Effect of Cu Additions on the Evolution of Eta-prime Precipitates in Aged AA 7075 Al–Zn–Mg–Cu Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Peak Aging (PA) Condition
3.2. Mechanical Properties
3.3. TEM Images and Analysis
3.4. Effect of Cu on η′ Precipitates
3.5. Precipitate Size and Number Density Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.Z.; Hansen, V.; Gjonnes, J.; Wallenberg, L.R. HREM study and structure modeling of the eta η′ phase, the hardening precipitates in commercial Al-Zn-Mg alloys. Acta Mater. 1999, 47, 2651–2659. [Google Scholar] [CrossRef]
- Sha, G.; Cerezo, A. Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050). Acta Mater. 2004, 52, 4503–4516. [Google Scholar] [CrossRef]
- Wen, K.; Fan, Y.Q.; Wang, G.J.; Jin, L.B.; Li, X.W.; Li, Z.H.; Zhang, Y.G.; Xiong, B.Q. Aging behavior and precipitate characterization of a high Zn-containing Al-Zn-Mg-Cu alloy with various tempers. Mater. Des. 2016, 101, 16–23. [Google Scholar] [CrossRef]
- Li, X.W.; Xiong, B.Q.; Zhang, Y.A.; Hua, C.; Wang, F.; Zhu, B.H.; Liu, H.W. Effect of one-step aging on microstructure and properties of a novel Al-Zn-Mg-Cu-Zr alloy. Sci. China Ser. E-Technol. Sci. 2009, 52, 67–71. [Google Scholar] [CrossRef]
- Fan, X.; Jiang, D.; Meng, Q.; Lai, Z.; Zhang, X. Characterization of precipitation microstructure and properties of 7150 aluminium alloy. Mater. Sci. Eng. A 2006, 427, 130–135. [Google Scholar] [CrossRef]
- Luo, J.; Luo, H.Y.; Li, S.J.; Wang, R.Z.; Ma, Y. Effect of pre-ageing treatment on second nucleating of GPII zones and precipitation kinetics in an ultrafine grained 7075 aluminum alloy. Mater. Des. 2020, 187, 14. [Google Scholar] [CrossRef]
- Ghosh, A.; Ghosh, M.; Shankar, G. On the role of precipitates in controlling microstructure and mechanical properties of Ag and Sn added 7075 alloys during artificial ageing. Mater. Sci. Eng. A 2018, 738, 399–411. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Li, H.; Liu, Y.; Huang, Y.C. The microstructures and mechanical properties of a highly alloyed Al-Zn-Mg-Cu alloy: The role of Cu concentration. J. Mater. Res. Technol. 2022, 18, 122–137. [Google Scholar] [CrossRef]
- Ghiaasiaan, R.; Amirkhiz, B.S.; Shankar, S. Quantitative metallography of precipitating and secondary phases after strengthening treatment of net shaped casting of Al-Zn-Mg-Cu (7000) alloys. Mater. Sci. Eng. A 2017, 698, 206–217. [Google Scholar] [CrossRef]
- Liu, D.M.; Xiong, B.Q.; Bian, F.G.; Li, Z.H.; Li, X.W.; Zhang, Y.G.; Wang, F.; Liu, H.W. Quantitative study of precipitates in an Al-Zn-Mg-Cu alloy aged with various typical tempers. Mater. Sci. Eng. A 2013, 588, 1–6. [Google Scholar] [CrossRef]
- Liu, D.M.; Xiong, B.Q.; Bian, F.G.; Li, Z.H.; Li, X.W.; Zhang, Y.G.; Wang, Q.S.; Xie, G.L.; Wang, F.; Liu, H.W. Quantitative study of nanoscale precipitates in Al-Zn-Mg-Cu alloys with different chemical compositions. Mater. Sci. Eng. A. 2015, 639, 245–251. [Google Scholar] [CrossRef]
- Azarniya, A.; Taheri, A.K.; Taheri, K.K. Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective. J. Alloys Compd. 2019, 781, 945–983. [Google Scholar] [CrossRef]
- Liu, J.Z.; Hu, R.; Zheng, J.L.; Zhang, Y.D.; Ding, Z.G.; Liu, W.; Zhu, Y.T.; Sha, G. Formation of solute nanostructures in an Al-Zn-Mg alloy during long-term natural aging. J. Alloys Compd. 2020, 821, 10. [Google Scholar] [CrossRef]
- Geng, Y.X.; Song, Q.; Zhang, Z.R.; Pan, Y.L.; Li, H.X.; Wu, Y.; Zhu, H.H.; Zhang, D.; Zhang, J.S.; Zhuang, L.Z. Quantifying early-stage precipitation strengthening of Al-Mg-Zn(-Cu) alloy by using particle size distribution. Mater. Sci. Eng. A. 2022, 839, 13. [Google Scholar] [CrossRef]
- Matsuda, K.; Yasumoto, T.; Bendo, A.; Tsuchiya, T.; Lee, S.; Nishimura, K.; Nunomura, N.; Marioara, C.D.; Levik, A.; Holmestad, R.; et al. Effect of Copper Addition on Precipitation Behavior near Grain Boundary in Al-Zn-Mg Alloy. Mater. Trans. 2019, 60, 1688–1696. [Google Scholar] [CrossRef] [Green Version]
- Shu, W.X.; Hou, L.G.; Zhang, C.; Zhang, F.; Liu, J.C.; Liu, J.T.; Zhuang, L.Z.; Zhang, J.S. Tailored Mg and Cu contents affecting the microstructures and mechanical properties of high-strength Al-Zn-Mg-Cu alloys. Mater. Sci. Eng. A. 2016, 657, 269–283. [Google Scholar] [CrossRef]
- Chung, T.F.; Yang, Y.L.; Huang, B.M.; Shi, Z.S.; Lin, J.G.; Ohmura, T.; Yang, J.R. Transmission electron microscopy investigation of separated nucleation and in-situ nucleation in AA7050 aluminium alloy. Acta Mater. 2018, 149, 377–387. [Google Scholar] [CrossRef]
- Berg, L.K.; Gjonnes, J.; Hansen, V.; Li, X.Z.; Knutson-Wedel, M.; Waterloo, G.; Schryvers, D.; Wallenberg, L.R. GP-zones in Al-Zn-Mg alloys and their role in artificial aging. Acta Mater. 2001, 49, 3443–3451. [Google Scholar] [CrossRef]
- Gjonnes, J.; Simensen, C.J. An electron microscope investigation of microstructure in an aluminum-zinc-magnesium alloy. Acta Metall. 1970, 18, 881. [Google Scholar] [CrossRef]
- Auld, J.H.; Cousland, S.M. Structure of the metastable eta prime phase in aluminium-zinc magnesium alloys. J. Aust. Inst. Met. 1974, 19, 194–199. [Google Scholar]
- Zhao, P.H.; Wu, X.L.; Gao, K.Y.; Wen, S.P.; Rong, L.; Huang, H.; Wei, W.; Nie, Z.R. Effect of Zn/Mg ratio on microstructure and mechanical properties of Al-Zn-Mg alloys. Mater. Lett. 2022, 312, 4. [Google Scholar] [CrossRef]
- Lin, Y.-R.; Chen, W.-Y.; Tan, L.; Hoelzer, D.T.; Yan, Z.; Hsieh, C.-Y.; Huang, C.-W.; Zinkle, S.J. Bubble formation in helium-implanted nanostructured ferritic alloys at elevated temperatures. Acta Mater. 2021, 217, 117165. [Google Scholar] [CrossRef]
- Lozano-Perez, S.; Sha, G.; Titchmarsh, J.M.; Jenkins, M.L.; Hirosawa, S.; Cerezo, A.; Smith, G.D.W. Comparison of the number densities of nanosized Cu-rich precipitates in ferritic alloys measured using EELS and EDX mapping, HREM and 3DAP. J. Mater. Sci. 2006, 41, 2559–2565. [Google Scholar] [CrossRef]
- Liao, Y.G.; Han, X.Q.; Zeng, M.X.; Jin, M. Influence of Cu on microstructure and tensile properties of 7XXX series aluminum alloy. Mater. Des. 2015, 66, 581–586. [Google Scholar] [CrossRef]
- Pengxuan Dong, S.C. Kanghua Chen, Effects of Cu content on microstructure and properties of super-high-strength Al-9.3Zn-2.4Mg-xCu-Zr alloy. J. Alloys Compd. 2019, 788, 9. [Google Scholar]
- Fang, X.; Du, Y.; Song, M.; Li, K.; Jiang, C. Effects of Cu content on the precipitation process of Al-Zn-Mg alloys. J. Mater. Sci. 2012, 47, 8174–8187. [Google Scholar] [CrossRef]
- Chung, T.F.; Kawasaki, M.; Wang, P.; Nishio, K.; Shiojiri, M.; Li, W.C.; Hsiao, C.N.; Yang, J.R. Atomic-resolution energy dispersive X-ray spectroscopy mapping of eta precipitates in an Al-Mg-Zn-Cu alloy. Mater. Charact. 2020, 166, 8. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat Methods. 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Wolverton, C. Crystal structure and stability of complex precipitate phases in Al–Cu–Mg–(Si) and Al–Zn–Mg alloys. Acta Mater. 2001, 49, 3129–3142. [Google Scholar] [CrossRef]
- Iakoubovskii, K.; Mitsuishi, K.; Nakayama, Y.; Furuya, K. Thickness measurements with electron energy loss spectroscopy. Microsc. Res. Tech. 2008, 71, 626–631. [Google Scholar] [CrossRef] [Green Version]
- Malis, T.; Cheng, S.C.; Egerton, R.F. EELS log-ratio technique for specimen-thickness measurement in the TEM. J.Electron Microsc. Tech. 1988, 8, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-R.; Egerton, R.F.; Malac, M. Local thickness measurement through scattering contrast and electron energy-loss spectroscopy. Micron 2012, 43, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Loffler, H.; Kovacs, I.; Lendvai, J. Decomposition processes in al-zn-mg alloys. J. Mater. Sci. 1983, 18, 2215–2240. [Google Scholar] [CrossRef]
- Wagner, R.; Kampmann, R.; Voorhees, P.W. Homogeneous second-phase precipitation. In Chapter 5 in Phase Transformations in Materials; Kostorz, G., Ed.; WILEY-VCH Verlag GmbH: Weinheim, Germany, 2001. [Google Scholar]
- Sha, G.; Wang, Y.B.; Liao, X.Z.; Duan, Z.C.; Ringer, S.P.; Langdon, T.G. Influence of equal-channel angular pressing on precipitation in an Al-Zn-Mg-Cu alloy. Acta Mater. 2009, 57, 3123–3132. [Google Scholar] [CrossRef]
- Zou, Y.; Wu, X.; Tang, S.; Zhu, Q.; Song, H.; Guo, M.; Cao, L. Investigation on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys with various Zn/Mg ratios. J. Mater. Sci. Technol. 2021, 85, 106–117. [Google Scholar] [CrossRef]
η′ | Orientation Relationship | |
---|---|---|
1 | ||
2 | ||
3 | 10]Al | |
4 | 10]Al |
Aging Temp. | YS (MPa) | UTS (MPa) | Total Elongation (%) |
---|---|---|---|
100 °C | 451 ± 3 | 595 ± 2 | 14.0 ± 1.7 |
120 °C 140 °C 160 °C | 553 ± 5 496 ± 3 470 ± 4 | 618 ± 3 565 ± 2 556 ± 5 | 11.0 ± 1.4 11.4 ± 0.5 10.0 ± 1.2 |
Aging Temp. | YS (MPa) | UTS (MPa) | Total Elongation (%) |
---|---|---|---|
100 °C | 458 ± 2 | 596 ± 3 | 13.5 ± 1.3 |
120 °C 140 °C 160 °C | 551 ± 6 508 ± 5 490 ± 5 | 623 ± 9 587 ± 3 564 ± 6 | 11.3 ± 1.0 10.9 ± 0.9 11.6 ± 0.6 |
Aging Temp. | Area (nm2) | Thickness (nm) | Volume (nm3) |
---|---|---|---|
100 °C | 8.34 ± 4.33 | 1.82 ± 0.42 | 15.2 |
120 °C 140 °C 160 °C | 18.2 ± 10.9 36.0 ± 21.9 95.6 ± 41.3 | 2.15 ± 0.63 2.74 ± 1.12 4.26 ± 1.52 | 39.1 98.6 407 |
Aging Temp. | Area (nm2) | Thickness (nm) | Volume (nm3) |
---|---|---|---|
100 °C | 7.66 ± 3.78 | 1.59 ± 0.40 | 12.2 |
120 °C 140 °C 160 °C | 15.3 ± 6.83 28.2 ± 13.5 86.9 ± 45.2 | 2.03 ± 0.65 2.39 ± 1.09 3.87 ± 1.21 | 31.1 67.4 336 |
7075-LCu | 100 °C PA | 120 °C PA | 140 °C PA | 160 °C PA |
---|---|---|---|---|
Number density (cm−3) | 4.22 × 1017 | 3.27 × 1017 | 1.97 × 1017 | 8.72 × 1016 |
Volume percent | 0.641% | 1.28% | 1.94% | 3.54% |
7075-HCu | 100 °C PA | 120 °C PA | 140 °C PA | 160 °C PA |
---|---|---|---|---|
Number density (cm−3) | 4.58 × 1017 | 3.52 × 1017 | 2.26 × 1017 | 1.02 × 1017 |
Volume percent | 0.559% | 1.09% | 1.52% | 3.42% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsiao, T.-J.; Chiu, P.-H.; Tai, C.-L.; Tsao, T.-C.; Tseng, C.-Y.; Lin, Y.-X.; Chen, H.-R.; Chung, T.-F.; Chen, C.-Y.; Wang, S.-H.; et al. Effect of Cu Additions on the Evolution of Eta-prime Precipitates in Aged AA 7075 Al–Zn–Mg–Cu Alloys. Metals 2022, 12, 2120. https://doi.org/10.3390/met12122120
Hsiao T-J, Chiu P-H, Tai C-L, Tsao T-C, Tseng C-Y, Lin Y-X, Chen H-R, Chung T-F, Chen C-Y, Wang S-H, et al. Effect of Cu Additions on the Evolution of Eta-prime Precipitates in Aged AA 7075 Al–Zn–Mg–Cu Alloys. Metals. 2022; 12(12):2120. https://doi.org/10.3390/met12122120
Chicago/Turabian StyleHsiao, Ting-Jung, Po-Han Chiu, Cheng-Lin Tai, Tzu-Ching Tsao, Chien-Yu Tseng, Yi-Xian Lin, Hsueh-Ren Chen, Tsai-Fu Chung, Chih-Yuan Chen, Shing-Hoa Wang, and et al. 2022. "Effect of Cu Additions on the Evolution of Eta-prime Precipitates in Aged AA 7075 Al–Zn–Mg–Cu Alloys" Metals 12, no. 12: 2120. https://doi.org/10.3390/met12122120
APA StyleHsiao, T.-J., Chiu, P.-H., Tai, C.-L., Tsao, T.-C., Tseng, C.-Y., Lin, Y.-X., Chen, H.-R., Chung, T.-F., Chen, C.-Y., Wang, S.-H., & Yang, J.-R. (2022). Effect of Cu Additions on the Evolution of Eta-prime Precipitates in Aged AA 7075 Al–Zn–Mg–Cu Alloys. Metals, 12(12), 2120. https://doi.org/10.3390/met12122120