Crystal Growth and Dissolution of Hydroxyapatite: The Role of Ascorbic Acid
Abstract
1. Introduction
2. Materials and Methods
2.1. Solutions
2.2. Preparation of HAP Seed Crystals
2.3. Crystallization of HAP from Supersaturated Solutions
2.3.1. Crystal Growth at Constant Solution Supersaturation
2.3.2. Dissolution of HAP Crystals at Constant Solution Undersaturation
2.3.3. Adsorption Measurements
2.3.4. X-Ray Photoelectron Spectroscopy
2.3.5. Zeta Potential Measurements
3. Results
3.1. Crystal Growth of HAP
Kinetics Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HAP | Hydroxyapatite (Ca5(PO4)3OH |
AA | Ascorbic Acid (C9H12O6) |
XPS | X-Ray Photoelectron Sectroscopy |
TG | Thermo Gravimetric |
DTG | Differential Thermogravinmetric |
SEM | Scanning Electron Microscopy |
References
- D′Alessandro, C.C.; Komninou, M.A.; Badria, A.F.; Korossis, S.; Koutsoukos, P.; Mavrilas, D. Calcification Assessment of Bioprosthetic Heart Valve Tissues Using an Improved In Vitro Model. IEEE Trans. Biomed. Eng. 2020, 67, 2453–2461. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Zhou, Y.; Yim, W.Y.; Wang, S.; Xu, L.; Shi, J.; Qiao, W.; Dong, N. Mechanisms and Drug Therapies of Bioprosthetic Heart Valve Calcification. Front. Pharmacol. 2022, 13, 909801. [Google Scholar] [CrossRef]
- D’Alessandro, C.C.; Dimopoulos, A.; Andriopoulou, S.; Messaris, G.A.; Korossis, S.; Koutsoukos, P.G.; Mavrilas, D. In vitro calcification studies on bioprosthetic and decellularized heart valves under quasi-physiological flow conditions. In Bio-Design and Manufacturing; Springer: Berlin/Heidelberg, Germany, 2021; Volume 4, pp. 10–21. [Google Scholar] [CrossRef]
- Onnis, C.; Virmani, R.; Kawai, K.; Nardi, V.; Lerman, A.; Cademartiri, F.; Scicolone, R.; Boi, A.; Congiu, T.; Faa, G.; et al. Coronary Artery Calcification: Current Concepts and Clinical Implications. Circulation 2024, 149, 251–266. [Google Scholar] [CrossRef] [PubMed]
- Onea, H.-L.; Olinic, M.; Lazar, F.-L.; Homorodean, C.; Ober, M.C.; Spinu, M.; Achim, A.; Tataru, D.A.; Olinic, D.M. A Review Paper on Optical Coherence Tomography Evaluation of Coronary Calcification Pattern: Is It Relevant Today? J. Cardiovasc. Dev. Dis. 2024, 11, 231. [Google Scholar] [CrossRef] [PubMed]
- Apple, D.J.; Werner, L.; Escobar-Gomez, M.; Pandey, S.K. Deposits on the Optical Surfaces of Hydroview Intraocular Lenses. J. Cataract. Refract. Surg. 2000, 26, 796–797. [Google Scholar] [CrossRef] [PubMed]
- Bopp, S.; Özdemir, H.B.; Aktaş, Z.; Khoramnia, R.; Yildirim, T.M.; Schickhardt, S.; Auffarth, G.U.; Özdek, Ş. Clinical Characteristics of Patients with Intraocular Lens Calcification after Pars Plana Vitrectomy. Diagnostics 2023, 13, 1943. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Katsimpris, J.M.; Theoulakis, P.E.; Kouzi-Koliakos, K.; Pavlidou, E.; Petropoulos, I.K.; Koliakos, G.; Vouroutzis, N.; Konstas, A.G. Late Postoperative Opacification of Hydrogel Intraocular Lenses: Analysis of 13 Explanted Lenses. Klin. Monbl. Augenheilkd. 2009, 226, 264–271. [Google Scholar] [CrossRef]
- Koutsoukos, P.G.; Natsi, P.D.; Gartaganis, S.P.; Gartaganis, P.S. Biological Mineralization of Hydrophilic Intraocular Lenses. Crystals 2022, 12, 1418. [Google Scholar] [CrossRef]
- Dalas, E.; Kallitsis, J.K.; Koutsoukos, P.G. Crystallization of Hydroxyaatite on Polymers. Langmuir 1991, 7, 1822–1826. [Google Scholar] [CrossRef]
- Bonucci, E. Biological Calcification; Springer: Berlin/Heidelberg, Germany, 2007; 592p. [Google Scholar]
- Söhnel, O.; Grases, F. Supersaturation of body fluids, plasma and urine, with respect to biological hydroxyapatite. Urol. Res. 2011, 39, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Di Costanzo, L.F. Atomic Details of Biomineralization Proteins Inspiring Protein Design and Reengineering for Functional Biominerals. Chemistry 2022, 4, 827–847. [Google Scholar] [CrossRef]
- Gómez-Morales, J.; Falini, G.; García-Ruiz, J.M. Biological Crystallization. Crystals 2019, 9, 409. [Google Scholar] [CrossRef]
- Tavafoghi, M.; Cerruti, M. The role of amino acids in hydroxyapatite mineralization. J. R. Soc. Interface 2016, 13, 20160462. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nancollas, G.H. The involvement of calcium phosphates in biological mineralization and demineralization processes. Pure Appl. Chern. 1992, 64, 1673–1678. [Google Scholar] [CrossRef]
- Ehrlich, H.; Koutsoukos, P.G.; Demadis, K.D.; Pokrovsky, O.S. Principles of demineralization: Modern strategies for the isolation of organic frameworks Part I. Common definitions and history. Micron 2008, 39, 1062–1091. [Google Scholar] [CrossRef] [PubMed]
- Habraken, W.; Habibovic, P.; Epple, M.; Bohner, M. Calcium phosphates in biomedical applications: Materials for the future? Mater. Today 2016, 19, 69–87. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Calcium Orthophosphates as Bioceramics: State of the Art. J. Funct. Biomater. 2010, 1, 22–107. [Google Scholar] [CrossRef]
- Spanos, N.; Misirlis, D.Y.; Kanellopoulou, D.G.; Koutsoukos, P.G. Seeded growth of hydroxyapatite in simulated body fluid. J. Mater. Sci. 2006, 41, 1805–1812. [Google Scholar] [CrossRef]
- Levine, M.; Conry-Cantilena, C.; Wang, Y.; Welch, R.W.; Washko, P.W.; Dhariwal, K.R.; Park, J.B.; Lazarev, A.; Graumlich, J.F.; King, J.; et al. Vitamin C pharmacokinetics in healthy volunteers: Evidence for a recommended dietary allowance. Proc. Natl. Acad. Sci. USA 1996, 93, 3704–3709. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rose, R.C.; Bode, A.M. Biology of Free Radical Scavengers: An Evaluation of Ascorbate. FASEB J. 1993, 7, 1135–1142. [Google Scholar] [CrossRef]
- Frei, B.; England, L.; Ames, B.N. Ascorbate is an outstanding antioxidant in human blood plasma. Proc. Natl. Acad. Sci. USA 1989, 86, 6377–6381. [Google Scholar] [CrossRef]
- Boskey, A.L.; Stiner, D.; Doty, S.B.; Binderman, I. Requirement of Vitamin C for Cartilage Calcification in a Differentiating Chick Limb-Bud Mesenchymal Cell Culture. Bone 1991, 12, 277–282. [Google Scholar] [CrossRef]
- Ivanov, V.; Ivanova, S.; Niedzwiecki, A.; Rath, M. Vitamin C inhibits the calcification process in human vascular smooth muscle cells. Am. J. Cardiovasc. Dis. 2020, 10, 108–116. [Google Scholar] [PubMed]
- Ciceri, P.; Volpi, E.; Brenna, I.; Arnaboldi, L.; Neri, L.; Brancaccio, D.; Cozzolino, M. Combined effects of ascorbic acid and phosphate on rat VSMC osteoblastic differentiation. Nephrol. Dial. Transpl. 2012, 27, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.P.; Kiran, R.; Pendse, A.K.; Ghosh, R.; Surana, S.S. Ascorbic Acid is an Abettor in Calcium Urolithiasis: An Experimental Study. Scanning Microsc. 1993, 7, 28. [Google Scholar]
- Bahal, P.; Djemal, S. Dental Erosion from an Excess of Vitamin, C. Case Rep. Dent. 2014, 2014, 485387. [Google Scholar] [CrossRef]
- Sousa, S.M.G.; Silva, T.L. Demineralization effect of EDTA, EGTA, CDTA and citric acid on root dentin: A comparative study. Braz. Oral. Res. 2005, 19, 188–192. [Google Scholar] [CrossRef]
- Amin, R.M.; Elfeky, S.A.; Verwanger, T.; Krammer, B. A new biocompatible nanocomposite as a promising constituent of sunscreens. Mater. Sci. Eng. C 2016, 63, 46–51. [Google Scholar] [CrossRef]
- Muñoz, E.M.R. Hydroxyapatite-Based Materials: Synthesis and Characterization, Chapter 4. In Biomedical Engineering–Frontiers and Challenges; Fazel-Rezai, R., Ed.; IntechOpen: Rijeka, Croatia, 2011; pp. 75–98. [Google Scholar]
- Drimtzias, E.G.; Rokidi, S.G.; Gartaganis, S.P.; Koutsoukos, P.G. Experimental investigation on mechanism of hydrophilic acrylic intraocular lens calcification. Am. J. Ophthalmol. 2011, 152, 824–833.e1. [Google Scholar] [CrossRef]
- Kinsey, V.E. Comparative chemistry of aqueous humor in posterior and anterior chambers of rabbit eye. Its physiologic significance. A.M.A. Arch. Opthalmol. 1953, 50, 401–417. [Google Scholar]
- Christoffersen, J.; Christoffersen, M.R.; Kibalczyc, W.; Andersen, F.A. A contribution to the understanding of the formation of calcium phosphates. J. Cryst. Growth 1989, 94, 767–777. [Google Scholar] [CrossRef]
- Ding, H.; Pan, H.; Xu, X.; Tang, R. Towards a Detailed Understanding of Magnesium ions on Hydroxyapatite Crystallization Inhibition. Cryst. Growth Des. 2014, 14, 763–769. [Google Scholar] [CrossRef]
- Bell, L.C.; Mika, H.; Kruger, B.J. Synthetic hydroxyapatite-solubility product and stoichiometry of dissolution. Arch. Oral. Biol. 1978, 23, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Henneman, Z.J.; Nancollas, G.H. Constant composition kinetics study of carbonatedapatite dissolution. J. Cryst. Growth 2003, 249, 614–624. [Google Scholar] [CrossRef]
- Chauhan, N.; Singh, Y. L-histidine controls the hydroxyapatite mineralization with plate-like morphology: Effect of concentration and media. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 120, 111669. [Google Scholar] [CrossRef] [PubMed]
- Takallu, S.; Mirzaei, E.; Azadi, A.; Karimizade, A.; Tavakol, S. Plate-shape carbonated hydroxyapatite/collagen nanocomposite hydrogel via in situ mineralization of hydroxyapatite concurrent with gelation of collagen at pH = 7.4 and 37 °C. J. Biomed. Mater. Res. B Appl. Biomater. 2019, 107, 1920–1929. [Google Scholar] [CrossRef] [PubMed]
- Koutsoukos, P.G.; Nancollas, G.H. The morphology of hydroxyapatite crystals grown in aqueous solutions at 37 °C. J. Cryst. Growth 1981, 55, 369–375. [Google Scholar] [CrossRef]
- Spanos, N.; Koutsoukos, P.G. Model studies on the effect of orthophospho-L-serine on biological mineralization. Langmuir 2001, 17, 866–872. [Google Scholar] [CrossRef]
- Lerdkanchanaporn, S.; Dollimore, D.; Alexander, K.S. A thermogravimetric study of ascorbic acid and its excipients in pharmaceutical formulations. Thermochim. Acta 1996, 284, 115–126. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Lv, G.; Zuo, Y.; Mu, Y. Thermal and crystallization studies of nano-hydroxyapatite reinforced polyamide 66 biocomposites. Polym. Degrad. Stab. 2006, 91, 1202–1207. [Google Scholar] [CrossRef]
- Wang, L.; Nancollas, G.H. Calcium Orthophosphates: Crystallization and Dissolution. Chem. Rev. 2008, 108, 4628–4669. [Google Scholar] [CrossRef]
- Robinson, R.A.; Chia, C.L. The Diffusion Coefficient of Calcium Chloride in Aqueous Solution at 25 °C. J. Am. Chem. Soc. 1952, 74, 2776–2777. [Google Scholar] [CrossRef]
- Nancollas, G.H. In vitro studies of calcium phosphate crystallization. In Biomineralization; Mann, S., Webb, J., Williams, R.J.P., Eds.; VCJ: Cambridge, NY, USA, 1989; p. 166. [Google Scholar]
- Parkhurst, D.L.; Appelo, C.A.J. Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. In Techniques and Methods; U.S. Geological Survey: Reston, VA, USA, 2013; Volume 6, p. 497. Available online: https://pubs.usgs.gov/tm/06/a43 (accessed on 25 February 2015).
- Martel, A.E.; Smith, R.M. Critical Stability Constants Volume 3: Other Organic Ligands; Plenum Press: New York, NY, USA, 1977; p. 264. [Google Scholar]
Total Calcium, Cat/×10−3 M | Relative Supersaturation with Respect to HAP, σHAP | Rate of HAP Crystal Growth RCG/×10−6 mol·min−1·m−2 | |
---|---|---|---|
Absence of AA | In Presence of AA | ||
0.9 | 5.31 | 0.8 | 3.7 |
1.1 | 6.50 | 1.8 | 4.5 |
1.3 | 7.66 | 4.2 | 5.4 |
1.5 | 8.77 | 5.4 | 6.6 |
1.7 | 9.88 | 7.0 | 8.4 |
% | Binding Energy eV | HAP | HAP Equilibrated 0.05 mM AA | HAP Equilibrated 10.0 mM AA |
---|---|---|---|---|
C1S | 287 (Ca5(PO4)3OH) | 5.8 | 8.1 | 9.7 |
Ca2p | 347(Ca5(PO4)3OH) | 21.7 | 21.3 | 20.2 |
O2S | 530.9(Ca5(PO4)3OH) | 55.7 | 54.2 | 54.5 |
P2p | 132.9(Ca5(PO4)3OH) | 16.8 | 16.4 | 15.6 |
Cat/10−3 M | Relative Undersaturation with Respect to HAP, σHAP | Rate of Dissolution, Rdiss /×10−7 | |
---|---|---|---|
In the Absence of AA | In the Presence of AA | ||
0.05 | −0.51 | −9.5 | −30.5 |
0.06 | −0.42 | −6.6 | −24.0 |
0.07 | −0.33 | −5.4 | −18.9 |
0.08 | −0.25 | −4.5 | −10.5 |
0.09 | −0.17 | −2.1 | −8.0 |
Equilibrium | Log K |
---|---|
H+ + AA2− = HAA− | 11.34 |
HAA− + H+ = H2AA | 4.03 |
Ca2+ + HAA− = CaHAA+ | 1.05 |
Ca2+ + AA2− = CaAA | 1.40 |
2Ca2+ + AA2− = Ca2AA2+ | 1.85 |
3Ca2+ + 4L2− = Ca3AA42− | 10.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalantzis, I.; Natsi, P.D.; Koutsoukos, P.G. Crystal Growth and Dissolution of Hydroxyapatite: The Role of Ascorbic Acid. Crystals 2025, 15, 790. https://doi.org/10.3390/cryst15090790
Kalantzis I, Natsi PD, Koutsoukos PG. Crystal Growth and Dissolution of Hydroxyapatite: The Role of Ascorbic Acid. Crystals. 2025; 15(9):790. https://doi.org/10.3390/cryst15090790
Chicago/Turabian StyleKalantzis, Ioannis, Panagiota D. Natsi, and Petros G. Koutsoukos. 2025. "Crystal Growth and Dissolution of Hydroxyapatite: The Role of Ascorbic Acid" Crystals 15, no. 9: 790. https://doi.org/10.3390/cryst15090790
APA StyleKalantzis, I., Natsi, P. D., & Koutsoukos, P. G. (2025). Crystal Growth and Dissolution of Hydroxyapatite: The Role of Ascorbic Acid. Crystals, 15(9), 790. https://doi.org/10.3390/cryst15090790