Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (398)

Search Parameters:
Keywords = electromagnetic actuation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1827 KB  
Review
Rotary Steerable Drilling Technology: Bottlenecks Breakthroughs and Intelligent Trends in China Shale Gas Development
by Hao Geng, Bingzhong Zhang and Yingjian Xie
Processes 2025, 13(11), 3471; https://doi.org/10.3390/pr13113471 - 29 Oct 2025
Viewed by 254
Abstract
Rotary Steerable System (RSS) enhances directional drilling efficiency by over 300% via dynamic bit adjustment during string rotation. This study aims to systematically address these bottlenecks, quantify technical boundaries, and propose actionable breakthrough paths for China’s RSS technology in shale gas development. To [...] Read more.
Rotary Steerable System (RSS) enhances directional drilling efficiency by over 300% via dynamic bit adjustment during string rotation. This study aims to systematically address these bottlenecks, quantify technical boundaries, and propose actionable breakthrough paths for China’s RSS technology in shale gas development. To address China’s shale gas RSS bottlenecks, this study proposes a “Material-Algorithm-System” tri-level strategy centered on an innovative “Tri-loop System.” Key innovations include (1) silicon nitride–tungsten carbide composite coatings to enhance thermal resilience, tested to withstand 220 °C, reducing thermal failure risk by 40% compared to conventional materials; (2) downhole reinforcement learning optimization; (3) a “Tri-loop System” integrating downhole intelligent control, wellbore-surface bidirectional communication, and cloud monitoring, shortening downhole command response latency from over 5 s to less than 1 s. In practical shale gas development scenarios—such as the Sichuan Basin’s deep coalbed methane wells and Shengli Oilfield’s tight reservoirs—this tri-level strategy has proven effective: the high-frequency electromagnetic wave radar increased thin coal seam drilling encounter rate by 23%, while the piezoelectric ceramic micro-actuators reduced tool failure rate by 35% in 175–200 °C environments. This approach targets raising China’s shale gas RSS application rate to 60%, supporting sustainable oil and gas exploration. Full article
(This article belongs to the Special Issue Development of Advanced Drilling Engineering)
Show Figures

Figure 1

17 pages, 3323 KB  
Article
Enhancing Torque Output for a Magnetic Actuation System for Robotic Spinal Distraction
by Yumei Li, Zikang Li, Ding Lu, Tairan Peng, Yunzhi Chen, Gang Fu, Zhenguo Nie and Fangyuan Wei
Sensors 2025, 25(20), 6497; https://doi.org/10.3390/s25206497 - 21 Oct 2025
Viewed by 439
Abstract
Magnetically controlled spinal growing rods, used for treating early-onset scoliosis (EOS), face a critical clinical limitation: insufficient distraction force. Compounding this issue is the inherent inability to directly monitor the mechanical output of such implants in vivo, which challenges their safety and efficacy. [...] Read more.
Magnetically controlled spinal growing rods, used for treating early-onset scoliosis (EOS), face a critical clinical limitation: insufficient distraction force. Compounding this issue is the inherent inability to directly monitor the mechanical output of such implants in vivo, which challenges their safety and efficacy. To overcome these limitations, optimizing the rotor’s maximum torque is essential. Furthermore, defining the “continuous rotation domain” establishes a vital safety boundary for stable operation, preventing loss of synchronization and loss of control, thus safeguarding the efficacy of future clinical control strategies. In this study, a transient finite element magnetic field simulation model of a circumferentially distributed permanent magnet–rotor system was established using ANSYS Maxwell (2024). The effects of the clamp angle between the driving magnets and the rotor, the number of pole pairs, the rotor’s outer diameter, and the rotational speed of the driving magnets on the rotor’s maximum torque were systematically analyzed, and the optimized continuous rotation domain of the rotor was determined. The results indicated that when the clamp angle was set at 120°, the number of pole pairs was one, the rotor outer diameter was 8 mm, the rotor achieved its maximum torque and exhibited the largest continuous rotation domain, while the rotational speed of the driving magnets had no effect on maximum torque. Following optimization, the maximum torque of the simulation increased by 201% compared with the pre-optimization condition, and the continuous rotation domain was significantly enlarged. To validate the simulation, a rotor torque measurement setup incorporating a torque sensor was constructed. Experimental results showed that the maximum torque improved from 30 N·mm before optimization to 90 N·mm after optimization, while the driving magnets maintained stable rotation throughout the process. Furthermore, a spinal growing rod test platform equipped with a pressure sensor was developed to evaluate actuator performance and measure the maximum distraction force. The optimized growing rod achieved a peak distraction force of 413 N, nearly double that of the commercial MAGEC system, which reached only 208 N. The simulation and experimental methodologies established in this study not only optimizes the device’s performance but also provides a viable pathway for in vivo performance prediction and monitoring, addressing a critical need in smart implantable technology. Full article
(This article belongs to the Special Issue Recent Advances in Medical Robots: Design and Applications)
Show Figures

Figure 1

29 pages, 4164 KB  
Review
Multimodal Field-Driven Actuation in Bioinspired Robots: An Emerging Taxonomy and Roadmap Towards Hybrid Intelligence
by Jianping Wang, Xin Wang, Shuai Zhou and Gengbiao Chen
Biomimetics 2025, 10(10), 713; https://doi.org/10.3390/biomimetics10100713 - 21 Oct 2025
Viewed by 461
Abstract
Rigid–flexible coupled robots hold significant potential for operating in unstructured environments, but a systematic analysis of their actuation strategies across diverse physical fields is notably lacking in the literature. This review addresses this gap by introducing a novel taxonomy based on field-controlled evolutionary [...] Read more.
Rigid–flexible coupled robots hold significant potential for operating in unstructured environments, but a systematic analysis of their actuation strategies across diverse physical fields is notably lacking in the literature. This review addresses this gap by introducing a novel taxonomy based on field-controlled evolutionary pathways—mechanical → electromagnetic → chemical → biohybrid—and critically examining over 100 seminal studies through a six-dimensional framework encompassing design, dynamics, and performance. We demonstrate that hybrid field integration (e.g., pneumatic-chemical synergy) improves grasping robustness by 40% in cluttered environments compared to single-field systems. Notably, biohybrid actuators, which integrate living cells, exhibit over 90% motion similarity to biological models, while phase-transition materials allow for adaptive stiffness tuning (0.1–5 N·mm−1) in medical applications. Radar chart analysis further reveals fundamental trade-offs between energy efficiency, response speed, and scalability across the various fields. These insights provide a clear roadmap for the development of next-generation robots with embodied intelligence, emphasizing multi-field synergies and bio-inspired adaptability. Full article
(This article belongs to the Special Issue Bioinspired Locomotion Control: From Biomechanics to Robotics)
Show Figures

Figure 1

21 pages, 4328 KB  
Article
Design and Optimization of Lightweight Electromagnetic Valves for High-Altitude Latex Balloons
by Xiaoran Li, Donghui Zhang, Qiguang Yang, Zihao Wang and Chen Chen
Machines 2025, 13(10), 934; https://doi.org/10.3390/machines13100934 - 10 Oct 2025
Viewed by 349
Abstract
To address the altitude control requirements of high-altitude latex balloons, this paper proposes a novel lightweight electromagnetically actuated valve design. The valve employs a permanent magnet–electromagnet–spring composite structure to achieve rapid opening/closing motions through electromagnetic force control, enabling precise regulation of balloon gas [...] Read more.
To address the altitude control requirements of high-altitude latex balloons, this paper proposes a novel lightweight electromagnetically actuated valve design. The valve employs a permanent magnet–electromagnet–spring composite structure to achieve rapid opening/closing motions through electromagnetic force control, enabling precise regulation of balloon gas venting. 3D electromagnetic field simulations were conducted to validate the magnetic flux density distribution, while computational fluid dynamics (CFD) simulations based on the Reynolds-averaged Navier–Stokes equations were employed to evaluate the valve’s aerodynamic characteristics. The CFD results confirmed stable venting performance, with near-linear flow–pressure relationships and localized jet structures that support reliable operation under stratospheric conditions. A multidisciplinary optimization framework was further applied to achieve a lightweight structural design of critical components. Experimental results demonstrate that the optimized valve achieves a total mass of 984.69 g with an actuation force of 15.263 N, maintaining stable performance across a temperature range of −60 °C to 25 °C. This study provides an innovative and systematically validated solution for micro-valve design in lighter-than-air vehicles. Full article
Show Figures

Figure 1

24 pages, 10733 KB  
Article
Sensorless Control of Linear Motion in a Linear-Rotary Reluctance Actuator Integrated into an Electromagnetic Dog Clutch
by Bogdan Miroschnitschenko
Actuators 2025, 14(10), 484; https://doi.org/10.3390/act14100484 - 4 Oct 2025
Viewed by 275
Abstract
A reluctance actuator integrated into the double-sided dog clutch of a gearbox can significantly simplify the gear shifting system. However, its disadvantage is that an axial position sensor is required to shift the neutral gear. The sensor is placed in the aggressive environment [...] Read more.
A reluctance actuator integrated into the double-sided dog clutch of a gearbox can significantly simplify the gear shifting system. However, its disadvantage is that an axial position sensor is required to shift the neutral gear. The sensor is placed in the aggressive environment of a gearbox and reduces the reliability of the entire system. Sensorless methods proposed in the literature deal with electrical machines or actuators with one degree of freedom (linear motion or rotation). In the dog clutch, the shift sleeve rotates and moves along its rotation axis simultaneously, moreover, the coil inductances are highly dependent not only on the axial position but also on the relative angular position between the shift sleeve teeth and the slots of its counterpart. This work proposes an original algorithm of sensorless control, which main novelty is the applicability for systems with two degrees of freedom, such as the considered actuator. The voltage induced in one of the coils and the prediction of the shift sleeve motion, which is based on the electromechanical model of the clutch, are used to control the currents. Not only an axial position sensor but also angular encoders are not required to apply the proposed method. The algorithm was tested both in simulations and experiments under different conditions. The results show that the proposed method allows to shift the neutral gear sensorless at different rotation speeds and different loads on the sleeve, regardless of what gearwheel is initially engaged. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

18 pages, 8209 KB  
Article
A Direct-Drive Rotary Actuator Based on Modular FSPM Topology for Large-Inertia Payload Transfer
by Jianlong Zhu, Zhe Wang, Minghao Tong, Longmiao Chen and Linfang Qian
Energies 2025, 18(19), 5272; https://doi.org/10.3390/en18195272 - 4 Oct 2025
Viewed by 423
Abstract
This paper proposes a novel direct-drive rotary actuator based on a modular five-phase outer-rotor flux-switching permanent magnet (FSPM) machine to overcome the limitations of conventional actuators with gear reducers, such as mechanical complexity and low reliability. The research focused on a synergistic design [...] Read more.
This paper proposes a novel direct-drive rotary actuator based on a modular five-phase outer-rotor flux-switching permanent magnet (FSPM) machine to overcome the limitations of conventional actuators with gear reducers, such as mechanical complexity and low reliability. The research focused on a synergistic design of a lightweight, high-torque-density motor and a precise control strategy. The methodology involved a structured topology evolution to create a modular stator architecture, followed by finite element analysis-based electromagnetic optimization. To achieve precision control, a multi-vector model predictive current control (MPCC) scheme was developed. This optimization process contributed to a significant performance improvement, increasing the average torque to 13.33 Nm, reducing torque ripple from 9.81% to 2.36% and obtaining a maximum position error under 1 mil. The key result was experimentally validated using an 8 kg inertial load, confirming the actuator’s feasibility for industrial deployment. Full article
Show Figures

Figure 1

11 pages, 1542 KB  
Article
Analysis of Stability and Functionality of Coil and Piezoelectric Braille Modules Under Varying Temperature Conditions
by Krzysztof Zbroja, Anna Drabczyk, Oliwier Sobesto, Dominik Wojcieszczak, Mariusz Filipiec, Grzegorz Sapeta, Marcin Ostrowski, Patryk Kasza and Robert P. Socha
Micromachines 2025, 16(10), 1112; https://doi.org/10.3390/mi16101112 - 29 Sep 2025
Viewed by 276
Abstract
In this study, the performance and reliability of two different types of Braille modules, i.e., coil and piezoelectric, under varying temperature conditions were compared. The coil module works on the principle of electromagnetic forces generated by coils, while the piezoelectric module is based [...] Read more.
In this study, the performance and reliability of two different types of Braille modules, i.e., coil and piezoelectric, under varying temperature conditions were compared. The coil module works on the principle of electromagnetic forces generated by coils, while the piezoelectric module is based on the deformation of piezoelectric materials under electric voltage to move needles. The main purpose of this research was to discuss the stability and functionality of both modules within the temperature range from −30 °C to +50 °C. One thousand cycles of operation were conducted for each temperature step in 5 °C increments, focusing on the correctness of needle movement and system reliability. The results demonstrated that the piezoelectric module exhibited stable operation over the entire temperature range, while the coil module showed instabilities, such as self-jamming and overheating, above 20 °C. These problems were probably due to thermal expansion and reduced lubrication efficiency. These results underscore the piezoelectric module’s improved adaptation to high-temperature operation, making it a promising solution for applications requiring reliable operation under varying conditions. Full article
Show Figures

Figure 1

17 pages, 4692 KB  
Article
Design and Evaluation of a Hip-Only Actuated Lower Limb Exoskeleton for Lightweight Gait Assistance
by Ming Li, Hui Li, Yujie Su, Disheng Xie, Raymond Kai Yu Tong and Hongliu Yu
Electronics 2025, 14(19), 3853; https://doi.org/10.3390/electronics14193853 - 29 Sep 2025
Viewed by 603
Abstract
This paper presents the design and evaluation of a lightweight, minimally actuated lower limb exoskeleton that emphasizes hip–knee coordination for natural and efficient gait assistance. The system adopts a hip-only motorized actuation strategy in combination with an electromagnetically controlled knee locking mechanism, ensuring [...] Read more.
This paper presents the design and evaluation of a lightweight, minimally actuated lower limb exoskeleton that emphasizes hip–knee coordination for natural and efficient gait assistance. The system adopts a hip-only motorized actuation strategy in combination with an electromagnetically controlled knee locking mechanism, ensuring rigid stability during stance while providing compliant assistance during swing. To support sit-to-stand transitions, a gas spring–ratchet mechanism is integrated, which remains disengaged in the seated position, delivers assistive torque during rising, and provides cushioning during the descent to enhance safety and comfort. The control framework fuses foot pressure and thigh-mounted IMU signals for finite state machine (FSM)-based gait phase detection and employs a fuzzy PID controller to achieve adaptive hip torque regulation with coordinated hip–knee control. Preliminary human-subject experiments demonstrate that the proposed design enhances lower-limb coordination, reduces muscle activation, and improves gait smoothness. By integrating a minimal-actuation architecture, a practical sit-to-stand assist module, and an intelligent control strategy, this exoskeleton strikes an effective balance between mechanical simplicity, functional support, and gait naturalness, offering a promising solution for everyday mobility assistance in elderly or mobility-impaired users. Full article
Show Figures

Figure 1

17 pages, 7150 KB  
Article
Dual Halbach Array Compact Linear Actuator with Thrust Characteristics Part I Simulation Result
by Jumpei Kuroda, Ryutaro Ono, Takumu Takayama, Shinobu Kasamatsu, Ikkei Kobayashi, Daigo Uchino, Kazuki Ogawa, Taro Kato, Keigo Ikeda, Ayato Endo, Hideaki Kato and Takayoshi Narita
Actuators 2025, 14(10), 476; https://doi.org/10.3390/act14100476 - 28 Sep 2025
Viewed by 343
Abstract
The application of mechanical products in many situations involves linear motion. The cylinder head of an internal combustion engine (ICE), a mechanical product, contains intake and exhaust valves. These valves open or close using the linear motion converted by the camshafts rotated by [...] Read more.
The application of mechanical products in many situations involves linear motion. The cylinder head of an internal combustion engine (ICE), a mechanical product, contains intake and exhaust valves. These valves open or close using the linear motion converted by the camshafts rotated by the engine. A typical engine is operated with a single cam profile; depending on the engine rotation, there are areas where the cam profiles do not match, resulting in a poor engine performance. An intake and exhaust system with an actuator can solve this problem. In a previous study on this system, the geometry and processing during manufacturing were complex. Therefore, in response, a linear actuator operated by Lorentz force with a coil as the mover was designed in this study. Through an electromagnetic field analysis using the finite element method, a three-phase alternating current was applied to the coil, assuming that it would be used as a power source for a general inverter. Consequently, the thrust obtained in the valve-actuation direction was 56.7 N, indicating improved axial thrust over the conventional model. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

22 pages, 3275 KB  
Review
Permanent Magnet Synchronous Motor Drive System for Agricultural Equipment: A Review
by Chao Zhang, Xiongwei Xia, Hong Zheng and Hongping Jia
Agriculture 2025, 15(19), 2007; https://doi.org/10.3390/agriculture15192007 - 25 Sep 2025
Viewed by 455
Abstract
The electrification of agricultural equipment is a critical pathway to address the dual challenges of increasing global food production and ensuring sustainable agricultural development. As the core power unit, the permanent magnet synchronous motor (PMSM) drive system faces severe challenges in achieving high [...] Read more.
The electrification of agricultural equipment is a critical pathway to address the dual challenges of increasing global food production and ensuring sustainable agricultural development. As the core power unit, the permanent magnet synchronous motor (PMSM) drive system faces severe challenges in achieving high performance, robustness, and reliable control in complex farmland environments characterized by sudden load changes, extreme operating conditions, and strong interference. This paper provides a comprehensive review of key technological advancements in PMSM drive systems for agricultural electrification. First, it analyzes solutions to enhance the reliability of power converters, including high-frequency silicon carbide (SiC)/gallium nitride (GaN) power device packaging, thermal management, and electromagnetic compatibility (EMC) design. Second, it systematically elaborates on high-performance motor control algorithms such as Direct Torque Control (DTC) and Model Predictive Control (MPC) for improving dynamic response; robust control strategies like Sliding Mode Control (SMC) and Active Disturbance Rejection Control (ADRC) for enhancing resilience; and the latest progress in fault-tolerant control architectures incorporating sensorless technology. Furthermore, the paper identifies core challenges in large-scale applications, including environmental adaptability, real-time multi-machine coordination, and high reliability requirements. Innovatively, this review proposes a closed-loop intelligent control paradigm encompassing environmental disturbance prediction, control parameter self-tuning, and actuator dynamic response. This paradigm provides theoretical support for enhancing the autonomous adaptability and operational quality of agricultural machinery in unstructured environments. Finally, future trends involving deep AI integration, collaborative hardware innovation, and agricultural ecosystem construction are outlined. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

30 pages, 10255 KB  
Article
Hybrid Design Optimization Methodology for Electromechanical Linear Actuators in Automotive LED Headlights
by Mario Đurić, Luka Selak and Drago Bračun
Actuators 2025, 14(10), 465; https://doi.org/10.3390/act14100465 - 24 Sep 2025
Viewed by 527
Abstract
The development of electromechanical linear actuators (EMLAs) aims at compactness, energy efficiency, and high reliability. Conventional design methods often rely on costly prototypes and individual considerations of mechanics, electromagnetics, and control dynamics. This leads to long development cycles, inadequate treatment of nonlinear effects, [...] Read more.
The development of electromechanical linear actuators (EMLAs) aims at compactness, energy efficiency, and high reliability. Conventional design methods often rely on costly prototypes and individual considerations of mechanics, electromagnetics, and control dynamics. This leads to long development cycles, inadequate treatment of nonlinear effects, and suboptimal performance. To address these challenges, our paper introduces a novel hybrid design methodology, integrating Analytical Modeling, Finite Element Analysis (FEA), Genetic Algorithms (GAs), and targeted experiments. Analytical Modeling provides rapid sizing, FEA combined with a GA refines geometry, and targeted experiments quantify nonlinear effects (friction, wear, thermal variability, and dynamic resonances). Unlike conventional methods, the integration is performed within iterative loops, using empirical data to refine simulation assumptions. As a result, development time is reduced by 30% and nonlinear effects are precisely addressed. The method is demonstrated on an automotive-grade EMLA. Its design is based on a claw-pole Permanent Magnet Stepper Motor, a trapezoidal lead screw, and an open-loop control with Hall effect end-position detection. After applying the method, the EMLA delivers more than 40 N of push force and achieves 600,000 actuations under the required conditions, making it suitable for various applications. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

14 pages, 3445 KB  
Article
Hybrid Actuation MEMS Micromirror with Decoupled Piezoelectric Fast Axis and Electromagnetic Slow Axis for Crosstalk Suppression
by Haoxiang Li, Jiapeng Hou, Zheng Gong, Huijun Yu, Yue Liu and Wenjiang Shen
Micromachines 2025, 16(9), 1072; https://doi.org/10.3390/mi16091072 - 22 Sep 2025
Viewed by 1000
Abstract
Electromagnetic micro-electro-mechanical system (MEMS) micromirrors are widely used in optical scanning systems but often encounter mechanical crosstalk due to the use of shared drive coils. This phenomenon leads to parasitic motion along the slow axis during fast-axis operation, resulting in undesirable elliptical scanning [...] Read more.
Electromagnetic micro-electro-mechanical system (MEMS) micromirrors are widely used in optical scanning systems but often encounter mechanical crosstalk due to the use of shared drive coils. This phenomenon leads to parasitic motion along the slow axis during fast-axis operation, resulting in undesirable elliptical scanning patterns that degrade image quality. To tackle this issue, a hybrid actuation scheme is proposed in which a piezoelectric actuator drives the fast axis through an S-shaped spring structure, achieving a resonance frequency of 792 Hz, while the slow axis is independently driven by an electromagnetic actuator operating in quasi-static mode. Finite element simulations and experimental measurements validate that the proposed decoupled design significantly suppresses mechanical crosstalk. When the fast axis is driven to a 40° optical scan angle, the hybrid system reduces the parasitic slow-axis deflection (typically around 1.43°) to a negligible level, thereby producing a clean single-line scan. The piezoelectric fast axis exhibits a quality factor of Q = 110, while the electromagnetic slow axis achieves a linear 20° deflection at 20 Hz. This hybrid design facilitates a distortion-free field of view measuring 40° × 20° with uniform line spacing, presenting a straightforward and effective solution for high-precision scanning applications such as LiDAR (Light Detection and Ranging) and structured light projection. Full article
Show Figures

Figure 1

23 pages, 11521 KB  
Article
Actuator Selection and Control of an Array of Electromagnetic Soft Actuators
by Hussein Zolfaghari, Nafiseh Ebrahimi, Xaq Pitkow and Mohammadreza Davoodi
Electronics 2025, 14(18), 3682; https://doi.org/10.3390/electronics14183682 - 17 Sep 2025
Viewed by 376
Abstract
Electromagneticsoft actuator arrays (ESAAs) combine compliance with fast, controllable actuation and scalability, providing a promising foundation for the development of interconnected soft actuator arrays inspired by the structure and function of biological muscles. In this work, we present a control framework and an [...] Read more.
Electromagneticsoft actuator arrays (ESAAs) combine compliance with fast, controllable actuation and scalability, providing a promising foundation for the development of interconnected soft actuator arrays inspired by the structure and function of biological muscles. In this work, we present a control framework and an actuator selection strategy for an artificial soft muscle composed of ESAAs to enable accurate reference tracking. Since directly measuring the states of each ESA is often impractical in real-world applications, we first design a Kalman filter-based observer to estimate all system states from available observations. Using these estimates, we develop a Linear Quadratic Gaussian (LQG) controller to achieve reference tracking. Since thermal buildup from constant use can damage the actuators, we consider whether switching between different subsets of active actuators could offer thermal relief. While actuator switching intuitively suggests reduced heating by providing resting periods, our investigation reveals that this strategy can lead to higher thermal accumulation compared to the continuous mode. This is because we need substantially larger control effort when we have fewer active actuators in the switching mode, which, in the absence of effective active cooling, fail to provide sufficient heat dissipation during operation. Simulation results are presented to demonstrate the effectiveness of the proposed method in achieving the trajectory objective and to explore how switching affects the system’s thermal profile, revealing a trade-off between tracking performance and heat generation. Full article
(This article belongs to the Special Issue Advances in Intelligent Control Systems)
Show Figures

Graphical abstract

18 pages, 4475 KB  
Article
Electromagnetic Continuously Variable Transmission (EMCVT) System for Precision Torque Control in Human-Centered Robotic Applications
by Ishara Madusankha, Prageeth Nimantha Jayaweera, Nipun Shantha Kahatapitiya, Peshan Sampath, Ashan Weeraratne, Kasun Subasinghage, Chamara Liyanage, Akila Wijethunge, Naresh Kumar Ravichandran and Ruchire Eranga Wijesinghe
Appl. Mech. 2025, 6(3), 69; https://doi.org/10.3390/applmech6030069 - 8 Sep 2025
Viewed by 1111
Abstract
In human-centered robotic applications, safety, efficiency, and adaptability are critical for enabling effective interaction and performance. Incorporating electromagnetic continuously variable transmission (EM-CVT) systems into robotic designs enhances both safety and precise, adaptable motion control. The flexible power transmission offered by CVTs allows robots [...] Read more.
In human-centered robotic applications, safety, efficiency, and adaptability are critical for enabling effective interaction and performance. Incorporating electromagnetic continuously variable transmission (EM-CVT) systems into robotic designs enhances both safety and precise, adaptable motion control. The flexible power transmission offered by CVTs allows robots to operate across diverse environments, supporting various tasks, human interaction, and safe collaboration. This study presents a CVT-based mechanical subsystem developed using two cones and an intermediate belt-driven transmission mechanism, providing efficient power and motion transfer. The control subsystem consists of six strategically positioned electromagnets energized by signals from a microcontroller. This electromagnetic actuation enables rapid and precise adjustments to the transmission ratio, enhancing overall system performance. A linear relationship between slip percentage and gear ratio was observed, indicating that the control system achieves stable and efficient operation, with a measured power consumption of 2.95 W per electromagnet. Future work will focus on validating slip performance under dynamic loading conditions, integrating the system into robotic platforms, and optimizing materials and control strategies to enable broader real-world deployment. Full article
Show Figures

Figure 1

11 pages, 2289 KB  
Article
Reconfigurable High-Efficiency Power Dividers Using Waveguide Epsilon-Near-Zero Media for On-Demand Splitting
by Lin Jiang, Qi Hu and Yijun Feng
Photonics 2025, 12(9), 897; https://doi.org/10.3390/photonics12090897 - 6 Sep 2025
Viewed by 756
Abstract
Although epsilon-near-zero (ENZ) media have emerged as a promising platform for power dividers, the majority of existing designs are confined to fixed power splitting. In this work, two dynamically tunable power dividers using waveguide ENZ media are proposed by precisely modulating the internal [...] Read more.
Although epsilon-near-zero (ENZ) media have emerged as a promising platform for power dividers, the majority of existing designs are confined to fixed power splitting. In this work, two dynamically tunable power dividers using waveguide ENZ media are proposed by precisely modulating the internal magnetic field and the widths of the output waveguides. The first approach features a mechanically reconfigurable ring-shaped ENZ waveguide. By continuously re-distributing the magnetic field within the ENZ tunneling channels utilizing rotatable copper plates, arbitrary power division among multiple output ports is constructed. The second design integrates a rectangular-loop ENZ cavity into a substrate-integrated waveguide, with four positive–intrinsic–negative diodes embedded to dynamically activate specific output ports. This configuration steers electromagnetic energy toward output ports with varying cross-sectional areas, enabling on-demand control over both the power division and the number of output ports. Both analytical and full-wave simulation results confirm dynamic power division, with transmission efficiencies exceeding 93%. Despite differences in structure and actuation mechanisms, both designs exhibit flexible field control, high reconfigurability, and excellent transmission performance, highlighting their potential in advanced applications such as real-time wireless communications, multi-input–multi-output systems, and reconfigurable antennas. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
Show Figures

Figure 1

Back to TopTop