes Rohtsalu, Aldo Micciani, Nicola Orsini, Karl Mattias Moor, Sergei Kuzmin, Marcis Bleiders, Marcis Donerblics, Ikechukwu Ofodile, Johan Kütt, Tõnis Eenmäe, Viljo Allik, Jaan Viru, Pätris Halapuu, Katriin Kristmann, Janis Sate, Endija Briede, Marius Anger, Katarina Aas, Gustavs Plonis, Hans Teras, Kristo Allaje, Andris Vaivads, Lorenzo Niccolai, Marco Bassetto, Giovanni Mengali, Petri Toivanen, Iaroslav Iakubivskyi, Mihkel Pajusalu and Antti Tammadd Show full author list remove Hide full author list
Aerospace 2024, 11(3), 230; https://doi.org/10.3390/aerospace11030230 - 14 Mar 2024
Cited by 6 | Viewed by 4713
Abstract
The electric solar wind sail, or E-sail, is a propellantless interplanetary propulsion system concept. By deflecting solar wind particles off their original course, it can generate a propulsive effect with nothing more than an electric charge. The high-voltage charge is applied to one [...] Read more.
The electric solar wind sail, or E-sail, is a propellantless interplanetary propulsion system concept. By deflecting solar wind particles off their original course, it can generate a propulsive effect with nothing more than an electric charge. The high-voltage charge is applied to one or multiple centrifugally deployed hair-thin tethers, around which an electrostatic sheath is created. Electron emitters are required to compensate for the electron current gathered by the tether. The electric sail can also be utilised in low Earth orbit, or LEO, when passing through the ionosphere, where it serves as a plasma brake for deorbiting—several missions have been dedicated to LEO demonstration. In this article, we propose the ESTCube-LuNa mission concept and the preliminary cubesat design to be launched into the Moon’s orbit, where the solar wind is uninterrupted, except for the lunar wake and when the Moon is in the Earth’s magnetosphere. This article introduces E-sail demonstration experiments and the preliminary payload design, along with E-sail thrust validation and environment characterisation methods, a cis-lunar cubesat platform solution and an early concept of operations. The proposed lunar nanospacecraft concept is designed without a deep space network, typically used for lunar and deep space operations. Instead, radio telescopes are being repurposed for communications and radio frequency ranging, and celestial optical navigation is developed for on-board orbit determination. Full article
(This article belongs to the Special Issue Advances in CubeSat Sails and Tethers)
Show Figures

Figure 1

27 pages, 8625 KB  
Article
Electric Sail Mission Expeditor, ESME: Software Architecture and Initial ESTCube Lunar Cubesat E-Sail Experiment Design
by Mario F. Palos, Pekka Janhunen, Petri Toivanen, Martin Tajmar, Iaroslav Iakubivskyi, Aldo Micciani, Nicola Orsini, Johan Kütt, Agnes Rohtsalu, Janis Dalbins, Hans Teras, Kristo Allaje, Mihkel Pajusalu, Lorenzo Niccolai, Marco Bassetto, Giovanni Mengali, Alessandro A. Quarta, Nickolay Ivchenko, Joan Stude, Andris Vaivads, Antti Tamm and Andris Slavinskisadd Show full author list remove Hide full author list
Aerospace 2023, 10(8), 694; https://doi.org/10.3390/aerospace10080694 - 5 Aug 2023
Cited by 17 | Viewed by 3270
Abstract
The electric solar wind sail, or E-sail, is a novel deep space propulsion concept which has not been demonstrated in space yet. While the solar wind is the authentic operational environment of the electric sail, its fundamentals can be demonstrated in the ionosphere [...] Read more.
The electric solar wind sail, or E-sail, is a novel deep space propulsion concept which has not been demonstrated in space yet. While the solar wind is the authentic operational environment of the electric sail, its fundamentals can be demonstrated in the ionosphere where the E-sail can be used as a plasma brake for deorbiting. Two missions to be launched in 2023, Foresail-1p and ESTCube-2, will attempt to demonstrate Coulomb drag propulsion (an umbrella term for the E-sail and plasma brake) in low Earth orbit. This paper presents the next step of bringing the E-sail to deep space—we provide the initial modelling and trajectory analysis of demonstrating the E-sail in solar wind. The preliminary analysis assumes a six-unit cubesat being inserted in the lunar orbit where it deploys several hundred meters of the E-sail tether and charges the tether at 10–20 kV. The spacecraft will experience acceleration due to the solar wind particles being deflected by the electrostatic sheath around the charged tether. The paper includes two new concepts: the software architecture of a new mission design tool, the Electric Sail Mission Expeditor (ESME), and the initial E-sail experiment design for the lunar orbit. Our solar-wind simulation places the Electric Sail Test Cube (ESTCube) lunar cubesat with the E-sail tether in average solar wind conditions and we estimate a force of 1.51×104 N produced by the Coulomb drag on a 2 km tether charged to 20 kV. Our trajectory analysis takes the 15 kg cubesat from the lunar back to the Earth orbit in under three years assuming a 2 km long tether and 20 kV. The results of this paper are used to set scientific requirements for the conceptional ESTCube lunar nanospacecraft mission design to be published subsequently in the Special Issue “Advances in CubeSat Sails and Tethers”. Full article
(This article belongs to the Special Issue Advances in CubeSat Sails and Tethers)
Show Figures

Figure 1

12 pages, 4630 KB  
Article
Preparation of Hollow Porous Carbon Nanofibers and Their Performance and Mechanism of Broadband Microwave Absorption
by Rui Shao, Fang Wang, Shenglin Yang, Junhong Jin and Guang Li
Materials 2022, 15(20), 7273; https://doi.org/10.3390/ma15207273 - 18 Oct 2022
Cited by 17 | Viewed by 2456
Abstract
Developing microwave absorbing composites with lightweight and wide absorption bands is an essential direction for electromagnetic wave stealth and shielding application. In this article, PAN/PMMA blend fibers and sheath-core blend fibers with PAN/PMMA as the sheath and PMMA as the core were spun [...] Read more.
Developing microwave absorbing composites with lightweight and wide absorption bands is an essential direction for electromagnetic wave stealth and shielding application. In this article, PAN/PMMA blend fibers and sheath-core blend fibers with PAN/PMMA as the sheath and PMMA as the core were spun by uniaxial and coaxial electrostatic spinning, respectively. Porous carbon nanofiber (PCNF) and hollow porous carbon nanofiber (HPCNF) were obtained after pre-oxidation and carbonization of the corresponding two precursor fibers. The microwave absorption composite samples with PCNF and HPCNF as absorbents and paraffin as matrix were prepared, respectively. Their electromagnetic parameters were investigated by the reflective-transmission network parameter method. The microwave absorption properties of the corresponding composites were calculated based on a model for a single-layer planewave absorber from electromagnetic parameters. The results showed diversity between the microwave absorbing performance of the composites filled with PCNF and HPCNF. HPCNF performs better than PCNF as an absorbent; that is, the lowest reflection loss of composite filled with HPCNF is −20.26 dB and the effective bandwidth (lower than −10 dB) is to 4.56 GHz, while the lowest reflection loss of a composite filled with PCNF is −13.70 dB, and the effective bandwidth (lower than −10 dB) is 2.68 GHz when the absorbent content is 7%, and the thickness is 3 mm. Much lower reflection loss and a wider absorption band could be expected from HPCNF. The presence of a hollow structure in HPCNF, which may increase the degree of polarization and provide more interfaces for the interference phase extinction of reflected electromagnetic waves, might help to improve the attenuation of electromagnetic waves and broaden the absorption band. Full article
Show Figures

Figure 1

14 pages, 4681 KB  
Article
Synergistic Effect of Dual-Ceramics for Improving the Dispersion Stability and Coating Quality of Aqueous Ceramic Coating Slurries for Polyethylene Separators in Li Secondary Batteries
by Ssendagire Kennedy, Jeong-Tae Kim, Jungmin Kim, Yong Min Lee, Isheunesu Phiri and Sun-Yul Ryou
Batteries 2022, 8(8), 82; https://doi.org/10.3390/batteries8080082 - 2 Aug 2022
Cited by 5 | Viewed by 4766
Abstract
We demonstrate that dispersion stability and excellent coating quality are achieved in polyethylene (PE) separators by premixing heterogeneous ceramics such as silica (SiO2) and alumina (Al2O3) in an aqueous solution, without the need for functional additives such [...] Read more.
We demonstrate that dispersion stability and excellent coating quality are achieved in polyethylene (PE) separators by premixing heterogeneous ceramics such as silica (SiO2) and alumina (Al2O3) in an aqueous solution, without the need for functional additives such as dispersing agents and surfactants. Due to the opposite polarities of the zeta potentials of SiO2 and Al2O3, SiO2 forms a sheath around the Al2O3 surface. Electrostatic repulsion occurs between the Al2O3 particles encapsulated in SiO2 to improve the dispersion stability of the slurry. The CCSs fabricated using a dual ceramic (SiO2 and Al2O3)-containing aqueous coating slurry, denoted as DC-CCSs, exhibit improved physical properties, such as a wetting property, electrolyte uptake, and ionic conductivity, compared to bare PE separators and CCSs coated with a single ceramic of Al2O3 (SC-CCSs). Consequently, DC-CCSs exhibit an improved electrochemical performance, in terms of rate capability and cycle performance. The half cells consisting of DC-CCSs retain 93.8% (97.12 mAh g−1) of the initial discharge capacity after 80 cycles, while the bare PE and SC-CCSs exhibit 22.5% and 26.6% capacity retention, respectively. The full cells consisting of DC-CCSs retain 90.9% (102.9 mAh g−1) of the initial discharge capacity after 400 cycles, while the bare PE and SC-CCS exhibit 64.7% and 73.4% capacity retention, respectively. Full article
(This article belongs to the Section Battery Processing, Manufacturing and Recycling)
Show Figures

Figure 1

20 pages, 9692 KB  
Article
Factor Design for the Oxide Etching Process to Reduce Edge Particle Contamination in Capacitively Coupled Plasma Etching Equipment
by Ching-Ming Ku and Stone Cheng
Appl. Sci. 2022, 12(11), 5684; https://doi.org/10.3390/app12115684 - 3 Jun 2022
Cited by 9 | Viewed by 16693
Abstract
During the oxide layer etching process, particles in capacitively coupled plasma etching equipment adhere to the wafer edge and cause defects that reduce the yield from semiconductor wafers. To reduce edge particle contamination in plasma etching equipment, we propose changes in the voltage [...] Read more.
During the oxide layer etching process, particles in capacitively coupled plasma etching equipment adhere to the wafer edge and cause defects that reduce the yield from semiconductor wafers. To reduce edge particle contamination in plasma etching equipment, we propose changes in the voltage and temperature of the electrostatic chuck, plasma discharge sequence, gas flow, and pressure parameters during the etching process. The proposed edge particle reduction method was developed by analyzing particle maps after wafer etching. Edge particle adherence in plasma etching equipment can be reduced by decreasing the voltage and temperature changes of the electrostatic chuck and generating a plasma sheath with a continuous discharge sequence of radio-frequency plasma. The gas pressure and flow rate also affect the number of wafer edge particles. Experimental results were used to optimize the equipment parameters to reduce edge particle contamination and improve edge wafer defects after dry etching. Full article
(This article belongs to the Topic Advanced Systems Engineering: Theory and Applications)
Show Figures

Figure 1

17 pages, 5344 KB  
Article
Bicomponent Carbon Fibre within Woven Fabric for Protective Clothing
by Stana Kovačević, Snježana Brnada, Ivana Schwarz and Ana Kiš
Polymers 2020, 12(12), 2824; https://doi.org/10.3390/polym12122824 - 27 Nov 2020
Cited by 2 | Viewed by 3150
Abstract
For the purpose of this research, six types of woven fabrics with different proportions of bicomponent carbon fibres (CF), differently distributed in the fabric, were woven and tested. Fibre composition in the core and sheath was determined with X-ray spectroscopy (EDS). Two types [...] Read more.
For the purpose of this research, six types of woven fabrics with different proportions of bicomponent carbon fibres (CF), differently distributed in the fabric, were woven and tested. Fibre composition in the core and sheath was determined with X-ray spectroscopy (EDS). Two types of bicomponent CF were selected which are characterised by different proportions of carbon and other polymers in the fibre core and sheath and different cross-sections of the fibres formed during chemical spinning. Physical-mechanical properties were investigated, as well as deformations of fabrics after 10,000, 20,000 and 30,000 cycles under biaxial cyclic stress on a patented device. Tests of the surface and vertical electrostatic resistance from fabric front to back side and from the back side to the fabric front were conducted. According to the obtained results and statistical analyses, it was concluded that the proportion of CF affects the fabric’s physical and mechanical properties, the electrostatic resistance as well as the deformations caused by biaxial cyclic stresses. A higher proportion of CF in the fabric and a higher proportion of carbon on the fibre surface, gave lower electrostatic resistance, i.e., better conductivity, especially when CFs are woven in the warp and weft direction. The higher presence of CF on the front of the fabric, as a consequence of the weave, resulted in a lower surface electrostatic resistance. Full article
(This article belongs to the Special Issue Functional Fibrous Materials and Smart Textile)
Show Figures

Graphical abstract

14 pages, 3834 KB  
Article
The Relationships between Process Parameters and Polymeric Nanofibers Fabricated Using a Modified Coaxial Electrospinning
by Honglei Zhou, Zhaorong Shi, Xi Wan, Hualing Fang, Deng-Guang Yu, Xiaohong Chen and Ping Liu
Nanomaterials 2019, 9(6), 843; https://doi.org/10.3390/nano9060843 - 2 Jun 2019
Cited by 108 | Viewed by 6540
Abstract
The concrete relationship between the process parameters and nanoproduct properties is an important challenge for applying nanotechnology to produce functional nanomaterials. In this study, the relationships between series of process parameters and the medicated nanofibers’ diameter were investigated. With an electrospinnable solution of [...] Read more.
The concrete relationship between the process parameters and nanoproduct properties is an important challenge for applying nanotechnology to produce functional nanomaterials. In this study, the relationships between series of process parameters and the medicated nanofibers’ diameter were investigated. With an electrospinnable solution of hydroxypropyl methylcellulose (HPMC) and ketoprofen as the core fluid, four kinds of nanofibers were prepared with ethanol as a sheath fluid and under the variable applied voltages. Based on these nanofibers, a series of relationships between the process parameters and the nanofibers’ diameters (D) were disclosed, such as with the height of the Taylor cone (H, D = 125 + 363H), with the angle of the Taylor cone (α, D = 1576 − 19α), with the length of the straight fluid jet (L, D = 285 + 209L), and with the spreading angle of the instable region (θ, D = 2342 − 43θ). In vitro dissolution tests verified that the smaller the diameters, the faster ketoprofen (KET) was released from the HPMC nanofibers. These concrete process-property relationships should provide a way to achieve new knowledge about the electrostatic energy-fluid interactions, and to meanwhile improve researchers’ capability to optimize the coaxial process conditions to achieve the desired nanoproducts. Full article
Show Figures

Graphical abstract

Back to TopTop