Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (226)

Search Parameters:
Keywords = electrolytic dissolution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5921 KB  
Article
Crystal Growth and Dissolution of Hydroxyapatite: The Role of Ascorbic Acid
by Ioannis Kalantzis, Panagiota D. Natsi and Petros G. Koutsoukos
Crystals 2025, 15(9), 790; https://doi.org/10.3390/cryst15090790 - 4 Sep 2025
Abstract
Ascorbic Acid (AA), an important biomolecule present in relatively high concentrations in blood and other biological fluids, has been rarely investigated with reference to its effect on the biological mineralization–demineralization processes. To our knowledge, the present work is one of an extremely limited [...] Read more.
Ascorbic Acid (AA), an important biomolecule present in relatively high concentrations in blood and other biological fluids, has been rarely investigated with reference to its effect on the biological mineralization–demineralization processes. To our knowledge, the present work is one of an extremely limited few found in the literature in which the effect of the presence of AA in mineralizing or demineralizing electrolyte solutions is addressed in a quantitative way. We have used the constant saturation method for the accurate measurement of the rates of crystal growth of hydroxyapatite (HAP, Ca5(PO4)3OH), the model compound of the inorganic component of the hard tissues of higher mammals. It was found that both crystal growth and dissolution were accelerated significantly. The increase in crystal growth rates showed stronger dependence on the solution supersaturation (120% increase for the highest and 460% for the lowest) in the presence of 0.1 mM of AA, pH 7.40, 37 °C, 0.15 M NaCl. The dissolution rate increase was less dependent (average of ca. 300% increase). It was concluded from the detailed characterization of the solid that the acceleration effect was due to the uptake of AA on the HAP surface. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

27 pages, 2254 KB  
Review
Electrochemical Deposition of Silicon: A Critical Review of Electrolyte Systems for Industrial Implementation
by Gevorg Abramkin, Srecko Stopic, Andrey Yasinskiy, Alexander Birich and Bernd Friedrich
Materials 2025, 18(17), 4009; https://doi.org/10.3390/ma18174009 - 27 Aug 2025
Viewed by 300
Abstract
Electrochemical deposition of silicon is considered a promising alternative to conventional high-temperature and high-emission methods of silicon production. This review analyzes the current state of research on electrolyte systems used for silicon electrodeposition, with a particular focus on their potential for industrial-scale application. [...] Read more.
Electrochemical deposition of silicon is considered a promising alternative to conventional high-temperature and high-emission methods of silicon production. This review analyzes the current state of research on electrolyte systems used for silicon electrodeposition, with a particular focus on their potential for industrial-scale application. These systems are evaluated based on key characteristics relevant to such implementation, including silicon precursor solubility, electrical conductivity, applicable current density, and behavior under process conditions. The study evaluates fluoride-based, chloride-based, mixed halide, and organic electrolyte systems based on key criteria, including conductivity, chemical stability, silicon precursor solubility, temperature range, and ease of product purification. Fluoride-based melts offer high current densities (up to 2 A/cm2) and effective SiO2 dissolution but operate at high temperatures (550–1300 °C) and suffer from hygroscopicity. Chloride systems exhibit lower operating temperatures (300–1000 °C) and better water solubility but lack compatibility with common silicon sources. Mixed fluoride–chloride electrolytes emerge as the most promising option, combining high performance with improved practicality; they operate at 600–850 °C and current densities up to ~1.5 A/cm2. Additional focus is placed on the impact of substrate materials and on unresolved questions related to reaction reversibility, kinetic mechanisms, and the influence of electrolyte composition. The review concludes that further fundamental studies are needed to optimize electrolyte design and enable the transition from laboratory-scale research to industrial implementation. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

14 pages, 2358 KB  
Article
Polishing of AISI 304 SS by Electrolytic Plasma in Aqueous Urea Solution: Effect on Surface Modification and Corrosion Resistance
by Hugo Pérez-Durán, Francisco Martínez-Baltodano and Gregorio Vargas-Gutiérrez
Materials 2025, 18(16), 3786; https://doi.org/10.3390/ma18163786 - 12 Aug 2025
Viewed by 392
Abstract
Plasma Electrolytic Polishing (PEP) is an advanced anodic process that enhances stainless steel surfaces through controlled electrochemical dissolution and plasma-mediated modification. This study demonstrates that PEP treatment of AISI 304 SS at 300 V in aqueous urea solution (3.0 wt.%)/NH4NO3 [...] Read more.
Plasma Electrolytic Polishing (PEP) is an advanced anodic process that enhances stainless steel surfaces through controlled electrochemical dissolution and plasma-mediated modification. This study demonstrates that PEP treatment of AISI 304 SS at 300 V in aqueous urea solution (3.0 wt.%)/NH4NO3 (0.25 wt.%) achieves remarkable improvements: surface roughness decreases by 54.6% (from 0.197 ± 0.023 μm to 0.0895 ± 0.0205 μm) with minimal mass loss (0.0035 g·cm−2) in just 20 min. Tafel analysis showed a 99% reduction in corrosion rate (0.00497 mm yr−1) compared to untreated AISI 304 SS (0.094 mm yr−1). Cyclic Potentiodynamic Polarization (CPDP) measurements indicated superior pitting resistance (Epit = +0.423 vs. +0.486 V for PEP processing). XPS analysis elucidates the underlying mechanisms, showing a 91% increase in the Cr/Fe ratio (0.44 to 0.84) and complete transformation of surface oxides to protective Cr2O3 (57.34 wt.%) and Fe3O4 (55.88 wt.%), which collectively explain the enhanced corrosion resistance. Full article
(This article belongs to the Special Issue Advances in Plasma Treatment of Materials)
Show Figures

Figure 1

43 pages, 6412 KB  
Review
Thermal Stability of Lithium-Ion Batteries: A Review of Materials and Strategies
by Aimei Yu, Jinjie Feng and Jun Pang
Energies 2025, 18(16), 4240; https://doi.org/10.3390/en18164240 - 9 Aug 2025
Viewed by 555
Abstract
Rising incidents of critical lithium-ion battery (LIB) accidents highlight the pressing demand for safety enhancements that do not degrade the electrochemical performance parameters. This article provides a comprehensive overview of thermal failure mechanisms and thermal stability strategies, including their cathode, anode, separator, and [...] Read more.
Rising incidents of critical lithium-ion battery (LIB) accidents highlight the pressing demand for safety enhancements that do not degrade the electrochemical performance parameters. This article provides a comprehensive overview of thermal failure mechanisms and thermal stability strategies, including their cathode, anode, separator, and electrolyte. The analysis covers the current thermal failure mechanisms of each component, including structural changes and boundary reactions, such as Mn dissolution in the cathode, solid–electrolyte interface decomposition in the anode, the melting–shrinkage–perforation of the separator, as well as decomposition–combustion–gas generation in the electrolyte. Furthermore, the article reviews thermal stability improvement methods for each component, including element doping and surface coating of the electrode, high-temperature resistance, flame retardancy, and porosity strategies of the separator, flame retardant, non-flammable solvent, and solid electrolyte strategies of the electrolyte. The findings highlight that incorporating diverse elements into the crystal lattice enhances the thermal stability and extends the service life of electrode materials, while applying surface coatings effectively suppresses the boundary reactions and structural degradation responsible for thermal failure. Furthermore, by using solid electrolytes such as polymer electrolytes, and combining innovative ceramic-polymer composite separators, it is possible to effectively reduce the flammability of these components and enhance their thermal stability. As a result, the overall thermal safety of LIBs is improved. These strategies collectively contribute to the overall thermal safety performance of LIBs. Full article
Show Figures

Figure 1

13 pages, 5204 KB  
Article
Spontaneous Formation of a Zincphilic Ag Interphase for Dendrite-Free and Corrosion-Resistant Zinc Metal Anodes
by Neng Yu, Qingpu Zeng, Yiming Fu, Hanbin Li, Jiating Li, Rui Wang, Longlong Meng, Hao Wu, Zhuyao Li, Kai Guo and Lei Wang
Batteries 2025, 11(8), 284; https://doi.org/10.3390/batteries11080284 - 24 Jul 2025
Viewed by 582
Abstract
The remarkable advantages of zinc anodes render aqueous zinc-ion batteries (ZIBs) a highly promising energy storage solution. Nevertheless, the uncontrolled growth of zinc dendrites and side reactions pose significant obstacles to the practical application of ZIBs. To address these issues, a straightforward strategy [...] Read more.
The remarkable advantages of zinc anodes render aqueous zinc-ion batteries (ZIBs) a highly promising energy storage solution. Nevertheless, the uncontrolled growth of zinc dendrites and side reactions pose significant obstacles to the practical application of ZIBs. To address these issues, a straightforward strategy has been proposed, involving the addition of a minute quantity of AgNO3 to the electrolyte to stabilize zinc anodes. This additive spontaneously forms a hierarchically porous Ag interphase on the zinc anodes, which is characterized by its zinc-affinitive nature. The interphase offers abundant zinc nucleation sites and accommodation space, leading to uniform zinc plating/stripping and enhanced kinetics of zinc deposition/dissolution. Moreover, the chemically inert Ag interphase effectively curtails side reactions by isolating water molecules. Consequently, the incorporation of AgNO3 enables zinc anodes to undergo cycling for extended periods, such as over 4000 h at a current density of 0.5 mA/cm2 with a capacity of 0.5 mAh/cm2, and for 450 h at 2 mA/cm2 with a capacity of 2 mAh/cm2. Full zinc-ion cells equipped with this additive not only demonstrate increased specific capacities but also exhibit significantly improved cycle stability. This research presents a cost-effective and practical approach for the development of reliable zinc anodes for ZIBs. Full article
(This article belongs to the Special Issue Flexible and Wearable Energy Storage Devices)
Show Figures

Graphical abstract

15 pages, 2354 KB  
Article
Comprehensive Experimental Analysis of Electrochemical Jet Machining (ECJM) for Advanced Material Processing
by Shailesh Shirguppikar, Aleksandar Ašonja, Eleonora Desnica, Vaibhav Ganachari, Pankaj B. Gavali, Lakshmanan Selvarajan and Blaža Stojanović
J. Manuf. Mater. Process. 2025, 9(7), 240; https://doi.org/10.3390/jmmp9070240 - 16 Jul 2025
Viewed by 692
Abstract
This study examines the capabilities and optimisation of electrochemical jet machining (ECJM), a component of the electrochemical machining (ECM) production chain. A localised electrolyte jet helps remove material from selective areas; it is a suitable process for contoured parts and hard-to-machine material without [...] Read more.
This study examines the capabilities and optimisation of electrochemical jet machining (ECJM), a component of the electrochemical machining (ECM) production chain. A localised electrolyte jet helps remove material from selective areas; it is a suitable process for contoured parts and hard-to-machine material without inflicting thermal or mechanical stresses. In this regard, the study incorporates details of an experimental layout and variation in parameters in terms of voltage, electrolyte concentration, and jet velocity. The most striking findings indicate that the material removal rate and surface quality are susceptible to parameters such as applied voltage and stand-off distance, and electrolyte concentration and jet velocity (via electrolyte supply rate) fixed. Higher voltages and fixed electrolyte concentrations give higher removal rates, though this might impair the surface finish, thereby requiring a trade-off at best. These results provide insights into optimising process parameters for enhanced precision and efficiency in ECJM. Future research could focus on advanced electrolytes and improving scalability for industrial applications. Full article
Show Figures

Figure 1

17 pages, 2610 KB  
Article
Activity and Operational Loss of IrO2-Ta2O5/Ti Anodes During Oxygen Evolution in Acidic Solutions
by Jovana Bošnjaković, Maja Stevanović, Marija Mihailović, Vojin M. Tadić, Jasmina Stevanović, Vladimir Panić and Gavrilo Šekularac
Metals 2025, 15(7), 721; https://doi.org/10.3390/met15070721 - 27 Jun 2025
Viewed by 444
Abstract
The oxygen-evolving IrO2-Ta2O5/Ti anode (OEA), primarily used in electrolyzers for plating, metal powder production, electrowinning (EW), and water electrolysis, is analyzed. This study focuses on the distribution of oxygen evolution reaction (OER) activity and the associated operational [...] Read more.
The oxygen-evolving IrO2-Ta2O5/Ti anode (OEA), primarily used in electrolyzers for plating, metal powder production, electrowinning (EW), and water electrolysis, is analyzed. This study focuses on the distribution of oxygen evolution reaction (OER) activity and the associated operational loss over the randomized OEA texture. The OER activity and its distribution across the IrO2-Ta2O5 coating surface are key factors that influence EW operational challenges and the lifecycle of OEA in EW processes. To understand the OER activity distribution over the coating’s randomized texture, we performed analyses using anode polarization in acid solution at both low and high (EW operation relevant) overpotentials and electrochemical impedance spectroscopy (EIS) during the OER. These measurements were conducted on anodes in both their as-prepared and deactivated states. The as-prepared anode was deactivated using an accelerated stability test in an acid solution, the EW simulating electrolyte. The obtained data are correlated with fundamental electrochemical properties of OEA, such as structure-related pseudocapacitive responses at open circuit potential in the same operating environment. OER and Ir dissolution kinetics, along with the physicochemical anode state upon deactivation, are clearly characterized based on current and potential dependent charge transfer resistances and associated double layer capacitances obtained by EIS. This approach presents a useful tool for elucidating, and consequently tailoring and predicting, anode OER activity and electrolytic operational stability in industrial electrochemical applications. Full article
Show Figures

Figure 1

15 pages, 580 KB  
Article
Impact of Log-Normal Particle Size Distribution in Holby–Morgan Degradation Model on Aging of Pt/C Catalyst in PEMFC
by Victor A. Kovtunenko
Technologies 2025, 13(7), 262; https://doi.org/10.3390/technologies13070262 - 20 Jun 2025
Viewed by 830
Abstract
The Holby–Morgan model of electrochemical degradation in platinum on a carbon catalyst is studied with respect to the impact of particle size distribution on aging in polymer electrolyte membrane fuel cells. The European Union harmonized protocol for testing by non-symmetric square-wave voltage is [...] Read more.
The Holby–Morgan model of electrochemical degradation in platinum on a carbon catalyst is studied with respect to the impact of particle size distribution on aging in polymer electrolyte membrane fuel cells. The European Union harmonized protocol for testing by non-symmetric square-wave voltage is applied for accelerated stress cycling. The log-normal distribution is estimated using finite size groups which are defined by two parameters of the median and standard deviation. In the non-diffusive model, the first integral of the system is obtained which reduces the number of differential equations. Without ion diffusion, it allows to simulate platinum particles shrank through platinum dissolution and growth by platinum ion deposition. Numerical tests of catalyst degradation in the diffusion model demonstrate the following changes in platinum particle size distribution: broadening for small and shrinking for large medians with tailing towards large particles; the possibility of probability decrease as well as increase for each size group; and overall, a drop in the platinum particle size takes place, which is faster for the small median owing to the Gibbs–Thompson effect. Full article
(This article belongs to the Section Environmental Technology)
Show Figures

Figure 1

18 pages, 14476 KB  
Article
Modulating Reaction Kinetics Using an Electrolytic Method to Achieve Efficient Vehicle Identification Number Reappearance
by Jintao Wang, Xiaoshun Zhang, Mengfan Chen, Xihao Zhang, Zhongliang Zhang and Jianguo Liu
Micromachines 2025, 16(5), 578; https://doi.org/10.3390/mi16050578 - 15 May 2025
Viewed by 525
Abstract
Vehicle identification number (VIN) reappearance technology is an important means of vehicle traceability in various criminal cases. However, with the advancement of metallurgical techniques, the corrosion resistance of metal becomes stronger, and the traditional chemical etching reappearance method gradually fails. In order to [...] Read more.
Vehicle identification number (VIN) reappearance technology is an important means of vehicle traceability in various criminal cases. However, with the advancement of metallurgical techniques, the corrosion resistance of metal becomes stronger, and the traditional chemical etching reappearance method gradually fails. In order to break through the dilemma of traditional methods, this study establishes an electrochemical corrosion system by introducing the corrosion inhibitor hexamethylenetetramine (HMTA) to precisely regulate the electrochemical dissolution kinetics. Material characterization and electrochemical measurements demonstrated that the selective adsorption of HMTA significantly enhances the potential difference between plastically deformed regions and the normal metal substrate (ΔEmax = 6 mV). By effectively suppressing the corrosion rate in non-target areas, HMTA promotes selective anodic oxidation reactions in the vehicle identification number character regions due to their distinct microstructural characteristics, thereby substantially improving the contrast of the reappeared VIN markings. Density functional theory calculations and molecular dynamics simulations further reveal the formation of a dense adsorption layer, which is a key factor in improving the reproducibility of the results. The experimental results demonstrate that under conditions of 6 V applied voltage, with 0.5 M hydrochloric acid and 0.02–0.03 M HMTA in the electrolyte, efficient VIN reappearance could be achieved within 3–4 min on filed-down surfaces. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

17 pages, 5491 KB  
Article
Electrode Design Based on Porous MnO2/PPy Hybrid Nanocomposite and Its Application in Zinc-Ion Batteries
by Shilin Li, Taoyun Zhou, Muzhou Liu, Qiaomei Zhao, Yi Liu, Yun Cheng and Xinyu Li
Micromachines 2025, 16(5), 536; https://doi.org/10.3390/mi16050536 - 29 Apr 2025
Cited by 1 | Viewed by 561
Abstract
The development of safe, cost-effective, and environmentally friendly energy storage systems has spurred growing interest in aqueous ZIBs. However, the poor cycling stability of cathode materials—mainly due to manganese dissolution and structural degradation—remains a major bottleneck. In this work, a porous MnO2 [...] Read more.
The development of safe, cost-effective, and environmentally friendly energy storage systems has spurred growing interest in aqueous ZIBs. However, the poor cycling stability of cathode materials—mainly due to manganese dissolution and structural degradation—remains a major bottleneck. In this work, a porous MnO2/PPy hybrid nanocomposite is successfully synthesized via an in situ co-precipitation strategy. The conductive PPy buffer layer not only alleviates Mn dissolution and buffers volume expansion during cycling but also enhances ion/electron transport and facilitates electrolyte infiltration due to its high surface area. Electrochemical evaluation reveals that the MnO2/PPy electrode delivers excellent cycling stability, retaining 75% of its initial capacity after 1000 cycles at a current density of 1 A·g−1. Comparative performance analysis shows that MnO2/PPy exhibits superior capacity retention and rate capability, especially under high current densities and prolonged cycling. These results underscore the effectiveness of the PPy interfacial layer in improving structural integrity and electrochemical performance, offering a promising route for designing high-performance cathode materials for aqueous ZIBs. Full article
Show Figures

Figure 1

21 pages, 10702 KB  
Review
Recent Progress in Cathode-Free Zinc Electrolytic MnO2 Batteries: Electrolytes and Electrodes
by Shiwei Liu, Zhongqi Liang, Hang Zhou, Weizheng Cai, Jiazhen Wu, Qianhui Zhang, Guoshen Yang, Walid A. Daoud, Zanxiang Nie, Pritesh Hiralal, Shiqiang Luo and Gehan A. J. Amaratunga
Batteries 2025, 11(5), 171; https://doi.org/10.3390/batteries11050171 - 23 Apr 2025
Viewed by 1453
Abstract
Zinc–manganese dioxide (Zn–MnO2) batteries, pivotal in primary energy storage, face challenges in rechargeability due to cathode dissolution and anode corrosion. This review summarizes cathode-free designs using pH-optimized electrolytes and modified electrodes/current collectors. For electrolytes, while acidic systems with additives (PVP, HAc) [...] Read more.
Zinc–manganese dioxide (Zn–MnO2) batteries, pivotal in primary energy storage, face challenges in rechargeability due to cathode dissolution and anode corrosion. This review summarizes cathode-free designs using pH-optimized electrolytes and modified electrodes/current collectors. For electrolytes, while acidic systems with additives (PVP, HAc) enhance ion transport, dual-electrolyte configurations (ion-selective membranes/hydrogels) reduce Zn corrosion. Near-neutral strategies utilize nanomicelles/complexing agents to regulate MnO2 deposition. Moreover, mediators (I, Br, Cr3+) reactivate MnO2 but require shuttle-effect control. For the electrodes/current collectors, electrode innovations including SEI/CEI layers and surfactant-driven phase tuning are introduced. Electrode-free designs and integrated “supercapattery” systems combining supercapacitors with Zn–MnO2/I2 chemistries are also discussed. This review highlights electrolyte–electrode synergy and hybrid device potential, paving the way for sustainable, high-performance Zn–MnO2 systems. Full article
Show Figures

Graphical abstract

16 pages, 4171 KB  
Article
The Impact of Recovered Lignin on Solid-State PEO-Based Electrolyte Produced via Electrospinning: Manufacturing and Characterisation
by Laura Coviello, Giorgia Montalbano, Alessandro Piovano, Nagore Izaguirre, Chiara Vitale-Brovarone, Claudio Gerbaldi and Sonia Fiorilli
Polymers 2025, 17(7), 982; https://doi.org/10.3390/polym17070982 - 4 Apr 2025
Cited by 1 | Viewed by 1229
Abstract
Lithium batteries have gained significant attention due to their high energy density, specific capacity, operating voltage, slow self-discharge rate, good cycle stability, and rapid charging capabilities. However, the use of liquid electrolytes presents several safety hazards. Solid-state polymer electrolytes (SPEs) offer a promising [...] Read more.
Lithium batteries have gained significant attention due to their high energy density, specific capacity, operating voltage, slow self-discharge rate, good cycle stability, and rapid charging capabilities. However, the use of liquid electrolytes presents several safety hazards. Solid-state polymer electrolytes (SPEs) offer a promising alternative to mitigate these issues. This study focuses on the preparation of an ionically conductive electrospun membrane and its potential application as an SPE. To support a circular approach and reduce the environmental impact, the target polymeric formulation combines poly(ethylene oxide) (PEO) and lignin, sourced from paper industry waste. The formulation is optimised to ensure the dissolution of lithium salts and enhance the membrane integrity. The addition of lignin is crucial to contrast the dendrites’ growth and prevent the consequent battery breakdown. The electrospinning process is adjusted to obtain stable, homogeneous nanofibrous membranes, which are characterised using electron scanning microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The membranes’ potential as an SPE is assessed by measuring their ionic conductivity (>10−5 S cm−1 above 50 °C) and anodic stability (≈4.6 V vs. Li/Li+), and by testing their compatibility with lithium metal by reversible cycling in a symmetric Li|Li cell at 55 °C. Full article
Show Figures

Figure 1

35 pages, 4055 KB  
Review
Water-in-Salt Electrolytes: Advances and Chemistry for Sustainable Aqueous Monovalent-Metal-Ion Batteries
by Rashmi Nidhi Mishra, Anil Kumar Madikere Raghunatha Reddy, Marc-Antoni Goulet and Karim Zaghib
Batteries 2025, 11(4), 120; https://doi.org/10.3390/batteries11040120 - 22 Mar 2025
Cited by 1 | Viewed by 4130
Abstract
Electrolytes play a vital role in the performance and safety of electrochemical energy storage devices, such as lithium-ion batteries (LIBs). While traditional LIBs rely on organic electrolytes, these flammable solutions pose safety risks and require expensive, moisture-sensitive manufacturing processes. Aqueous electrolytes offer a [...] Read more.
Electrolytes play a vital role in the performance and safety of electrochemical energy storage devices, such as lithium-ion batteries (LIBs). While traditional LIBs rely on organic electrolytes, these flammable solutions pose safety risks and require expensive, moisture-sensitive manufacturing processes. Aqueous electrolytes offer a safer, more cost-effective alternative, but their narrow electrochemical window, corrosivity to electrodes, and enabling of dendritic growth on metal anodes limit their practical applications. Water-in-salt electrolytes (WiSEs) have emerged as a promising solution to these challenges. By significantly reducing water activity and forming a stable solid–electrolyte interphase (SEI), WiSEs can expand the electrochemical stability window, inhibit material dissolution, and suppress dendritic growth. This unique SEI formation mechanism, which is similar to that observed in organic electrolytes, contributes to the improved performance and stability of WiSE-based batteries. Additionally, the altered solvation structure of WiSEs minimizes the presence of free water molecules, further stabilizing the SEI and reducing water activity. This review comprehensively examines the composition, mechanisms, and characterization of WiSEs and their application in monovalent-metal-ion batteries. Full article
(This article belongs to the Section Aqueous Batteries)
Show Figures

Graphical abstract

30 pages, 5838 KB  
Review
Natural Mineral Materials for Enhanced Performance in Aqueous Zinc-Ion Batteries
by Peilin Chen, Qinwen Zheng, Ke Wang and Yingmo Hu
Minerals 2025, 15(4), 328; https://doi.org/10.3390/min15040328 - 21 Mar 2025
Viewed by 959
Abstract
Aqueous zinc-ion batteries (AZIBs) have emerged as promising candidates for large-scale energy storage due to their inherent safety, cost-effectiveness, and environmental compatibility. However, challenges such as zinc -dendrite growth, hydrogen evolution reactions, and cathode dissolution hinder their practical application. To tackle these issues, [...] Read more.
Aqueous zinc-ion batteries (AZIBs) have emerged as promising candidates for large-scale energy storage due to their inherent safety, cost-effectiveness, and environmental compatibility. However, challenges such as zinc -dendrite growth, hydrogen evolution reactions, and cathode dissolution hinder their practical application. To tackle these issues, a wide range of investigative approaches have been conducted to improve the performance of AZIBs. Recently, much attention has been paid to the application of natural mineral materials in AZIBs, since these low-cost minerals align well with the high sensitivity of battery costs in large-scale energy storage. This review systematically explores the application of natural mineral materials to address these issues across battery components, including protective layers on anodes and cathodes, functional films of separators, additives in electrolytes, etc. A multitude of minerals, such as halloysite, montmorillonite, attapulgite, diatomite, and dickite, are highlighted for their unique structural and physicochemical properties, including hierarchical porosity, ion-selective channels, and surface charge regulation. Finally, prospects for future research are discussed to construct AZIBs with a combination of excellent performance and cost efficiency and to bridge laboratory innovations with commercial viability. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
Show Figures

Figure 1

13 pages, 4099 KB  
Article
Study of Electrochemical Behavior and a Material Removal Mechanism During Electrolytic Plasma Polishing of 316L Stainless Steel
by Gangqiang Ji, Longfei Ma, Sunan Zhang, Juan Zhang and Liyun Wu
Materials 2025, 18(6), 1307; https://doi.org/10.3390/ma18061307 - 16 Mar 2025
Cited by 1 | Viewed by 765
Abstract
Electrolytic plasma polishing technology is widely used in medical devices, aerospace, nuclear industry, marine engineering, and other equipment manufacturing fields, owing to its advantages of shape adaptability, high efficiency, good precision, environmental protection, and non-contact polishing. However, the lack of in-depth research on [...] Read more.
Electrolytic plasma polishing technology is widely used in medical devices, aerospace, nuclear industry, marine engineering, and other equipment manufacturing fields, owing to its advantages of shape adaptability, high efficiency, good precision, environmental protection, and non-contact polishing. However, the lack of in-depth research on the material removal mechanism of the electrolytic plasma polishing process severely restricts the regulation of the process parameters and polishing effect, leading to optimization and improvement by experimental methods. Firstly, the formation mechanism of passivation film was revealed based on an analysis of the surface morphology and chemical composition of stainless steel. Subsequently, the dissolution mechanism of the passivation film was proposed by analyzing the change in the valence state of the main metal elements on the surface. In addition, the surface enclosure leveling mechanism of electrolytic plasma polishing (EPP) for stainless steel was proposed based on a material removal mechanism model combined with experimental test methods. The results show that EPP significantly reduces the surface roughness of stainless steel, with Ra being reduced from 0.445 µm to 0.070 µm. Metal elements on the anode surface undergo electrochemical oxidation reactions with reactive substances generated by the gas layer discharge, resulting in the formation of passivation layers of metal oxides and hydroxides. The passivation layer complexes with solvent molecules in the energetic plasma state of the gas layer with SO42− ions, forming complexes that enter the electrolyte. The dynamic balance between the formation and dissolution of the passivation film is the key to achieving a flat surface. This study provides theoretical guidance and technical support for the EPP of stainless steel. Full article
Show Figures

Figure 1

Back to TopTop