Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = electron energy-loss spectroscopy (EELS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 13828 KB  
Article
Characterization of Iron Oxide Nanoparticles Inside the Myxococcus xanthus Encapsulin
by Harry B. McDowell, Egbert Hoiczyk and Thomas Walther
Nanomaterials 2025, 15(23), 1793; https://doi.org/10.3390/nano15231793 - 28 Nov 2025
Viewed by 544
Abstract
Encapsulins are microbial protein nanocompartments that spatially organize and sequester specific biochemical processes, including iron storage. While their protein shells have been extensively characterized, the composition and structure of their mineral cores remain less understood. Here, we use bright field transmission electron microscopy [...] Read more.
Encapsulins are microbial protein nanocompartments that spatially organize and sequester specific biochemical processes, including iron storage. While their protein shells have been extensively characterized, the composition and structure of their mineral cores remain less understood. Here, we use bright field transmission electron microscopy (BF TEM), high-angle annular dark-field scanning TEM (HAADF STEM), energy-dispersive X-ray (EDX), and electron energy-loss spectroscopy (EELS) in STEM to characterize the iron-containing mineral granules within the Myxococcus xanthus encapsulin system at near atomic resolution. We find that the internal nanoparticles are smaller (~2 nm) and more numerous (up to ~2200 per encapsulin) than previously reported. These nanoparticles are typically amorphous and have a composition consistent with FePO4 (measured Fe:P ratio of ≈1:1.2). Each encapsulin contains on average ~8500 iron atoms, corresponding to a volumetric density of 2.1 atoms/nm3. Phosphorus incorporation inhibits crystallization, whereas growth in phosphorus-free media leads to the formation of nano-crystalline goethite [α-FeO(OH)]. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

64 pages, 10522 KB  
Review
Spectroscopic and Microscopic Characterization of Inorganic and Polymer Thermoelectric Materials: A Review
by Temesgen Atnafu Yemata, Tessera Alemneh Wubieneh, Yun Zheng, Wee Shong Chin, Messele Kassaw Tadsual and Tadisso Gesessee Beyene
Spectrosc. J. 2025, 3(4), 24; https://doi.org/10.3390/spectroscj3040024 - 14 Oct 2025
Viewed by 1861
Abstract
Thermoelectric (TE) materials represent a critical frontier in sustainable energy conversion technologies, providing direct thermal-to-electrical energy conversion with solid-state reliability. The optimizations of TE performance demand a nuanced comprehension of structure–property relationships across diverse length scales. This review summarizes established and emerging spectroscopic [...] Read more.
Thermoelectric (TE) materials represent a critical frontier in sustainable energy conversion technologies, providing direct thermal-to-electrical energy conversion with solid-state reliability. The optimizations of TE performance demand a nuanced comprehension of structure–property relationships across diverse length scales. This review summarizes established and emerging spectroscopic and microscopic techniques used to characterize inorganic and polymer TE materials, specifically poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS). For inorganic TE, ultraviolet–visible (UV–Vis) spectroscopy, energy-dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS) are widely applied for electronic structure characterization. For phase analysis of inorganic TE materials, Raman spectroscopy (RS), electron energy loss spectroscopy (EELS), and nuclear magnetic resonance (NMR) spectroscopy are utilized. For analyzing the surface morphology and crystalline structure, chemical scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) are commonly used. For polymer TE materials, ultraviolet−visible–near-infrared (UV−Vis−NIR) spectroscopy and ultraviolet photoelectron spectroscopy (UPS) are generally employed for determining electronic structure. For functional group analysis of polymer TE, attenuated total reflectance–Fourier-transform infrared (ATR−FTIR) spectroscopy and RS are broadly utilized. XPS is used for elemental composition analysis of polymer TE. For the surface morphology of polymer TE, atomic force microscopic (AFM) and SEM are applied. Grazing incidence wide-angle X-ray scattering (GIWAXS) and XRD are employed for analyzing the crystalline structures of polymer TE materials. These techniques elucidate electronic, structural, morphological, and chemical properties, aiding in optimizing TE properties like conductivity, thermal stability, and mechanical strength. This review also suggests future research directions, including in situ methods and machine learning-assisted multi-dimensional spectroscopy to enhance TE performance for applications in electronic devices, energy storage, and solar cells. Full article
(This article belongs to the Special Issue Advances in Spectroscopy Research)
Show Figures

Graphical abstract

15 pages, 1554 KB  
Article
Growth and Atomic-Scale Characterization of 2D Gallium Selenide Crystals via STEM and EELS
by Antonio Serra, Letizia Meleleo, Alessandro Buccolieri, Lucio Calcagnile and Daniela Manno
Crystals 2025, 15(9), 826; https://doi.org/10.3390/cryst15090826 - 20 Sep 2025
Viewed by 935
Abstract
The advent of graphene has catalyzed extensive exploration into two-dimensional (2D) materials, among which gallium selenide (GaSe)—a layered semiconductor—stands out for its promise in optoelectronic and nanoscale device applications. To elucidate the intricate correlation between structure and electronic properties, and to enable performance [...] Read more.
The advent of graphene has catalyzed extensive exploration into two-dimensional (2D) materials, among which gallium selenide (GaSe)—a layered semiconductor—stands out for its promise in optoelectronic and nanoscale device applications. To elucidate the intricate correlation between structure and electronic properties, and to enable performance optimization at the atomic scale, we employ advanced characterization methodologies. In this work, atomic-resolution Scanning Transmission Electron Microscopy (STEM) and Electron Energy Loss Spectroscopy (EELS) are utilized to investigate the structural and electronic characteristics of GaSe. STEM imaging confirms the atomic-level uniformity and verifies the β-GaSe phase, while EELS measurements reveal a thickness-dependent, tunable bandgap that decreases from 3.8 eV to 2.4 eV as the crystal thickness increases from approximately 1 nm to 30 nm—a trend attributable to quantum confinement effects. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

20 pages, 1042 KB  
Review
Architecting Durability: Synergies in Assembly, Self-Repair, and Advanced Characterization of Carbon Nanotube Materials
by Monika R. Snowdon, Shasvat Rathod, Robert L. F. Liang and Marina Freire-Gormaly
Nanomaterials 2025, 15(17), 1352; https://doi.org/10.3390/nano15171352 - 2 Sep 2025
Cited by 1 | Viewed by 1204
Abstract
Carbon nanotubes (CNTs) have remarkable mechanical, electrical, and thermal properties, making them highly attractive as foundational elements for advanced materials. However, translating their nanoscale potential into macroscale reliability and longevity requires a holistic design approach that integrates precise architectural control with robust damage [...] Read more.
Carbon nanotubes (CNTs) have remarkable mechanical, electrical, and thermal properties, making them highly attractive as foundational elements for advanced materials. However, translating their nanoscale potential into macroscale reliability and longevity requires a holistic design approach that integrates precise architectural control with robust damage mitigation strategies. This review presents a synergistic perspective on enhancing the durability of CNT-based systems by critically examining the interplay between molecular assembly, self-repair mechanisms, and the advanced characterization techniques required for their validation. We first establish how foundational architectural control—achieved through strategies like chemical functionalization, field-directed alignment, and dispersion—governs the ultimate performance of CNT materials. A significant focus is placed on advanced functionalization, such as fluorination, and its verification using high-powered spectroscopic tools, including X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Subsequently, this manuscript delves into the mechanisms of self-repair, systematically analyzing both the intrinsic capacity of the carbon lattice to heal atomic-level defects and the extrinsic strategies that incorporate engineered healing agents into composites. This discussion is uniquely supplemented by an exploration of the experimental techniques, such as electron energy loss spectroscopy (EELS) and Auger electron spectroscopy (AES), that provide crucial evidence for irradiation-induced healing dynamics. Finally, we argue that a “characterization gap” has limited the field’s progress and highlight the critical role of techniques like in situ Raman spectroscopy for quantitatively monitoring healing efficiency at the molecular level. By identifying current challenges and future research frontiers, this review underscores that the creation of truly durable materials depends on an integrated understanding of how to build, repair, and precisely measure CNT-based systems. Full article
Show Figures

Graphical abstract

16 pages, 3373 KB  
Article
Oxygen Deficiency Modulated La-Doped BaSnO3 Films Showing Improved Light Transmittance
by Kai Wu, Wan-Rong Geng, Yin-Lian Zhu and Xiu-Liang Ma
Materials 2025, 18(8), 1696; https://doi.org/10.3390/ma18081696 - 8 Apr 2025
Viewed by 1028
Abstract
As one of the representative transparent conducting oxides, perovskite-typed La-doped BaSnO3 (LBSO) films could be integrated with other perovskite materials to create all-perovskite oxide devices exhibiting exotic physical properties. To overcome the intricate trade-off between conductivity and transmittance in LBSO-based devices, understanding [...] Read more.
As one of the representative transparent conducting oxides, perovskite-typed La-doped BaSnO3 (LBSO) films could be integrated with other perovskite materials to create all-perovskite oxide devices exhibiting exotic physical properties. To overcome the intricate trade-off between conductivity and transmittance in LBSO-based devices, understanding the structural modulating mechanisms of transmittance is definitely crucial. In this paper, the influences of the prevailing Ruddlesden–Popper faults (RP faults) on the transmittance of LBSO films were systematically illuminated, whose density were regulated by the oxygen partial pressures during film growth. High-angle annular dark field (HAADF) STEM and X-ray diffraction (XRD) were employed to characterize the microstructures of the films growing under various oxygen partial pressures and annealing under different oxygen partial pressures. A decrease in RP fault density was observed in the films grown and annealed at high oxygen partial pressures, which displayed improved visible light transmittance. Atomic-scale energy-dispersive spectroscopy (EDS) and electron energy-loss spectroscopy (EELS) analyses revealed the different electronic structure at RP faults compared with the bulk material, including the double concentration of La and increased M5/M4 white line ratio, which is modulative by the oxygen deficiency in LBSO film. It is revealed that the RP defaults in LBSO films annealed at low oxygen pressures displayed larger changes in electronic structure compared with the counterparts with low oxygen deficiency. This work suggests that the oxygen deficiency in LSBO films plays a crucial role in changing the density of RP faults and their electronic structures, thereby regulating the transmittance of LBSO films, which would provide guidance for fabricating high-performance LBSO films. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

9 pages, 1867 KB  
Article
Development of a CaCO3 Precipitation Method Using a Peptide and Microwaves Generated by a Magnetron
by Fumihiro Kayamori, Hiroyuki Togashi, Natsumi Endo, Makoto Ozaki, Kan Hirao, Yonejiro Arimoto, Ryuji Osawa, Takaaki Tsuruoka, Takahito Imai, Kin-ya Tomizaki, Tomohiro Umetani, Nobuhiro Nakanishi and Kenji Usui
Processes 2024, 12(7), 1327; https://doi.org/10.3390/pr12071327 - 26 Jun 2024
Viewed by 2181
Abstract
Microwave applications, such as microwave ovens and mobile phones, are ubiquitous and indispensable in modern society. As the utilization of microwave technology is becoming more widespread, the effects of microwaves on living organisms and physiological processes have received increased attention. This study aimed [...] Read more.
Microwave applications, such as microwave ovens and mobile phones, are ubiquitous and indispensable in modern society. As the utilization of microwave technology is becoming more widespread, the effects of microwaves on living organisms and physiological processes have received increased attention. This study aimed to investigate the effects of microwaves on calcium carbonate biomineralization as a model biochemical process. A magnetron oscillator was used to generate 2450 MHz microwaves because magnetrons are relatively inexpensive and widespread. We conducted transmission electron microscopy (TEM), atomic force microscopy (AFM), TEM-electron energy-loss spectroscopy (EELS), dynamic light scattering (DLS), and high-performance liquid chromatography (HPLC) measurements to analyze the calcium carbonate precipitates. Our findings showed the formation of string-like precipitates of calcium carbonate upon microwave irradiation from one direction, similar to those obtained using a semiconductor oscillator, as reported previously. This implied that the distribution of the frequency had little effect on the morphology. Furthermore, spherical precipitates were obtained upon microwave irradiation from two directions, indicating that the morphology could be controlled by varying the direction of microwave irradiation. Magnetrons are versatile and also used in large-scale production; thus, this method has potential in medical and industrial applications. Full article
(This article belongs to the Special Issue The Amazing World of Peptide Engineering)
Show Figures

Figure 1

18 pages, 895 KB  
Article
Optical Absorption in Tilted Geometries as an Indirect Measurement of Longitudinal Plasma Waves in Layered Cuprates
by Niccolò Sellati, Jacopo Fiore, Claudio Castellani and Lara Benfatto
Nanomaterials 2024, 14(12), 1021; https://doi.org/10.3390/nano14121021 - 13 Jun 2024
Cited by 4 | Viewed by 1594
Abstract
Electromagnetic waves propagating in a layered superconductor with arbitrary momentum, with respect to the main crystallographic directions, exhibit an unavoidable mixing between longitudinal and transverse degrees of freedom. Here we show that this basic physical mechanism explains the emergence of a well-defined absorption [...] Read more.
Electromagnetic waves propagating in a layered superconductor with arbitrary momentum, with respect to the main crystallographic directions, exhibit an unavoidable mixing between longitudinal and transverse degrees of freedom. Here we show that this basic physical mechanism explains the emergence of a well-defined absorption peak in the in-plane optical conductivity when light propagates at small tilting angles relative to the stacking direction in layered cuprates. More specifically, we show that this peak, often interpreted as a spurious leakage of the c-axis Josephson plasmon, is instead a signature of the true longitudinal plasma mode occurring at larger momenta. By combining a classical approach based on Maxwell’s equations with a full quantum derivation of the plasma modes based on modeling the superconducting phase degrees of freedom, we provide an analytical expression for the absorption peak as a function of the tilting angle and light polarization. We suggest that an all-optical measurement in tilted geometry can be used as an alternative way to access plasma-wave dispersion, usually measured by means of large-momenta scattering techniques like resonant inelastic X-ray scattering (RIXS) or electron energy loss spectroscopy (EELS). Full article
Show Figures

Figure 1

15 pages, 1610 KB  
Review
Analysis of Plasmon Loss Peaks of Oxides and Semiconductors with the Energy Loss Function
by Jean-Marc Costantini and Joël Ribis
Materials 2023, 16(24), 7610; https://doi.org/10.3390/ma16247610 - 12 Dec 2023
Cited by 17 | Viewed by 3765
Abstract
This paper highlights the use and applications of the energy loss function (ELF) for materials analysis by using electron energy loss spectroscopy (EELS). The basic Drude–Lindhart theory of the ELF is briefly presented along with reference to reflection electron energy loss (REELS) data [...] Read more.
This paper highlights the use and applications of the energy loss function (ELF) for materials analysis by using electron energy loss spectroscopy (EELS). The basic Drude–Lindhart theory of the ELF is briefly presented along with reference to reflection electron energy loss (REELS) data for several dielectric materials such as insulating high-k binary oxides and semiconductors. Those data and their use are critically discussed. A comparison is made to the available ab initio calculations of the ELF for these materials. Experimental, high-resolution TEM-EELS data on Si, SiC, and CeO2 obtained using a high-resolution, double-Cs-corrected transmission electron microscope are confronted to calculated spectra on the basis of the ELF theory. Values of plasmon energies of these three dielectric materials are quantitatively analyzed on the basis of the simple Drude’s free electron theory. The effects of heavy ion irradiation on the TEM-EELS spectra of Si and SiC are addressed. In particular, the downward shifts of plasmon peaks induced by radiation damage and the subsequent amorphization of Si and SiC are discussed. TEM-EELS data of CeO2 are also analyzed with respect to the ELF data and with comparison to isostructural ZrO2 and PuO2 by using the same background and with reference to ab initio calculations. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

14 pages, 19461 KB  
Article
The Caudofoveata (Mollusca) Spicule as a Biomineralization Model: Unique Features Revealed by Combined Microscopy Methods
by Camila Wendt, André L. Rossi, Jefferson Cypriano, Cleo Dilnei de Castro Oliveira, Corinne Arrouvel, Jacques Werckmann and Marcos Farina
Minerals 2023, 13(6), 750; https://doi.org/10.3390/min13060750 - 31 May 2023
Cited by 2 | Viewed by 2892
Abstract
Caudofoveates are benthic organisms that reside in the deep waters of continental slopes in the world. They are considered to be a group that is of phylogenetic and ecological importance for the phylum Mollusca. However, they remain poorly studied. In this work, we [...] Read more.
Caudofoveates are benthic organisms that reside in the deep waters of continental slopes in the world. They are considered to be a group that is of phylogenetic and ecological importance for the phylum Mollusca. However, they remain poorly studied. In this work, we revealed the structure of the spicules of Caudofoveatan mollusks Falcidens sp. The spicules presented a hierarchical organization pattern across different length scales. Various imaging and analytical methods related to light and electron microscopy were employed to characterize the samples. The primary imaging methods utilized included: low voltage field emission scanning electron microscopy (FEG-SEM), focused ion beam-scanning electron microscopy (FIB-SEM), high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), and electron diffraction. In addition, we performed a physicochemical analysis by electron energy loss spectroscopy (EELS) and energy dispersive X-ray spectroscopy (EDS). A crucial factor for successfully obtaining the results was the preparation of lamellae from the spicules without damaging the original structures, achieved using FIB-SEM. This allowed us to obtain diffraction patterns of significant areas of well-preserved sections (lamellae) of the spicules in specific directions and demonstrate for the first time that the bulk of these structures is organized as a single crystal of calcium carbonate aragonite. On the other hand, AFM imaging of the spicules’ dorsal surface revealed a wavy appearance, composed of myriads of small, pointed crystallites oriented along the spicules’ longer axis (i.e., the c-axis of the aragonite). The organization pattern of these small crystallites, the possible presence of twins, the relationship between confinement conditions and accessory ions in the preference for mineral polymorphs, and the single crystalline appearance of the entire spicule, along with the observation of growth lines, provide support for further studies employing Caudofoveata spicules as a model for biomineralization studies. Full article
(This article belongs to the Special Issue Feature Papers in Biomineralization and Biominerals)
Show Figures

Figure 1

16 pages, 10852 KB  
Article
The Mechanisms of Inhibition Effects on Bubble Growth in He-Irradiated 316L Stainless Steel Fabricated by Selective Laser Melting
by Shangkun Shen, Zhangjie Sun, Liyu Hao, Xing Liu, Jian Zhang, Kunjie Yang, Peng Liu, Xiaobin Tang and Engang Fu
Materials 2023, 16(11), 3922; https://doi.org/10.3390/ma16113922 - 24 May 2023
Cited by 7 | Viewed by 2414
Abstract
The AISI 316L austenitic stainless steel fabricated by selective laser melting (SLM) is considered to have great prospects for applications in nuclear systems. This study investigated the He-irradiation response of SLM 316L, and several possible reasons for the improved He-irradiation resistance of SLM [...] Read more.
The AISI 316L austenitic stainless steel fabricated by selective laser melting (SLM) is considered to have great prospects for applications in nuclear systems. This study investigated the He-irradiation response of SLM 316L, and several possible reasons for the improved He-irradiation resistance of SLM 316L were systematically revealed and evaluated by using TEM and related techniques. The results show that the effects of unique sub-grain boundaries have primary contributions to the decreased bubble diameter in SLM 316L compared to that in the conventional 316L counterpart, while the effects of oxide particles on bubble growth are not the dominant factor in this study. Moreover, the He densities inside the bubbles were carefully measured using electron energy loss spectroscopy (EELS). The mechanism of stress-dominated He densities in bubbles was validated, and the corresponding reasons for the decrease in bubble diameter were freshly proposed in SLM 316L. These insights help to shed light on the evolution of He bubbles and contribute to the ongoing development of the steels fabricated by SLM for advanced nuclear applications. Full article
Show Figures

Figure 1

12 pages, 2517 KB  
Article
Asymmetrical Plasmon Distribution in Hybrid AuAg Hollow/Solid Coded Nanotubes
by Aziz Genç, Javier Patarroyo, Jordi Sancho-Parramon, Raul Arenal, Neus G. Bastús, Victor Puntes and Jordi Arbiol
Nanomaterials 2023, 13(6), 992; https://doi.org/10.3390/nano13060992 - 9 Mar 2023
Cited by 1 | Viewed by 2781
Abstract
Morphological control at the nanoscale paves the way to fabricate nanostructures with desired plasmonic properties. In this study, we discuss the nanoengineering of plasmon resonances in 1D hollow nanostructures of two different AuAg nanotubes, including completely hollow nanotubes and hybrid nanotubes with solid [...] Read more.
Morphological control at the nanoscale paves the way to fabricate nanostructures with desired plasmonic properties. In this study, we discuss the nanoengineering of plasmon resonances in 1D hollow nanostructures of two different AuAg nanotubes, including completely hollow nanotubes and hybrid nanotubes with solid Ag and hollow AuAg segments. Spatially resolved plasmon mapping by electron energy loss spectroscopy (EELS) revealed the presence of high order resonator-like modes and localized surface plasmon resonance (LSPR) modes in both nanotubes. The experimental findings accurately correlated with the boundary element method (BEM) simulations. Both experiments and simulations revealed that the plasmon resonances are intensely present inside the nanotubes due to plasmon hybridization. Based on the experimental and simulated results, we show that the novel hybrid AuAg nanotubes possess two significant coexisting features: (i) LSPRs are distinctively generated from the hollow and solid parts of the hybrid AuAg nanotube, which creates a way to control a broad range of plasmon resonances with one single nanostructure, and (ii) the periodicity of the high-order modes are disrupted due to the plasmon hybridization by the interaction of solid and hollow parts, resulting in an asymmetrical plasmon distribution in 1D nanostructures. The asymmetry could be modulated/engineered to control the coded plasmonic nanotubes. Full article
Show Figures

Figure 1

14 pages, 4414 KB  
Article
Textural, Microstructural and Chemical Characterization of Ferritic Stainless Steel Affected by the Gold Dust Defect
by Beatriz Amaya Dolores, Andrés Ruiz Flores, Andrés Núñez Galindo, José Juan Calvino Gámez, Juan F. Almagro and Luc Lajaunie
Materials 2023, 16(5), 1825; https://doi.org/10.3390/ma16051825 - 23 Feb 2023
Cited by 4 | Viewed by 2404
Abstract
The “gold dust defect” (GDD) appears at the surface of ferritic stainless steels (FSS) and degrades their appearance. Previous research showed that this defect might be related to intergranular corrosion and that the addition of aluminium improves surface quality. However, the nature and [...] Read more.
The “gold dust defect” (GDD) appears at the surface of ferritic stainless steels (FSS) and degrades their appearance. Previous research showed that this defect might be related to intergranular corrosion and that the addition of aluminium improves surface quality. However, the nature and origin of this defect are not properly understood yet. In this study, we performed detailed electron backscatter diffraction analyses and advanced monochromated electron energy-loss spectroscopy experiments combined with machine-learning analyses in order to extract a wealth of information on the GDD. Our results show that the GDD leads to strong textural, chemical, and microstructural heterogeneities. In particular, the surface of affected samples presents an α-fibre texture which is characteristic of poorly recrystallised FSS. It is associated with a specific microstructure in which elongated grains are separated from the matrix by cracks. The edges of the cracks are rich in chromium oxides and MnCr2O4 spinel. In addition, the surface of the affected samples presents a heterogeneous passive layer, in contrast with the surface of unaffected samples, which shows a thicker and continuous passive layer. The quality of the passive layer is improved with the addition of aluminium, explaining the better resistance to the GDD. Full article
(This article belongs to the Topic Corrosion and Protection of Metallic Materials)
Show Figures

Figure 1

11 pages, 2162 KB  
Article
Enhancing the Catalytic Activity of Mo(110) Surface via Its Alloying with Submonolayer to Multilayer Boron Films and Oxidation of the Alloy: A Case of (CO + O2) to CO2 Conversion
by Yong Men, Tamerlan T. Magkoev, Reza Behjatmanesh-Ardakani, Vladislav B. Zaalishvili and Oleg G. Ashkhotov
Nanomaterials 2023, 13(4), 651; https://doi.org/10.3390/nano13040651 - 7 Feb 2023
Cited by 2 | Viewed by 2104
Abstract
In-situ formation of boron thin films on the Mo(110) surface, as well as the formation of the molybdenum boride and its oxide and the trends of carbon monoxide catalytic oxidation on the substrates formed, have been studied in an ultra-high vacuum (UHV) by [...] Read more.
In-situ formation of boron thin films on the Mo(110) surface, as well as the formation of the molybdenum boride and its oxide and the trends of carbon monoxide catalytic oxidation on the substrates formed, have been studied in an ultra-high vacuum (UHV) by a set of surface-sensitive characterization techniques: Auger and X-ray photoelectron spectroscopy (AES, XPS), low-energy ion scattering (LEIS), reflection-absorption infrared spectroscopy (RAIRS), temperature-programmed desorption (TPD), electron energy loss spectroscopy (EELS) and work function measurements using the Anderson method. The boron deposited at Mo(110) via electron-beam deposition at a substrate temperature of 300 K grows as a 2D layer, at least in submonolayer coverage. Such a film is bound to the Mo(110) via polarized chemisorption bonds, dramatically changing the charge density at the substrate surface manifested by the Mo(110) surface plasmon damping. Upon annealing of the B-Mo(110) system, the boron diffuses into the Mo(110) bulk following a two-mode regime: (1) quite easy dissolution, starting at a temperature of about 450 K with an activation energy of 0.4 eV; and (2) formation of molybdenum boride at a temperature higher than 700 K with M-B interatomic bonding energy of 3.8 eV. The feature of the formed molybdenum boride is that there is quite notable carbon monoxide oxidation activity on its surface. A further dramatic increase of such an activity is achieved when the molybdenum boride is oxidized. The latter is attributed to more activated states of molecular orbitals of coadsorbed carbon monoxide and oxygen due to their enhanced interaction with both boron and oxygen species for MoxByOz ternary compound, compared to only boron for the MoxBy double alloy. Full article
Show Figures

Figure 1

16 pages, 13942 KB  
Article
Effect of Cu Additions on the Evolution of Eta-prime Precipitates in Aged AA 7075 Al–Zn–Mg–Cu Alloys
by Ting-Jung Hsiao, Po-Han Chiu, Cheng-Lin Tai, Tzu-Ching Tsao, Chien-Yu Tseng, Yi-Xian Lin, Hsueh-Ren Chen, Tsai-Fu Chung, Chih-Yuan Chen, Shing-Hoa Wang and Jer-Ren Yang
Metals 2022, 12(12), 2120; https://doi.org/10.3390/met12122120 - 9 Dec 2022
Cited by 10 | Viewed by 4982
Abstract
In the present study, after solid solution treatment, four different artificial aging treatments (100, 120, 140 and 160 °C) were performed on Al-5.98Zn-2.86Mg-1.61Cu (wt.%) alloy, denoted as 7075-LCu, and Al-5.91Zn-2.83Mg-1.98Cu (wt.%) alloy, denoted as 7075-HCu. Peak aging conditions were determined for each aging [...] Read more.
In the present study, after solid solution treatment, four different artificial aging treatments (100, 120, 140 and 160 °C) were performed on Al-5.98Zn-2.86Mg-1.61Cu (wt.%) alloy, denoted as 7075-LCu, and Al-5.91Zn-2.83Mg-1.98Cu (wt.%) alloy, denoted as 7075-HCu. Peak aging conditions were determined for each aging temperature at various hold time intervals of up to 24 h. It was found that both alloys possessed the optimal strengths after artificial aging at 120 °C for 24 h. Under this condition, the ultimate tensile strengths (UTSs) were 618 MPa (7075-LCu) and 623 MPa (7075-HCu), respectively. Moreover, a method was used to calculate the average sizes and number density of the major strengthening precipitates, η, under peak aging conditions in these two alloys from transmission electron microscopy (TEM) images and electron energy loss spectroscopy (EELS). The above results indicated that for the 7075-LCu and 7075-HCu samples with the optimal UTS strengths, the former possessed an average thickness of 2.15 nm, and a number density of 3.27 × 1017 cm−3; the latter, 2.04 nm and 3.52 × 1017 cm−3. Full article
(This article belongs to the Special Issue Microstructural Characterization of Metallic Materials)
Show Figures

Figure 1

18 pages, 2477 KB  
Article
Structure, Oxygen Content and Electric Properties of Titanium Nitride Electrodes in TiNx/La:HfO2/TiNx Stacks Grown by PEALD on SiO2/Si
by Elena I. Suvorova, Oleg V. Uvarov, Kirill V. Chizh, Alexey A. Klimenko and Philippe A. Buffat
Nanomaterials 2022, 12(20), 3608; https://doi.org/10.3390/nano12203608 - 14 Oct 2022
Cited by 12 | Viewed by 5674
Abstract
This work reports experimental results of the quantitative determination of oxygen and band gap measurement in the TiNx electrodes in planar TiNx top/La:HfO2/TiNx bottom MIM stacks obtained by plasma enhanced atomic layer deposition on SiO2. Methodological [...] Read more.
This work reports experimental results of the quantitative determination of oxygen and band gap measurement in the TiNx electrodes in planar TiNx top/La:HfO2/TiNx bottom MIM stacks obtained by plasma enhanced atomic layer deposition on SiO2. Methodological aspects of extracting structural and chemical information from (scanning) transmission electron microscopy imaging (bright field and high angular annular dark field), energy dispersive X-ray spectrometry and electron energy loss spectroscopy are thoroughly considered. The study shows that the oxygen concentration is higher in the TiNxOy bottom electrode (about 14.2 ± 0.1 at. %) compared to the TiNxOy top electrode (about 11.4 ± 0.5 at. %). The following average stoichiometric formulas are TiN0.52O0.20 top and TiN0.54O0.26 bottom for top and bottom electrodes, respectively. The amount of oxygen incorporated into TiNx during PEALD because of oxygen impurities in the plasma is minor compared to that because of diffusion from SiO2 and HfO2. This asymmetry, together with results on a sample grown on a Si substrate, shows that incorporating oxygen impurity from the plasma itself is a minor part compared to diffusion from the SiO2 substrate and HfO2 dielectric during the PEALD growth. We observe the presence of TiO2 at the interface between the Hf oxide layer and the Ti nitride electrodes as well as at the SiO2 interface. EELS analysis led to a band gap ranging from 2.2 to 2.5 eV for the bottom TiNxOy and 1.7–2.2 eV for the top TiNxOy, which is in fair agreement with results obtained on the top TiNx electrode (1.6 ± 01 eV) using optical absorption spectra. Measurement of sheet resistance, resistivity and temperature coefficient of resistance by a four-point probe on the top TiNxOy electrode from 20 to 100 °C corresponds to the typical values for semiconductors. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

Back to TopTop