Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (102)

Search Parameters:
Keywords = electromagnetic bias

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1266 KiB  
Systematic Review
Effectiveness of Lifestyle-Based Approaches for Adults with Multiple Chemical Sensitivity: A Systematic Review
by Isidro Miguel Martín Pérez, David Alejandro Parra Castillo, Carlos Pastor Ruiz de la Fuente and Sebastián Eustaquio Martín Pérez
Therapeutics 2025, 2(3), 13; https://doi.org/10.3390/therapeutics2030013 - 22 Jul 2025
Viewed by 221
Abstract
Background: Multiple Chemical Sensitivity (MCS) is a complex, disabling condition marked by non-specific symptoms in response to low-level chemical exposures. It often leads to substantial impairments in quality of life, psychological health, and daily functioning. Although non-pharmacological approaches—such as lifestyle and psychological interventions—are [...] Read more.
Background: Multiple Chemical Sensitivity (MCS) is a complex, disabling condition marked by non-specific symptoms in response to low-level chemical exposures. It often leads to substantial impairments in quality of life, psychological health, and daily functioning. Although non-pharmacological approaches—such as lifestyle and psychological interventions—are widely used, their clinical effectiveness remains unclear. Objective: We aim to evaluate the effectiveness of lifestyle-based approaches in improving clinical and psychosocial outcomes in adults with Multiple Chemical Sensitivity. Methods: A systematic review was conducted in accordance with PRISMA guidelines (PROSPERO: CRD420251013537). Literature searches were carried out in MEDLINE (PubMed), CINAHL, Google Scholar, and ResearchGate between March and April 2025. Eligible studies included adults (≥18 years) with a confirmed diagnosis of MCS and reported outcomes such as perceived stress, anxiety, depressive symptoms, or quality of life. Methodological quality and risk of bias were independently assessed using the PEDro scale, NIH Quality Assessment Tool, CEBMa checklist, and Cochrane RoB 2.0. Results: Twelve studies (N = 378) met the inclusion criteria. Cognitive and behavioral therapies demonstrated the most consistent evidence of efficacy, with reductions in symptom severity, maladaptive cognitive patterns, and functional limitations. Mindfulness-based stress reduction showed favorable outcomes, while other mindfulness-based interventions yielded mixed results. Exposure-based therapies contributed to increased chemical tolerance and reduced avoidance behavior. Electromagnetic and biomedical approaches demonstrated preliminary but limited effectiveness. Aromatherapy was well tolerated and perceived as relaxing, though its clinical impact was modest. Conclusions: Cognitive and behavioral therapies appear to be most effective among lifestyle-based interventions for MCS/IEI. However, study heterogeneity limits the generalizability of findings, underscoring the need for more rigorous research. Full article
Show Figures

Figure 1

19 pages, 3193 KiB  
Article
Theoretical Analysis and Research on Support Reconstruction Control of Magnetic Bearing with Redundant Structure
by Huaqiang Sun, Zhiqin Liang and Baixin Cheng
Sensors 2025, 25(14), 4517; https://doi.org/10.3390/s25144517 - 21 Jul 2025
Viewed by 247
Abstract
At present, the redundant structures are one of the most effective methods for solving magnetic levitation bearing coil failure. Coil failure causes residual effective magnetic poles to form different support structures and even asymmetrical structures. For the magnetic bearing with redundant structures, how [...] Read more.
At present, the redundant structures are one of the most effective methods for solving magnetic levitation bearing coil failure. Coil failure causes residual effective magnetic poles to form different support structures and even asymmetrical structures. For the magnetic bearing with redundant structures, how to construct the electromagnetic force (EMF) that occurs under different support structures to achieve support reconstruction is the key to realizing fault tolerance control. To reveal the support reconstruction mechanism of magnetic bearing with a redundant structure, firstly, this paper takes a single-degree-of-freedom magnetic suspension body as an example to conduct a linearization theory analysis of the offset current, clarifying the concept of the current distribution matrix (CDM) and its function; then, the nonlinear EMF mode of magnetic bearing with an eight-pole is constructed, and it is linearized by using the theory of bias current linearization. Furthermore, the conditions of no coils fail, the 8th coil fails, and the 6–8th coils fail are considered, and, with the maximum principle function of EMF, the corresponding current matrices are obtained. Meanwhile, based on the CDM, the corresponding magnetic flux densities were calculated, proving that EMF reconstruction can be achieved under the three support structures. Finally, with the CDM and position control law, a fault-tolerant control system was constructed, and the simulation of the magnetic bearing with a redundant structure was carried out. The simulation results reveal the mechanism of support reconstruction with three aspects of rotor displacement, the value and direction of currents that occur in each coil. The simulation results show that, in the 8-pole magnetic bearing, this study can achieve support reconstruction in the case of faults in up to two coils. Under the three working conditions of wireless no coil failure, the 8th coil fails and the 6–8th coils fail, the current distribution strategy was adjusted through the CDM. The instantaneous displacement disturbance during the support reconstruction process was less than 0.28 μm, and the EMF after reconstruction was basically consistent with the expected value. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

10 pages, 2060 KiB  
Article
Passive Frequency Tunability in Moiré-Inspired Frequency Selective Surfaces Based on Full-Wave Simulation
by Jieun Hwang and Sungcheol Hong
Micromachines 2025, 16(6), 702; https://doi.org/10.3390/mi16060702 - 12 Jun 2025
Viewed by 2332
Abstract
This paper presents a simulation-based investigation of passive frequency tunability in frequency-selective surfaces (FSSs) enabled by Moiré pattern interference. By overlapping two identical hexagonal FSS layers and introducing rotational misalignment between them, we demonstrate that the resulting Moiré patterns induce significant shifts in [...] Read more.
This paper presents a simulation-based investigation of passive frequency tunability in frequency-selective surfaces (FSSs) enabled by Moiré pattern interference. By overlapping two identical hexagonal FSS layers and introducing rotational misalignment between them, we demonstrate that the resulting Moiré patterns induce significant shifts in the resonance frequency without any external bias or active components. Using full-wave simulations in HFSS, we show that rotating the second layer from 0° to 30° can shift the resonant frequency from 4.4 GHz down to 1.2 GHz. This tunable behavior emerges solely from geometrical manipulation, offering a low-complexity alternative to active tuning methods that rely on varactors or micro-electromechanical systems (MEMSs). We discuss the theoretical basis for this tuning mechanism based on effective periodicity modulation via rotational interference and highlight potential applications in passive reconfigurable filters and refractive index sensors. The proposed approach provides a promising route for implementing tunable electromagnetic structures without compromising simplicity, power efficiency, or integration compatibility. Full article
(This article belongs to the Special Issue Novel Electromagnetic and Acoustic Devices)
Show Figures

Figure 1

6 pages, 1393 KiB  
Article
Results from Cryo-PoF Project: Power over Fiber at Cryogenic Temperature for Fundamental and Applied Physics
by Andrea Falcone, Alessandro Andreani, Claudia Brizzolari, Esteban Javier Cristaldo Morales, Maritza Juliette Delgado Gonzales, Claudio Gotti, Massimo Lazzaroni, Luca Meazza, Gianluigi Pessina, Francesco Terranova, Marta Torti and Valeria Trabattoni
Particles 2025, 8(2), 41; https://doi.org/10.3390/particles8020041 - 8 Apr 2025
Viewed by 418
Abstract
The Cryo-PoF project is an R&D project funded by the Italian Insitute for Nuclear Research (INFN) in Milano-Bicocca (Italy). The technology at the basis of the project is Power over Fiber (PoF). By sending laser light through an optical fiber, this technology delivers [...] Read more.
The Cryo-PoF project is an R&D project funded by the Italian Insitute for Nuclear Research (INFN) in Milano-Bicocca (Italy). The technology at the basis of the project is Power over Fiber (PoF). By sending laser light through an optical fiber, this technology delivers electrical power to a photovoltaic power converter, in order to power sensors or electrical devices. Among the several advantages this solution can provide, we can underline the spark-free operation when electric fields are present, the removal of noise induced by power lines, the absence of interference with electromagnetic fields, and robustness in hostile environments. R&D for the application of PoF in cryogenic environments started at Fermilab in 2020; for the DUNE Vertical Drift detector, it was needed to operate the Photon Detector System on a high-voltage cathode surface. Cryo-PoF, starting from this project, developed a single-laser input line system to power, at cryogenic temperatures, both an electronic amplifier and Photon Detection devices, tuning their bias by means of the input laser power, without adding ancillary fibers. The results obtained in Milano-Bicocca will be discussed, presenting the tests performed using power photosensors at liquid nitrogen temperature. Full article
Show Figures

Figure 1

23 pages, 7327 KiB  
Article
A Phase Bias Compensation Method for Anti-Interference Antenna Arrays in RTK Positioning
by Jiebin Zhang, Wenquan Feng and Hao Wang
Remote Sens. 2025, 17(6), 1018; https://doi.org/10.3390/rs17061018 - 14 Mar 2025
Cited by 1 | Viewed by 561
Abstract
To achieve high-precision positioning using the global navigation satellite system (GNSS), the onboard GNSS receiver integrates real-time kinematic (RTK) technology to enable centimeter-level positioning accuracy. Furthermore, array anti-interference technology is incorporated into the RTK receiver to enhance positioning reliability and mitigate interference in [...] Read more.
To achieve high-precision positioning using the global navigation satellite system (GNSS), the onboard GNSS receiver integrates real-time kinematic (RTK) technology to enable centimeter-level positioning accuracy. Furthermore, array anti-interference technology is incorporated into the RTK receiver to enhance positioning reliability and mitigate interference in complex environments such as urban areas or regions with high electromagnetic activity. However, this approach can introduce signal distortion, which adversely affects the convergence of RTK positioning. To address the issue of bias introduced by interference suppression in RTK positioning, this paper focuses on error modeling and bias compensation through a phase bias compensation algorithm. A novel phase compensation algorithm is proposed, leveraging the anti-interference weighting coefficients of array elements and the anti-interference output signal. Compared to the conventional minimum variance distortionless response (MVDR) algorithm, the proposed method features a simpler architecture and achieves phase compensation at a lower computational cost using the power inverse (PI) algorithm. Simulation experiments demonstrate the effectiveness of the compensation method, achieving a mean phase bias of approximately 0.25 degrees and a variance of 4.62 degrees. This level of accuracy makes it highly suitable for UAVs operating in challenging environments where precision and reliability are paramount. Full article
Show Figures

Graphical abstract

20 pages, 7031 KiB  
Article
An Approach for SAR Feature Reconfiguring Based on Periodic Phase Modulation with Inter-Pulse Time Bias
by Liwen Zhu, Junjie Wang and Dejun Feng
Remote Sens. 2025, 17(6), 991; https://doi.org/10.3390/rs17060991 - 12 Mar 2025
Cited by 4 | Viewed by 669
Abstract
Artificial metasurfaces can rapidly modulate their electromagnetic scattering properties and the characteristics of echo signals, which can lead to different imaging features in synthetic aperture radar (SAR) imaging results. Based on this, for the first time, this paper proposes an approach for SAR [...] Read more.
Artificial metasurfaces can rapidly modulate their electromagnetic scattering properties and the characteristics of echo signals, which can lead to different imaging features in synthetic aperture radar (SAR) imaging results. Based on this, for the first time, this paper proposes an approach for SAR feature reconfiguring based on periodic phase modulation with inter-pulse time bias. Considering the position and energy requirements of the expected reconfigured imaging target, this approach optimizes the metasurface modulation parameters via a dual algorithm collaborative optimization system, i.e., a modulation parameter generation algorithm (MPGA) and a parameter mapping matching algorithm (PMMA). Time-modulated metasurface targets can reconfigure imaging features of different targets at SAR reconnaissance moments under the guidance of optimized modulation parameters obtained using this approach. Compared with the previous single-point target research on the combination of SAR and metasurfaces, this method is expanded to include the combined analysis of multi-point targets and the reconfigurability of SAR features. Experiments have proved that the programmable reconfigurability of different target features (such as passenger plane targets and truck targets) can be achieved in SAR imaging results through dynamic adjustment of the modulation parameter set. The reconfigured imaging features maintain geometric consistency within the resolution error range, and the size and position of the target can be set as required. Full article
Show Figures

Graphical abstract

15 pages, 8304 KiB  
Article
An Improved PIN Diode Model Design for a Tunable Frequency Selective Absorber
by Hanxiang Lin and Xiaoxing Fang
Appl. Sci. 2025, 15(3), 1440; https://doi.org/10.3390/app15031440 - 30 Jan 2025
Viewed by 1169
Abstract
An enhanced PIN diode model designed for a tunable frequency absorber is proposed, enabling continuous and adjustable absorption across the X-band frequency range. This new structure consists of four primary components: a frequency selective surface (FSS) layer, a dielectric substrate, an air spacer [...] Read more.
An enhanced PIN diode model designed for a tunable frequency absorber is proposed, enabling continuous and adjustable absorption across the X-band frequency range. This new structure consists of four primary components: a frequency selective surface (FSS) layer, a dielectric substrate, an air spacer layer, and a metal substrate. Unlike previous designs, the PIN diode model introduced here offers significant advancements. It not only allows for the switching between absorption and reflection states but also enables precise tuning within the absorption state itself, providing a higher degree of control over the system’s performance. The unique arrangement of the PIN diodes in this design involves placing them between adjacent units of the structure. This strategic placement eliminates the need for complex and bulky bias networks, which are commonly used in conventional designs. As a result, it also minimizes the electromagnetic interference that often arises from bias lines, thereby improving the overall system efficiency and reliability. The proposed model, therefore, reduces the complexity of the absorbing system while enhancing its performance and tunability. Experimental results obtained through free-space measurements were conducted to validate the proposed design. The results show an excellent agreement with the simulation data, confirming that the improved structure can achieve continuous, tunable absorption with high precision. These findings suggest that the new PIN diode-based model could be a promising solution for a wide range of applications in dynamic frequency management and electromagnetic wave absorption systems. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

19 pages, 8948 KiB  
Article
Differential Code Bias Estimation and Accuracy Analysis Based on CSES Onboard GPS and BDS Observations
by Jiawen Pang, Fuying Zhu and Shang Wu
Remote Sens. 2025, 17(3), 374; https://doi.org/10.3390/rs17030374 - 23 Jan 2025
Viewed by 944
Abstract
An accurate estimation of Differential Code Bias (DCB) is essential for high-precision applications of the Global Navigation Satellite System (GNSS) and for the precise determination of GNSS-derived total electron content (TEC). This study leverages BeiDou Navigation Satellite System (BDS) and Global Positioning System [...] Read more.
An accurate estimation of Differential Code Bias (DCB) is essential for high-precision applications of the Global Navigation Satellite System (GNSS) and for the precise determination of GNSS-derived total electron content (TEC). This study leverages BeiDou Navigation Satellite System (BDS) and Global Positioning System (GPS) dual-frequency observations of the China Seismo-electromagnetic Satellite (CSES) from day of the year (DOY) 201 to DOY 232 in 2018, we evaluate the quality of CSES onboard GNSS observations, improve the data preprocessing method, and use the least-squares to estimate DCBs for both GNSS satellites and CSES receivers. A comprehensive analysis of the estimation accuracy is presented, revealing that DCBs for BDS satellites, derived from joint BDS and GPS observations, exhibit superior consistency compared to those from single BDS observations. Notably, the stability of DCBs for the CSES BDS receiver as well as for BDS GEO, IGSO, and MEO satellites has been significantly enhanced by 70%, 14%, 22%, and 23%, respectively. Conversely, the consistency of GPS satellite DCBs estimated from joint observations shows a decline when compared to the DCB products from the Center for Orbit Determination in Europe (CODE) and the Chinese Academy of Sciences (CAS). When fewer than nine satellites are tracked daily and nighttime observations are under 25%, estimation errors increase. The optimal DCB estimation is achieved with a cutoff elevation angle set at 10°, with monthly mean DCB values for CSES GPS and BDS receivers determined to be −2.193 ns and −1.099 ns, respectively, accompanied by root mean square errors (RMSEs) of 0.10 ns and 0.31 ns. The highest accuracy of DCBs estimated by the single-GPS scheme is corroborated by examining the occurrence of negative vertical total electron content (VTEC) percentages. Full article
Show Figures

Figure 1

18 pages, 2959 KiB  
Article
Parameter Identification in Triple-Diode Photovoltaic Modules Using Hybrid Optimization Algorithms
by Dhiaa Halboot Muhsen, Haider Tarish Haider and Yaarob Al-Nidawi
Designs 2024, 8(6), 119; https://doi.org/10.3390/designs8060119 - 12 Nov 2024
Viewed by 1004
Abstract
Identifying the parameters of a triple-diode electrical circuit structure in PV modules is a critical issue, and it has been regarded as an important research area. Accordingly, in this study, a differential evolution algorithm (DEA) is hybridized with an electromagnetism-like algorithm (EMA) in [...] Read more.
Identifying the parameters of a triple-diode electrical circuit structure in PV modules is a critical issue, and it has been regarded as an important research area. Accordingly, in this study, a differential evolution algorithm (DEA) is hybridized with an electromagnetism-like algorithm (EMA) in the mutation stage to enhance the reliability and efficiency of the DEA. A new formula is presented to adapt the control parameters (mutation factor and crossover rate) of the DEA. Seven different experimental data sets are used to improve the performance of the proposed differential evolution with an integrated mutation per iteration algorithm (DEIMA). The results of the proposed PV modeling method are evaluated with other state-of-the-art approaches. According to different statistical criteria, the DEIMA demonstrates superiority in terms of root mean square error and main bias error by at least 5.4% and 10%, respectively, as compared to other methods. Furthermore, the DEIMA has an average execution time of 27.69 s, which is less than that of the other methods. Full article
Show Figures

Figure 1

24 pages, 4425 KiB  
Brief Report
Transcranial Magnetic Stimulation Facilitates Neural Speech Decoding
by Lindy Comstock, Vinícius Rezende Carvalho, Claudia Lainscsek, Aria Fallah and Terrence J. Sejnowski
Brain Sci. 2024, 14(9), 895; https://doi.org/10.3390/brainsci14090895 - 2 Sep 2024
Cited by 1 | Viewed by 1615
Abstract
Transcranial magnetic stimulation (TMS) has been widely used to study the mechanisms that underlie motor output. Yet, the extent to which TMS acts upon the cortical neurons implicated in volitional motor commands and the focal limitations of TMS remain subject to debate. Previous [...] Read more.
Transcranial magnetic stimulation (TMS) has been widely used to study the mechanisms that underlie motor output. Yet, the extent to which TMS acts upon the cortical neurons implicated in volitional motor commands and the focal limitations of TMS remain subject to debate. Previous research links TMS to improved subject performance in behavioral tasks, including a bias in phoneme discrimination. Our study replicates this result, which implies a causal relationship between electro-magnetic stimulation and psychomotor activity, and tests whether TMS-facilitated psychomotor activity recorded via electroencephalography (EEG) may thus serve as a superior input for neural decoding. First, we illustrate that site-specific TMS elicits a double dissociation in discrimination ability for two phoneme categories. Next, we perform a classification analysis on the EEG signals recorded during TMS and find a dissociation between the stimulation site and decoding accuracy that parallels the behavioral results. We observe weak to moderate evidence for the alternative hypothesis in a Bayesian analysis of group means, with more robust results upon stimulation to a brain region governing multiple phoneme features. Overall, task accuracy was a significant predictor of decoding accuracy for phoneme categories (F(1,135) = 11.51, p < 0.0009) and individual phonemes (F(1,119) = 13.56, p < 0.0003), providing new evidence for a causal link between TMS, neural function, and behavior. Full article
(This article belongs to the Special Issue Language, Communication and the Brain)
Show Figures

Figure 1

15 pages, 6650 KiB  
Article
Chipless RFID Sensor for Measuring Time-Varying Electric Fields Using a Contactless Air-Filled Substrate-Integrated Waveguide Resonator
by Amirmasoud Amirkabiri, Dawn Idoko, Behzad Kordi and Greg E. Bridges
Sensors 2024, 24(15), 4928; https://doi.org/10.3390/s24154928 - 30 Jul 2024
Cited by 1 | Viewed by 2027
Abstract
This paper presents a wireless chipless resonator-based sensor for measuring the absolute value of an external time-varying electric field. The sensor is developed using contactless air-filled substrate-integrated waveguide (CLAF-SIW) technology. The sensor employs a low-impedance electromagnetic band gap structure to confine the electric [...] Read more.
This paper presents a wireless chipless resonator-based sensor for measuring the absolute value of an external time-varying electric field. The sensor is developed using contactless air-filled substrate-integrated waveguide (CLAF-SIW) technology. The sensor employs a low-impedance electromagnetic band gap structure to confine the electric field within the sensor’s air cavity. The air cavity is loaded with varactor diodes whose reverse bias voltage is modified by the to-be-measured external electric field. Variation in the external electric field results in a variation of the sensor’s resonant frequency. The CLAF-SIW sensor offers a high unloaded quality factor, which is required for a long-distance ringback-based interrogation system. A prototype of the proposed sensor is fabricated and tested. It can measure a time-varying external electric field up to 6.9 kV/m, has a sensitivity of 1.86 (kHz)/(V/m), and can be interrogated from a distance of 80 cm. The feasible maximum bandwidth of the external electric field is 25 kHz. The proposed sensor offers a compact planar multilayer structure that can easily be incorporated with a planar antenna and its size can be reduced by selecting a higher operating frequency without an increase in dielectric loss. Full article
(This article belongs to the Special Issue Advances in Chipless RFID Sensors and Systems)
Show Figures

Figure 1

19 pages, 13118 KiB  
Article
Millimeter-Wave GaN High-Power Amplifier MMIC Design Guideline Considering a Source via Effect
by Jihoon Kim, Seoungyoon Han, Bo-Bae Kim, Mun-Kyo Lee and Bok-Hyung Lee
Electronics 2024, 13(13), 2616; https://doi.org/10.3390/electronics13132616 - 3 Jul 2024
Cited by 1 | Viewed by 3034
Abstract
A millimeter-wave (mmWave) gallium nitride (GaN) high-power amplifier (HPA) monolithic microwave-integrated circuit (MMIC) was implemented, considering a source via effect. In this paper, we introduce guidelines for designing GaN HPA MMICs, from device sizing to meeting high-power specifications, power matching considering source via [...] Read more.
A millimeter-wave (mmWave) gallium nitride (GaN) high-power amplifier (HPA) monolithic microwave-integrated circuit (MMIC) was implemented, considering a source via effect. In this paper, we introduce guidelines for designing GaN HPA MMICs, from device sizing to meeting high-power specifications, power matching considering source via effects, schematic design of three-stage amplifier structures, and electromagnetic (EM) simulation. Based on the results of load pull simulation and small-signal maximum stable gain (MSG) simulation, the GaN high-electron-mobility transistor (HEMT) size was selected to be 8 × 70 μm. However, since the source via model provided by the foundry was significantly different from the EM results, it was necessary to readjust the power matching considering this. Additionally, when selecting the source via size, the larger the size, the easier the matching, but since the layout of the peripheral bias circuit is not possible, a compromise was required considering the actual layout. To prevent in-band oscillation, an RC parallel circuit was added to the input matching circuit, and low-frequency oscillation was solved by adding a gate resistor on the PCB module. The proposed PA was fabricated with a commercial 0.1 μm GaN HEMT MMIC process. It exhibited 38.56 to 39.71 dBm output power (Pout), 14.2 to 16.7 dB linear gain, and 14.1% to 18.2% power-added efficiency (PAE) in the upper Ka band. The fabricated GaN power amplifier MMIC shows competitive Pout in the upper Ka band above 33 GHz. Full article
(This article belongs to the Special Issue Challenges, Innovation and Future Perspectives of GaN Technology)
Show Figures

Figure 1

19 pages, 13981 KiB  
Article
MCML-BF: A Metal-Column Embedded Microstrip Line Transmission Structure with Bias Feeders for Beam-Scanning Leakage Antenna Design
by Shunhu Hou, Shengliang Fang, Youchen Fan, Yuhai Li, Zhao Ma and Jinming Li
Sensors 2024, 24(11), 3467; https://doi.org/10.3390/s24113467 - 28 May 2024
Viewed by 1073
Abstract
This article proposes a novel fixed-frequency beam scanning leakage antenna based on a liquid crystal metamaterial (LCM) and adopting a metal column embedded microstrip line (MCML) transmission structure. Based on the microstrip line (ML) transmission structure, it was observed that by adding two [...] Read more.
This article proposes a novel fixed-frequency beam scanning leakage antenna based on a liquid crystal metamaterial (LCM) and adopting a metal column embedded microstrip line (MCML) transmission structure. Based on the microstrip line (ML) transmission structure, it was observed that by adding two rows of metal columns in the dielectric substrate, electromagnetic waves can be more effectively transmitted to reduce dissipation, and attenuation loss can be lowered to improve energy radiation efficiency. This antenna couples TEM mode electromagnetic waves into free space by periodically arranging 72 complementary split ring resonators (CSRRs). The LC layer is encapsulated in the transmission medium between the ML and the metal grounding plate. The simulation results show that the antenna can achieve a 106° continuous beam turning from reverse −52° to forward 54° at a frequency of 38 GHz with the holographic principle. In practical applications, beam scanning is achieved by applying a DC bias voltage to the LC layer to adjust the LC dielectric constant. We designed a sector-blocking bias feeder structure to minimize the impact of RF signals on the DC source and avoid the effect of DC bias on antenna radiation. Further comparative experiments revealed that the bias feeder can significantly diminish the influence between the two sources, thereby reducing the impact of bias voltage introduced by LC layer feeding on antenna performance. Compared with existing approaches, the antenna array simultaneously combines the advantages of high frequency band, high gain, wide beam scanning range, and low loss. Full article
Show Figures

Figure 1

21 pages, 12673 KiB  
Article
Modeling 0.3 THz Coaxial Single-Mode Phase Shifter Designs in Liquid Crystals with Constitutive Loss Quantifications
by Jinfeng Li and Haorong Li
Crystals 2024, 14(4), 364; https://doi.org/10.3390/cryst14040364 - 11 Apr 2024
Cited by 16 | Viewed by 2483
Abstract
This work proposes and examines the feasibility of next-generation 0.3 THz phase shifters realized with liquid crystals (LCs) as tunable dielectrics coaxially filled in the transmission line. The classic coaxial transmission line topology is robust to electromagnetic interference and environmental noise, but is [...] Read more.
This work proposes and examines the feasibility of next-generation 0.3 THz phase shifters realized with liquid crystals (LCs) as tunable dielectrics coaxially filled in the transmission line. The classic coaxial transmission line topology is robust to electromagnetic interference and environmental noise, but is susceptible to higher-order modes from microwave to millimeter-wave towards terahertz (THz) wavelength ranges, which impedes the low-insertion-loss phase-shifting functionality. This work thus focuses primarily on the suppression of the risky higher-order modes, particularly the first emerging TE11 mode impacting the dielectric loss and metal losses in diverse manners. Based on impedance matching baselines at diverse tuning states of LCs, this work analytically derives and models two design geometries; i.e., design 1 for the coaxial geometry matched at the isotopically referenced state of LC for 50 Ω, and design 2 for geometry matched at the saturated bias of LC with the maximally achievable permittivity. The Figure-of-Merit for design 1 and design 2 reports as 35.15°/dB and 34.73°/dB per unit length, respectively. We also propose a constitutive power analysis method for understanding the loss consumed by constitutive materials. Notably, for the 0.3 THz design, the isotropic LC state results in an LC dielectric loss of 63.5% of the total input power (assuming 100%), which becomes the primary constraint on achieving low-loss THz operations. The substantial difference in the LC dielectric loss between the isotropic LC state and saturated bias state for the 0.3 THz design (35.76% variation) as compared to that of our past 60 GHz design (13.5% variation) indicates that the LC dielectric loss’s escalating role is further enhanced with the rise in frequency, which is more pronounced than the conductor losses. Overall, the results from analytical and finite-element optimization in this work shape the direction and feasibility of the unconventional THz coaxial phase shifting technology with LCs, actioned as continuously tunable dielectrics. Full article
Show Figures

Figure 1

19 pages, 4872 KiB  
Article
Modeling of Dual-Phase Composite Magnetic Material and Its Application in Transformers
by Yang Liu, Fuyao Yang, Yu Han, Jie Gao, Dezhi Chen and Haonan Bai
Energies 2024, 17(6), 1354; https://doi.org/10.3390/en17061354 - 12 Mar 2024
Viewed by 1439
Abstract
Dual-phase composite magnetic materials have magnetic and permanent magnetic properties. They can realize the dual-phase conversion of soft magnetic and permanent magnetic composites with a small amount of excitation energy. They have the advantages of good control and conversion characteristics and save energy, [...] Read more.
Dual-phase composite magnetic materials have magnetic and permanent magnetic properties. They can realize the dual-phase conversion of soft magnetic and permanent magnetic composites with a small amount of excitation energy. They have the advantages of good control and conversion characteristics and save energy, and they have a wide range of application scenarios in regard to power equipment. In this paper, the magnetization modeling of dual-phase composite magnetic materials is carried out based on micromagnetic theory, and a specific mathematical expression is given. Secondly, the preparation process of the dual-phase composite magnetic material is studied, the dual-phase composite magnetic material is prepared, and the demagnetization curve of the dual-phase composite magnetic material is measured. Finally, the application of dual-phase composite magnetic materials in power equipment is carried out. Using the soft magnetic and permanent magnetic characteristics of dual-phase composite magnetic materials, their impact on DC bias suppression in transformers is assessed. Magnetic circuit reluctance theory is used to develop the structure and electromagnetic design of a transformer. A transformer prototype with DC bias suppression ability based on dual-phase composite magnetic materials is manufactured, and simulation and experimental research are carried out. The simulation and experimental results verify the correctness of the proposed scheme. Although this scheme requires a more complex core structure, the energy-saving effect is remarkable without changing the transformer’s neutral grounding. The indicators meet the actual requirements of the project. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

Back to TopTop