Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (462)

Search Parameters:
Keywords = electrolyte mixing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 796 KB  
Article
Feeding with a NaCl-Supplemented Alfalfa-Based TMR Improves Nutrient Utilization, Rumen Fermentation, and Antioxidant Enzyme Activity in AOHU Sheep: A Nutritional Simulation of Saline–Alkaline Conditions
by Hunegnaw Abebe, Ruochen Yang, Guicong Wei, Xiaoran Feng and Yan Tu
Fermentation 2025, 11(10), 587; https://doi.org/10.3390/fermentation11100587 (registering DOI) - 12 Oct 2025
Abstract
Saline–alkaline soils are becoming prevalent across the globe, decreasing the availability of forage for animals and threatening sustainable animal production. This study evaluated the effects of a NaCl-supplemented alfalfa-based total mixed ration, simulating saline–alkaline soil conditions, on intake, the utilization of nutrients, antioxidant [...] Read more.
Saline–alkaline soils are becoming prevalent across the globe, decreasing the availability of forage for animals and threatening sustainable animal production. This study evaluated the effects of a NaCl-supplemented alfalfa-based total mixed ration, simulating saline–alkaline soil conditions, on intake, the utilization of nutrients, antioxidant levels, and rumen fermentation. A 60-day feeding trial with 24 AOHU lambs (Australian White × Hu) compared a control diet (0.43% NaCl) with the NaCl-supplemented group (1.71% NaCl). Digestibility trials were conducted in metabolic cages for the collection of total feces and urine. Blood samples were taken at 0, 30, and 60 days for serum analysis, and slaughter samples (liver, kidney, rumen tissue, and rumen fluid) were taken for physiological, biochemical, and histological evaluation. The NaCl alfalfa-based TMR markedly increased liver and kidney weights. The rumen muscle layer thickened in the NaCl group. The ruminal ammonia nitrogen (NH3-N), ruminal microbial crude protein (MCP) synthesis, and glucogenic/branched-chain VFAs increased, indicating enhanced proteolysis, microbial protein synthesis, and energetically efficient fermentation. Serum total protein and albumin also rose over time in the NaCl group, reflecting increased nitrogen retention, while superoxide dismutase and glutathione peroxidase activity rose considerably by day 60, reflecting increased antioxidant defense. Furthermore, nitrogen intake, digestibility, and retention were improved in the NaCl group along with augmented digestible and metabolizable energy (28.47 vs. 13.93 MJ/d and 24.68 vs. 11.58 MJ/d, respectively) and gross energy digestibility (78.13% vs. 67.10%). Although NaCl-based alfalfa TMR cannot fully emulate naturally salt-stressed forages, these results indicate that the NaCl alfalfa-based diets improved rumen fermentation, energy yields, and antioxidant enzyme activity without impairing electrolyte balance. These findings suggest that NaCl-supplemented alfalfa-based TMRs, with a salt content comparable to that of alfalfa hay grown under saline–alkaline conditions, could support environmentally sustainable meat production in salt-stressed regions. Full article
Show Figures

Figure 1

15 pages, 8832 KB  
Article
Preparation of Iron-Based Metallic Powders by the Electroplasma Method
by Nurtoleu Magazov, Almasbek Maulit, German Berezutskiy and Arystanbek Kussainov
Crystals 2025, 15(10), 847; https://doi.org/10.3390/cryst15100847 - 29 Sep 2025
Viewed by 245
Abstract
In this work, the production of iron-containing powders by the electroplasma dispersion method was investigated under various discharge regimes and in electrolytes of different natures (NaCl and Na2CO3). The influence of technological parameters on particle morphology, phase composition, and [...] Read more.
In this work, the production of iron-containing powders by the electroplasma dispersion method was investigated under various discharge regimes and in electrolytes of different natures (NaCl and Na2CO3). The influence of technological parameters on particle morphology, phase composition, and elemental content was analyzed using X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive spectroscopy (SEM/EDS), as well as laser particle size distribution analysis. It was found that the single-stage mode at 350 V in NaCl electrolyte led to the formation of predominantly irregularly shaped and fragmented particles, with a limited amount of spherical powders. The two-stage mode (350 V for 5 s followed by 250 V) in NaCl ensured a more stable formation of spherical particles with sizes of 60–80 μm; however, it was accompanied by intensive surface oxidation. The highest fraction of spherical powders was obtained in a Na2CO3 electrolyte under the two-stage mode, where homogeneous spheres with diameters of 20–75 μm and smooth surfaces were formed. According to EDS analysis, the powders consisted mainly of iron and oxygen, while in the samples synthesized in Na2CO3, the presence of sodium was detected, indicating the formation of mixed Na–Fe–O oxide phases. XRD confirmed the presence of a metallic α-Fe matrix along with oxide phases Fe2O3 and Fe3O4, while granulometric analysis (D50 ≈ 55 μm) revealed a relatively narrow particle size distribution. The obtained results demonstrate that variation in the discharge regime and electrolyte composition enables targeted control over the morphology and phase composition of the powders, making the electroplasma method a promising approach for producing metallic powders with tailored properties. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

17 pages, 3890 KB  
Article
Multiple Functions of Carbon Additives in NASICON-Type Electrodes for Stabilizing the Sodium Storage Performance
by Trajche Tushev, Sonya Harizanova, Maria Shipochka, Radostina Stoyanova and Violeta Koleva
Molecules 2025, 30(17), 3547; https://doi.org/10.3390/molecules30173547 - 29 Aug 2025
Viewed by 704
Abstract
Recently, there has been increased interest in NASICON-type electrodes for sodium-ion batteries due to their unique combination of intercalation properties, low cost, and safety. However, their commercialization is hindered by the low electrical conductivity. One strategy to overcome this issue is to integrate [...] Read more.
Recently, there has been increased interest in NASICON-type electrodes for sodium-ion batteries due to their unique combination of intercalation properties, low cost, and safety. However, their commercialization is hindered by the low electrical conductivity. One strategy to overcome this issue is to integrate NASICON materials with carbon additives. This study shows that carbon additives improve the sodium storage performance of a NASICON-type electrode in various ways, depending on the additives’ functional groups, texture, and conductivity properties. The proof-of-concept is based on a multi-electron phospho-sulphate electrode, NaFeVPO4(SO4)2 (NFVPS) mixed with carbon black (C) and reduced graphene oxide (rGO). Carbon-coated samples are obtained via a simple ball milling procedure followed by thermal treatment in an argon flow. Sodium storage in the composites occurs through capacitive and Faradaic reactions. The Faradaic reaction is facilitated at the carbon black composite, while the capacitive reaction dominates for the rGO composite. NFVPS operates through two-electron reactions at 20 °C, while the increased temperatures favor the three-electron reaction. The rGO composite outperforms the carbon black composite in terms of cycling stability and rate capability at 20 and 40 °C. The role of the rGO and carbon black in electrochemical performance is discussed based on the different reactivity of hydroxyl/epoxide and carbonyl functional groups with the electrolyte salt, NaPF6, and the solvent, polypropylene carbonate. Full article
(This article belongs to the Special Issue Carbon-Based Electrochemical Materials for Energy Storage)
Show Figures

Graphical abstract

13 pages, 2827 KB  
Article
Can Dicyanamide Ionic Liquids Boost Water Electrolysis?
by Juliane A. B. Tutsch, Jadranka Milikić, Diogo M. F. Santos, César A. C. Sequeira, Milan Vraneš, Slobodan Gadžurić and Biljana Šljukić
Processes 2025, 13(9), 2765; https://doi.org/10.3390/pr13092765 - 29 Aug 2025
Viewed by 654
Abstract
Room-temperature ionic liquids (RTILs) have attracted attention in engineering electrolytes for electrochemical energy conversion and storage devices. Within the present study, five different RTILs were prepared and subsequently investigated as additives to alkaline aqueous solutions for the oxygen evolution reaction (OER). Studied RTILs [...] Read more.
Room-temperature ionic liquids (RTILs) have attracted attention in engineering electrolytes for electrochemical energy conversion and storage devices. Within the present study, five different RTILs were prepared and subsequently investigated as additives to alkaline aqueous solutions for the oxygen evolution reaction (OER). Studied RTILs were based on dicyanamide ion as a green anion, suitable for electrochemical applications, and included 1-butyl-3-ethylimidazolium dicyanamide, 1,3-dibutylimidazolium dicyanamide, 1-butyl-3-hexylimidazolium dicyanamide, 1-butyl-3-octylimidazolium dicyanamide, and 1,3-diethylimidazolium dicyanamide. The OER studies were performed in 8 M KOH with RTILs (1 vol.%) using linear scan voltammetry, and the current densities were compared to those recorded in 8 M KOH with no RTILs added. Reaction parameters, such as the Tafel slope, were determined, enabling further evaluation and comparison of RTIL-containing electrolyte systems. Moreover, the influence of temperature on the OER efficiency of the system with mixed RTIL-KOH electrolytes was studied. Voltammetric studies were complemented by electrochemical impedance spectroscopy, which revealed a decrease in solution resistance with increasing temperature, as well as by chronoamperometry analysis. Full article
Show Figures

Graphical abstract

34 pages, 6812 KB  
Review
Mechanochemical Synthesis of Advanced Materials for All-Solid-State Battery (ASSB) Applications: A Review
by Zhiming Qiang, Junjun Hu and Beibei Jiang
Polymers 2025, 17(17), 2340; https://doi.org/10.3390/polym17172340 - 28 Aug 2025
Viewed by 1300
Abstract
Mechanochemical methods have received much attention in the synthesis and design of all-solid-state battery materials in recent years due to their advantages of being green, efficient, easy to operate, and solvent-free. In this review, common mechanochemical methods, including high-energy ball milling, twin-screw extrusion [...] Read more.
Mechanochemical methods have received much attention in the synthesis and design of all-solid-state battery materials in recent years due to their advantages of being green, efficient, easy to operate, and solvent-free. In this review, common mechanochemical methods, including high-energy ball milling, twin-screw extrusion (TSE), and resonant acoustic mixing (RAM), are introduced with the aim of providing a fundamental understanding of the subsequent material design. Subsequently, the discussion focuses on the application of mechanochemical methods in the construction of solid-state electrolytes, anode materials, and cathode materials, especially the research progress of mechanical energy-induced polymerization strategies in building flexible composite electrolytes and enhancing interfacial stability. Through the analysis of representative work, it is demonstrated that mechanochemical methods are gradually evolving from traditional physical processing tools to functional synthesis platforms with chemical reaction capabilities. This review systematically organizes its development and research trends in the field of all-solid-state battery materials and explores potential future breakthrough directions. Full article
(This article belongs to the Special Issue Development of Polymer Materials as Functional Coatings)
Show Figures

Figure 1

27 pages, 2254 KB  
Review
Electrochemical Deposition of Silicon: A Critical Review of Electrolyte Systems for Industrial Implementation
by Gevorg Abramkin, Srecko Stopic, Andrey Yasinskiy, Alexander Birich and Bernd Friedrich
Materials 2025, 18(17), 4009; https://doi.org/10.3390/ma18174009 - 27 Aug 2025
Viewed by 700
Abstract
Electrochemical deposition of silicon is considered a promising alternative to conventional high-temperature and high-emission methods of silicon production. This review analyzes the current state of research on electrolyte systems used for silicon electrodeposition, with a particular focus on their potential for industrial-scale application. [...] Read more.
Electrochemical deposition of silicon is considered a promising alternative to conventional high-temperature and high-emission methods of silicon production. This review analyzes the current state of research on electrolyte systems used for silicon electrodeposition, with a particular focus on their potential for industrial-scale application. These systems are evaluated based on key characteristics relevant to such implementation, including silicon precursor solubility, electrical conductivity, applicable current density, and behavior under process conditions. The study evaluates fluoride-based, chloride-based, mixed halide, and organic electrolyte systems based on key criteria, including conductivity, chemical stability, silicon precursor solubility, temperature range, and ease of product purification. Fluoride-based melts offer high current densities (up to 2 A/cm2) and effective SiO2 dissolution but operate at high temperatures (550–1300 °C) and suffer from hygroscopicity. Chloride systems exhibit lower operating temperatures (300–1000 °C) and better water solubility but lack compatibility with common silicon sources. Mixed fluoride–chloride electrolytes emerge as the most promising option, combining high performance with improved practicality; they operate at 600–850 °C and current densities up to ~1.5 A/cm2. Additional focus is placed on the impact of substrate materials and on unresolved questions related to reaction reversibility, kinetic mechanisms, and the influence of electrolyte composition. The review concludes that further fundamental studies are needed to optimize electrolyte design and enable the transition from laboratory-scale research to industrial implementation. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

20 pages, 3429 KB  
Article
Insights into the Electrocatalytic Activity of Mixed-Valence Mn3+/Mn4+ and Fe2+/Fe3+ Transition Metal Oxide Materials
by Bogdan-Ovidiu Taranu, Paula Svera, Gabriel Buse and Maria Poienar
Solids 2025, 6(3), 48; https://doi.org/10.3390/solids6030048 - 26 Aug 2025
Viewed by 1015
Abstract
Hydrogen generation has become a popular research subject in light of currently pressing issues, such as the rapidly increasing environmental pollution, the depleting fossil fuel reserves, and the looming energy crisis. Sustainable electrochemical water splitting is regarded as one of the most desirable [...] Read more.
Hydrogen generation has become a popular research subject in light of currently pressing issues, such as the rapidly increasing environmental pollution, the depleting fossil fuel reserves, and the looming energy crisis. Sustainable electrochemical water splitting is regarded as one of the most desirable methods for obtaining green hydrogen. Considering this state of affairs, the water splitting electrocatalytic activity of glassy carbon electrodes modified with birnessite-type K2Mn4O8 and mixed-valence iron phosphate Fe3(PO3OH)4(H2O)4 materials were evaluated in electrolyte solutions having different pH values. Both compounds were characterized by X-ray diffraction and FT-IR spectroscopy in order to analyze their phase purity and their structural features. The most catalytically active birnessite-type K2Mn4O8-based electrode was manufactured using a catalyst ink containing only the electrocatalyst dispersed in ethanol and Nafion solution. In 0.1 M H2SO4, it exhibited an oxygen evolution reaction (OER) overpotential of 1.07 V and a hydrogen evolution reaction (HER) overpotential of 0.957 V. The Tafel slopes obtained in the OER and HER experiments were 0.180 and 0.142 V/dec, respectively. The most catalytically active mixed-valence iron phosphate Fe3(PO3OH)4(H2O)4-based electrode was obtained with a catalyst ink containing the specified material mixed with carbon black and dispersed in ethanol and Nafion solution. In a strongly alkaline medium, it displayed a HER overpotential of 0.515 V and a Tafel slope value of 0.122 V/dec. The two electrocatalysts have not been previously investigated in this way, and the acquired data provide insights into their electrocatalytic activity and improve the scientific understanding of their properties and applicative potential. Full article
Show Figures

Figure 1

36 pages, 2647 KB  
Article
Mechanism and Kinetics of Non-Electroactive Chlorate Electroreduction via Catalytic Redox-Mediator Cycle Without Catalyst’s Addition (EC-Autocat Process)
by Mikhail A. Vorotyntsev, Pavel A. Zader, Olga A. Goncharova and Dmitry V. Konev
Molecules 2025, 30(16), 3432; https://doi.org/10.3390/molecules30163432 - 20 Aug 2025
Viewed by 821
Abstract
In the context of chlorate’s application as a cathodic reagent of power sources, the mechanism of its electroreduction has been studied in electrochemical cells under diffusion-limited current conditions with operando spectrophotometric analysis. Prior to electrolysis, the electrolyte is represented as an aqueous mixed [...] Read more.
In the context of chlorate’s application as a cathodic reagent of power sources, the mechanism of its electroreduction has been studied in electrochemical cells under diffusion-limited current conditions with operando spectrophotometric analysis. Prior to electrolysis, the electrolyte is represented as an aqueous mixed NaClO3 + H2SO4 solution (both components being non-electroactive within the potential range under study), without addition of any external electroactive catalyst. In the course of potentiostatic electrolysis, both the cathodic current and the ClO2 concentration demonstrate a temporal evolution clearly pointing to an autocatalytic mechanism of the process (regions of quasi-exponential growth and of rapid diminution, separated by a narrow maximum). It has been substantiated that its kinetic mechanism includes only one electrochemical step (chlorine dioxide reduction), coupled with two chemical steps inside the solution phase: comproportionation of chlorate anion and chlorous acid, as well as chlorous acid disproportionation via two parallel routes. The corresponding set of kinetic equations for the concentrations of Cl-containing solute components (ClO3, ClO2, HClO2, and Cl) has been solved numerically in a dimensionless form. Optimal values of the kinetic parameters have been determined via a fitting procedure with the use of non-stationary experimental data for the ClO2 concentration and for the current, taking into account the available information from the literature on the parameters of the chlorous acid disproportionation process. Predictions of the proposed kinetic mechanism agree quantitatively with these experimental data for both quantities within the whole time range, including the three characteristic regions: rapid increase, vicinity of the maximum, and rapid decrease. Full article
Show Figures

Graphical abstract

18 pages, 555 KB  
Review
Heat Stress and Determinants of Kidney Health Among Agricultural Workers in the United States: An Integrative Review
by Justin J. Zhao, Erwin W. Leyva, Kamomilani A. Wong, Merle Kataoka-Yahiro and Leorey N. Saligan
Int. J. Environ. Res. Public Health 2025, 22(8), 1268; https://doi.org/10.3390/ijerph22081268 - 13 Aug 2025
Viewed by 1404
Abstract
Agricultural workers in the United States (U.S.) are exposed to occupational heat stress, increasing their risk of adverse kidney outcomes. The aim of this integrative review was to explore the relationship between occupational heat stress and kidney health among U.S. agricultural workers. PubMed, [...] Read more.
Agricultural workers in the United States (U.S.) are exposed to occupational heat stress, increasing their risk of adverse kidney outcomes. The aim of this integrative review was to explore the relationship between occupational heat stress and kidney health among U.S. agricultural workers. PubMed, EMBASE, Scopus, and Google Scholar were searched for original research articles on this relationship among U.S. agricultural workers. Studies were screened and reviewed by two independent reviewers in three phases: title and abstract screening, full text screening, and data extraction. The search yielded 278 articles; 14 were included in the final analysis. Heat stress was commonly measured using core body temperature changes, heat index, and wet-bulb globe temperature. Acute kidney injury (AKI) incidence following a single work shift was up to 43%. Occupational heat stress and piece-rate compensation increased the odds for developing AKI. The use of cooling bandanas and water mixed with electrolytes are promising interventions for mitigating the effect of heat stress on kidney health outcomes. The results confirm that occupational heat stress influences kidney health for U.S. agricultural workers. The mechanisms of this relationship have not been fully elucidated. More studies exploring heat protection interventions are needed. Full article
(This article belongs to the Special Issue Health-Related Risk Caused by Occupational Environmental Exposure)
Show Figures

Figure 1

8 pages, 971 KB  
Article
Mechanism of Topotactic Reduction-Oxidation Between Mg-Doped SrMoO3 Perovskites and SrMoO4 Scheelites, Utilized as Anode Materials for Solid Oxide Fuel Cells
by Vanessa Cascos, M. T. Fernández-Díaz and José Antonio Alonso
Materials 2025, 18(15), 3424; https://doi.org/10.3390/ma18153424 - 22 Jul 2025
Viewed by 406
Abstract
Recently, we have described SrMo1-xMgxO3-δ perovskites (x = 0.1, 0.2) as excellent anode materials for solid oxide fuel cells (SOFCs), with mixed ionic and electronic conduction (MIEC) properties. After depositing on the solid electrolyte, they were annealed for [...] Read more.
Recently, we have described SrMo1-xMgxO3-δ perovskites (x = 0.1, 0.2) as excellent anode materials for solid oxide fuel cells (SOFCs), with mixed ionic and electronic conduction (MIEC) properties. After depositing on the solid electrolyte, they were annealed for sintering at high temperatures (typically 1000 °C), giving rise to oxidized scheelite-type phases, with SrMo1-xMgxO4-δ (x = 0.1, 0.2) stoichiometry. To obtain the active perovskite phases, they were reduced again in the working anode conditions, under H2 atmosphere. Therefore, there must be an excellent reversibility between the oxidized Sr(Mo, Mg)O4-δ scheelite and the reduced Sr(Mo, Mg)O3-δ perovskite phases. This work describes the topotactical oxidation, by annealing at 400 °C in air, of the SrMo0.9Mg0.1O3-δ perovskite oxide. The characterization by X-ray diffraction (XRD) and neutron powder diffraction (NPD) was carried out in order to determine the crystal structure features. The scheelite oxides are tetragonal, space group I41/a (No. 88), whereas the perovskites are cubic, s.g. Pm-3m (No. 221). The Rietveld refinement of the scheelite phase from NPD data after annealing the perovskite at 400 °C and cooling it down slowly to RT evidences the absence of intermediate phases between perovskite and scheelite oxides, as well as the presence of oxygen vacancies in both oxidized and reduced phases, essential for their performance as MIEC oxides. The topotactical relationship between both crystal structures is discussed. Full article
Show Figures

Figure 1

21 pages, 4090 KB  
Article
Linear Actuation of Dielectrophoretic Formed Multi-Walled Carbon Nanotube Fiber with Carbide-Derived Carbon in Polar Aprotic and Polar Protic Solvents
by Chau B. Tran, Quoc Bao Le and Rudolf Kiefer
Materials 2025, 18(14), 3254; https://doi.org/10.3390/ma18143254 - 10 Jul 2025
Viewed by 508
Abstract
Carbon nanotube (CNT) fiber research focuses on developing functional fabrics with dual or multifunctional capabilities. This study investigates CNT fibers fabricated via dielectrophoresis (DEP) with the incorporation of 10 wt.% carbide-derived carbon (CDC), referred to as CNTCDC fibers. The linear actuation behavior of [...] Read more.
Carbon nanotube (CNT) fiber research focuses on developing functional fabrics with dual or multifunctional capabilities. This study investigates CNT fibers fabricated via dielectrophoresis (DEP) with the incorporation of 10 wt.% carbide-derived carbon (CDC), referred to as CNTCDC fibers. The linear actuation behavior of the CNT and the CNTCDC fibers is compared using identical electrolyte concentrations in both a polar aprotic solvent (propylene carbonate, PC) and a polar protic solvent (aqueous solution, aq). Electromechanical deformation (EMD) is studied through cyclic voltammetry and chronoamperometry. The CNTCDC fiber outperformed the pristine CNT fiber, exhibiting primary expansion during discharge in PC (stress: 1.64 kPa, strain: 0.1%) and during charge in water (stress: 1.32 kPa, strain: 0.047%). By contrast, the pristine CNT fibers showed mixed actuation responses in both solvents, resulting in diminished net stress and strain. Chronopotentiometric measurements indicated that the CNTCDC fibers achieved their highest specific capacitance in aqueous media, reaching 223 ± 17 F g−1 at ±0.8 A g−1, with a capacity retention of 94.2% at ±32 A g−1. Fundamental characterization techniques, including scanning electron microcopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Raman spectroscopy, are employed to analyze fiber morphology and composition. The dual functionality of CNTCDC fibers, as both actuators and energy storage elements, is demonstrated. Full article
(This article belongs to the Special Issue Electronic, Optical, and Structural Properties of Carbon Nanotubes)
Show Figures

Graphical abstract

117 pages, 10736 KB  
Review
Design Principles and Engineering Strategies for Stabilizing Ni-Rich Layered Oxides in Lithium-Ion Batteries
by Alain Mauger and Christian M. Julien
Batteries 2025, 11(7), 254; https://doi.org/10.3390/batteries11070254 - 4 Jul 2025
Cited by 1 | Viewed by 3764
Abstract
Nickel-rich layered oxides such as LiNixMnyCozO2 (NMC), LiNixCoyAlzO2 (NCA), and LiNixMnyCozAl(1–xyz)O2 (NMCA), where x [...] Read more.
Nickel-rich layered oxides such as LiNixMnyCozO2 (NMC), LiNixCoyAlzO2 (NCA), and LiNixMnyCozAl(1–xyz)O2 (NMCA), where x ≥ 0.6, have emerged as key cathode materials in lithium-ion batteries due to their high operating voltage and superior energy density. These materials, characterized by low cobalt content, offer a promising path toward sustainable and cost-effective energy storage solutions. However, their electrochemical performance remains below theoretical expectations, primarily due to challenges related to structural instability, limited thermal safety, and suboptimal cycle life. Intensive research efforts have been devoted to addressing these issues, resulting in substantial performance improvements and enabling the development of next-generation lithium-ion batteries with higher nickel content and reduced cobalt dependency. In this review, we present recent advances in material design and engineering strategies to overcome the problems limiting their electrochemical performance (cation mixing, phase stability, oxygen release, microcracks during cycling). These strategies include synthesis methods to optimize the morphology (size of the particles, core–shell and gradient structures), surface modifications of the Ni-rich particles, and doping. A detailed comparison between these strategies and the synergetic effects of their combination is presented. We also highlight the synergistic role of compatible lithium salts and electrolytes in achieving state-of-the-art nickel-rich lithium-ion batteries. Full article
(This article belongs to the Special Issue Batteries: 10th Anniversary)
Show Figures

Graphical abstract

26 pages, 10819 KB  
Review
Recent Advances in Thermochemical Water Splitting for Hydrogen Production Using Mixed Ionic-Electronic Conducting Membrane Reactors
by Jingjun Li, Qing Yang, Jie Liu, Qiangchao Sun and Hongwei Cheng
Membranes 2025, 15(7), 203; https://doi.org/10.3390/membranes15070203 - 4 Jul 2025
Viewed by 1762
Abstract
Under the accelerating global energy restructuring and the deepening carbon neutrality strategy, hydrogen energy has emerged with increasing strategic value as a zero-carbon secondary energy carrier. Water electrolysis technology based on renewable energy is regarded as an ideal pathway for large-scale green hydrogen [...] Read more.
Under the accelerating global energy restructuring and the deepening carbon neutrality strategy, hydrogen energy has emerged with increasing strategic value as a zero-carbon secondary energy carrier. Water electrolysis technology based on renewable energy is regarded as an ideal pathway for large-scale green hydrogen production. However, polymer electrolyte membrane (PEM) conventional water electrolysis faces dual constraints in economic feasibility and scalability due to its high electrical energy consumption and reliance on noble metal catalysts. The mixed ionic-electronic conducting oxygen transport membrane (MIEC–OTM) reactor technology offers an innovative solution to this energy efficiency-cost paradox due to its thermo-electrochemical synergistic energy conversion mechanism and process integration. This not only overcomes the thermodynamic equilibrium limitations in traditional electrolysis but also reduces electrical energy demand by effectively coupling with medium- to high-temperature heat sources such as industrial waste heat and solar thermal energy. Therefore, this review, grounded in the physicochemical mechanisms of oxygen transport membrane reactors, systematically examines the influence of key factors, including membrane material design, catalytic interface optimization, and parameter synergy, on hydrogen production efficiency. Furthermore, it proposes a roadmap and breakthrough directions for industrial applications, focusing on enhancing intrinsic material stability, designing multi-field coupled reactors, and optimizing system energy efficiency. Full article
(This article belongs to the Section Membrane Applications for Energy)
Show Figures

Figure 1

18 pages, 2241 KB  
Article
Optimization of a Monopolar Electrode Configuration for Hybrid Electrochemical Treatment of Real Washing Machine Wastewater
by Lidia C. Espinoza, Angélica Llanos, Marjorie Cepeda, Alexander Carreño, Patricia Velásquez, Brayan Cruz, Galo Ramírez, Julio Romero, Ricardo Abejón, Esteban Quijada-Maldonado, María J. Aguirre and Roxana Arce
Int. J. Mol. Sci. 2025, 26(13), 6445; https://doi.org/10.3390/ijms26136445 - 4 Jul 2025
Viewed by 587
Abstract
This study focuses on the design and optimization of a monopolar electrode configuration for the hybrid electrochemical treatment of real washing machine wastewater. A combined electrocoagulation (EC) and electro-oxidation (EO) system was optimized to maximize pollutant removal efficiency while minimizing energy consumption. The [...] Read more.
This study focuses on the design and optimization of a monopolar electrode configuration for the hybrid electrochemical treatment of real washing machine wastewater. A combined electrocoagulation (EC) and electro-oxidation (EO) system was optimized to maximize pollutant removal efficiency while minimizing energy consumption. The monopolar setup employed mixed metal oxide (MMO) and aluminum anodes, along with a stainless steel cathode, operating under controlled conditions with sodium chloride as the supporting electrolyte. An applied current density of 15 mA cm−2 achieved 90% chemical oxygen demand (COD) removal, 98% surfactant degradation, complete turbidity reduction within 120 min, and pH stabilization near 8. Additionally, electrochemical disinfection achieved <2 MPN/100 mL, with no detectable phenols and the presence of organic anions such as oxalate and acetate. These results demonstrate the effectiveness of an optimized monopolar EC–EO system as a cost-efficient and sustainable strategy for wastewater treatment and potential water reuse. Further studies should focus on refining energy consumption and monitoring reaction by-products to enhance large-scale applicability. Full article
(This article belongs to the Special Issue Ion and Molecule Transport in Membrane Systems, 6th Edition)
Show Figures

Figure 1

14 pages, 992 KB  
Article
On-Line Preconcentration of Selected Kynurenine Pathway Metabolites and Amino Acids in Urine via Pressure-Assisted Electrokinetic Injection in a Mixed Micelle System
by Michał Pieckowski, Ilona Olędzka, Tomasz Bączek and Piotr Kowalski
Int. J. Mol. Sci. 2025, 26(13), 6125; https://doi.org/10.3390/ijms26136125 - 26 Jun 2025
Viewed by 473
Abstract
To enhance the signal intensity of kynurenines, which are present at trace concentrations in biological fluids, a novel analytical approach was developed, combining pressure-assisted electrokinetic injection (PAEKI) with a mixed micelle system based on sodium dodecyl sulfate (SDS) and Brij-35. The method was [...] Read more.
To enhance the signal intensity of kynurenines, which are present at trace concentrations in biological fluids, a novel analytical approach was developed, combining pressure-assisted electrokinetic injection (PAEKI) with a mixed micelle system based on sodium dodecyl sulfate (SDS) and Brij-35. The method was applied to key compounds of the kynurenine pathway, including L-tryptophan, kynurenine, 3-hydroxykynurenine, and kynurenic acid, as well as to the aromatic amino acids (AAs) L-tyrosine and L-phenylalanine. PAEKI was performed by electrokinetic injection for 2 min at −6.5 kV (reversed polarity) and 0.5 psi (3.45 kPa) using a fused silica capillary (50 cm in length, 50 µm inner diameter). The background electrolyte (BGE) consisted of 20 mM Na2B4O7 (pH 9.2), 2 mM Brij-35, 20 mM SDS, and 20% (v/v) methanol (MeOH). The limit of detection (LOD) using a diode array detector (DAD) was 1.2 ng/mL for kynurenine and ranged from 1.5 to 3.0 ng/mL for the other analytes. The application of PAEKI in conjunction with micellar electrokinetic capillary chromatography (MEKC) and solid-phase extraction (SPE) of artificial urine samples resulted in a 146-fold increase in signal intensity for kynurenines compared to that observed using the hydrodynamic injection (HDI) mode. The developed method demonstrates strong potential for determining kynurenine pathway metabolites in complex biological matrices. Full article
Show Figures

Figure 1

Back to TopTop