Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = electrodynamic exciter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5008 KiB  
Article
Dynamic Study on a Passive Damping Scheme for Permanent Magnet Electrodynamic Suspension Vehicle Utilizing Onboard Magnets End Effects
by Shanqiang Fu, Mingang Chi, Anqi Shu, Junzhi Liu, Shuqing Zhang, Hongfu Shi and Zigang Deng
Actuators 2025, 14(7), 344; https://doi.org/10.3390/act14070344 - 11 Jul 2025
Viewed by 210
Abstract
The permanent magnet electrodynamic suspension system (PMEDS) has demonstrated significant advantages in high-speed and ultra-high-speed applications due to its simple structure, low cost, and stable levitation force. However, the weak damping characteristic remains a critical issue limiting its practical implementation. This work investigates [...] Read more.
The permanent magnet electrodynamic suspension system (PMEDS) has demonstrated significant advantages in high-speed and ultra-high-speed applications due to its simple structure, low cost, and stable levitation force. However, the weak damping characteristic remains a critical issue limiting its practical implementation. This work investigates a passive damping plate utilizing the end field of onboard magnets, focusing on magnet-damping plate optimization and vehicle dynamics. Firstly, the configuration, operation principles, and electromagnetic parameters of the PMEDS vehicle are elucidated. Secondly, the dependences of magnet-conductive plate specifications on the damping force are examined. An optimization index based on the levitation-to-damping force ratio is proposed to enable collaborative optimization of magnet and conductive plate parameters. Finally, the vehicle dynamic model is developed using Simpack software to investigate payload and speed effects on dynamic responses under random track excitation, validating the effectiveness of the proposed passive damping solution. This study provides technical references for the design, engineering applications, and performance evaluation of passive damping schemes in PMEDS vehicles. Full article
(This article belongs to the Special Issue Actuators in Magnetic Levitation Technology and Vibration Control)
Show Figures

Figure 1

28 pages, 48949 KiB  
Article
Effects of the October 2024 Storm over the Global Ionosphere
by Krishnendu Sekhar Paul, Haris Haralambous, Mefe Moses and Sharad C. Tripathi
Remote Sens. 2025, 17(13), 2329; https://doi.org/10.3390/rs17132329 - 7 Jul 2025
Viewed by 1387
Abstract
The present study analyzes the global ionospheric response to the intense geomagnetic storm of 10–11 October 2024 (SYM—H minimum of −346 nT), using observations from COSMIC—2 and Swarm satellites, GNSS TEC, and Digisondes. Significant uplift of the F-region was observed across both Hemispheres [...] Read more.
The present study analyzes the global ionospheric response to the intense geomagnetic storm of 10–11 October 2024 (SYM—H minimum of −346 nT), using observations from COSMIC—2 and Swarm satellites, GNSS TEC, and Digisondes. Significant uplift of the F-region was observed across both Hemispheres on the dayside, primarily driven by equatorward thermospheric winds and prompt penetration electric fields (PPEFs). However, this uplift did not correspond with increases in foF2 due to enhanced molecular nitrogen-promoting recombination in sunlit regions and the F2 peak rising beyond the COSMIC—2 detection range. In contrast, in the Southern Hemisphere nightside ionosphere exhibited pronounced Ne depletion and low hmF2 values, attributed to G-conditions and thermospheric composition changes caused by storm-time circulation. Strong vertical plasma drifts exceeding 100 m/s were observed during both the main and recovery phases, particularly over Ascension Island, driven initially by southward IMF—Bz-induced PPEFs and later by disturbance dynamo electric fields (DDEFs) as IMF—Bz turned northward. Swarm data revealed a poleward expansion of the Equatorial Ionization Anomaly (EIA), with more pronounced effects in the Southern Hemisphere due to seasonal and longitudinal variations in ionospheric conductivity. Additionally, the storm excited Large-Scale Travelling Ionospheric Disturbances (LSTIDs), triggered by thermospheric perturbations and electrodynamic drivers, including PPEFs and DDEFs. These disturbances, along with enhanced westward thermospheric wind and altered zonal electric fields, modulated ionospheric irregularity intensity and distribution. The emergence of anti-Sq current systems further disrupted quiet-time electrodynamics, promoting global LSTID activity. Furthermore, storm-induced equatorial plasma bubbles (EPBs) were observed over Southeast Asia, initiated by enhanced PPEFs during the main phase and suppressed during recovery, consistent with super EPB development mechanisms. Full article
Show Figures

Figure 1

23 pages, 2905 KiB  
Article
Fluxgate Magnetometers Based on New Physical Principles
by Ivan V. Bryakin, Igor V. Bochkarev, Vadim R. Khramshin, Vadim R. Gasiyarov and Ivan N. Erdakov
Sensors 2025, 25(13), 3893; https://doi.org/10.3390/s25133893 - 22 Jun 2025
Viewed by 1457
Abstract
This article considers a fluxgate magnetometer (FM) that operates based on a new physical principle. The authors analyze how the alternating electric charge potential of a cylindrical metal electrode impacts the structure of a cylindrical permanent magnet made of composite-conducting ferrite. They demonstrate [...] Read more.
This article considers a fluxgate magnetometer (FM) that operates based on a new physical principle. The authors analyze how the alternating electric charge potential of a cylindrical metal electrode impacts the structure of a cylindrical permanent magnet made of composite-conducting ferrite. They demonstrate that this impact and permanent magnet structure initiate the emergence of polarons with oscillating magnetism. This causes significant changes in the entropy of indirect exchange and the related sublattice magnetism fluctuations that ultimately result in the generation of circularly polarized spin waves at the spin wave resonance frequency that are channeled and evolve in dielectric ferrite waveguides of the FM. It is demonstrated that these moving spin waves have an electrodynamic impact on the measuring FM coils on the macro-level and perform parametric modulation of the magnetic permeability of the waveguide material. This results in the respective variations of the changeable magnetic field, which is also registered by the measuring FM coils. The authors considered a generalized flow of the physical processes in the FM to obtain a detailed representation of the operating functions of the FM. The presented experimental results for the proposed FM in the field meter mode confirm its operating parameters (±40 μT—measurement range, 0.5 nT—detection threshold). The usage of a cylindrical metal electrode as a source of exciting electrical change instead of a conventional multiturn excitation coil can significantly reduce temperature drift, simplify production technology, and reduce the unit weight and size. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

11 pages, 1024 KiB  
Article
Parametric Interaction-Induced Asymmetric Behaviors in a Coupled-Cavities Quantum Electrodynamics System
by Xu Ma, Dexi Guo, Chengjie Zhu and Jingping Xu
Photonics 2025, 12(6), 563; https://doi.org/10.3390/photonics12060563 - 4 Jun 2025
Viewed by 423
Abstract
We investigate a quantum electrodynamics system consisting of two coupled single-mode cavities. The left cavity couples with a two-level atom, while the right cavity incorporates a second-order nonlinear medium, activated by a pumping field. In the absence of nonlinear medium, we show that [...] Read more.
We investigate a quantum electrodynamics system consisting of two coupled single-mode cavities. The left cavity couples with a two-level atom, while the right cavity incorporates a second-order nonlinear medium, activated by a pumping field. In the absence of nonlinear medium, we show that the transmitted field intensity reveals only classical asymmetric behavior at the central frequency. However, the parametric interaction induced by the nonlinear medium leads to various quantum asymmetric behaviors at single photon excitation frequencies, including the squeezing, quantum statistics, and phase-space characteristics of the transmitted photons. These asymmetric behaviors arise from additional excitation pathways enabled by the parametric interaction-induced two-photon processes. We demonstrate these asymmetric behaviors through Klyshko’s figures of merit, the Wigner function, and the steady-state second-order correlation function of the transmitted photons. These results present promising applications for remote quantum-state manipulation and contribute significantly to the advancement of quantum networking. Full article
Show Figures

Figure 1

17 pages, 4697 KiB  
Article
Modeling and Analysis of Current-Carrying Coils Versus Rotating Magnet Transmitters for Low-Frequency Electrodynamic Wireless Power Transmission
by Vernon S. Crasto, Nicolas Garraud, Matthew G. Stormant and David P. Arnold
Energies 2025, 18(10), 2506; https://doi.org/10.3390/en18102506 - 13 May 2025
Viewed by 2362
Abstract
Current-carrying coils and rotating permanent magnets can be used to create time-varying excitation magnetic fields for electrodynamic wireless power transmission (EWPT). Both types of transmitters produce low-frequency, time-varying fields at the locations of the receiver, but with fundamental differences. A coil transmitter produces [...] Read more.
Current-carrying coils and rotating permanent magnets can be used to create time-varying excitation magnetic fields for electrodynamic wireless power transmission (EWPT). Both types of transmitters produce low-frequency, time-varying fields at the locations of the receiver, but with fundamental differences. A coil transmitter produces a uniaxial magnetic field, where the direction of the field is along a single axis, but the amplitude varies in a bipolar fashion. In contrast, a rotating magnet transmitter produces a rotating magnetic field, with the amplitude varying in two orthogonal directions. Building on prior work for coil transmitters, this manuscript presents the modeling and a simulation framework for rotating magnet transmitters. The performance of an EWPT system is then studied both theoretically and experimentally for both transmitter types. For the same B-field amplitude (501 µT) and a fixed transmitter-receiver distance of 12 cm, a receiver driven by a coil transmitter produces 38 mW, whereas the same receiver driven by a rotating magnet transmitter produces 149 mW, nearly four times higher. This power increase is a result of 50% higher receiver rotation speeds using the rotating magnet transmitter. The power transfer efficiency is also six times higher for the rotating magnet transmitter. Full article
(This article belongs to the Special Issue Advances in Wireless Power Transfer Technologies and Applications)
Show Figures

Figure 1

28 pages, 6106 KiB  
Article
A Vibration-Based Test Technique to Evaluate the High-Cycle Fatigue Life of Thermal Interface Layers Used in the Electronic Industry
by Alaa Fezai, Anuj Sharma, Wolfgang Müller-Hirsch and André Zimmermann
Appl. Mech. 2025, 6(2), 23; https://doi.org/10.3390/applmech6020023 - 28 Mar 2025
Viewed by 734
Abstract
A testing method is developed to evaluate the acceleration- and strain-based fatigue life of a thermal interface layer in the high-cycle fatigue regime. The methodology adopts vibration-based fatigue testing, where adhesively bonded beams are excited at their resonant frequency under variable amplitude loading [...] Read more.
A testing method is developed to evaluate the acceleration- and strain-based fatigue life of a thermal interface layer in the high-cycle fatigue regime. The methodology adopts vibration-based fatigue testing, where adhesively bonded beams are excited at their resonant frequency under variable amplitude loading using an electrodynamic shaker. Fatigue failure is monitored through shifts in modal frequency and modal damping. Key findings include the identification of a 4% frequency shift as the failure criterion, corresponding to macro-delamination. The thickness of the thermal interface material influences acceleration-based fatigue life, decreasing by a factor of 0.2 when reduced from 0.3 mm to 0.15 mm and increasing by 5.5 when increased to 0.5 mm. Surface quality has a significant impact on both acceleration-based and strain-based fatigue curves. Beams from chemically etched aluminum–magnesium alloy specimens exhibit a sevenfold increase in fatigue life compared to beams from untreated printed circuit boards. Strain-based fatigue life increases with temperature, with a 0.2 reduction at 40 °C and an eightfold increase at 100 °C relative to 23 °C. The first principal strain ε1,rms is validated as a reliable local damage parameter, effectively characterizing fatigue behavior across varying TIM thicknesses. Full article
(This article belongs to the Special Issue Thermal Mechanisms in Solids and Interfaces)
Show Figures

Figure 1

24 pages, 1913 KiB  
Article
Waveguide Quantum Electrodynamics: Tryptophans Entangled with Water as Data Qubits in a Microtubule
by Akihiro Nishiyama, Shigenori Tanaka and Jack Adam Tuszynski
Dynamics 2025, 5(1), 7; https://doi.org/10.3390/dynamics5010007 - 1 Mar 2025
Viewed by 1592
Abstract
In this paper, we introduce waveguide Quantum Electrodynamics (wQED) for the description of tryptophans in microtubules representing data qubits for information storage and, possibly, information processing. We propose a Hamiltonian in wQED and derive Heisenberg equations for qubits and photons. Using the Heisenberg [...] Read more.
In this paper, we introduce waveguide Quantum Electrodynamics (wQED) for the description of tryptophans in microtubules representing data qubits for information storage and, possibly, information processing. We propose a Hamiltonian in wQED and derive Heisenberg equations for qubits and photons. Using the Heisenberg equations, we derive time-evolution equations for the probability of qubits and the distribution of photons both at zero and finite temperature. We then demonstrate the resultant sub-radiance with small decay rates, which is required to achieve robust data qubits for information storage by coupling tryptophan residues containing data qubits with water molecules as Josephson quantum filters (JQFs). We also describe an oscillation processes of qubits in a tubulin dimer through the propagation of excitations with changing decay rates of JQFs. Data qubits are found to retain initial values by adopting sub-radiant states involving entanglement with water degrees of freedom. Full article
Show Figures

Figure 1

16 pages, 3926 KiB  
Article
Active Vibration Control Study of Harmonic Excitation for Voigt–Kelvin System
by Ovidiu Vasile and Mihai Bugaru
Appl. Sci. 2025, 15(4), 2226; https://doi.org/10.3390/app15042226 - 19 Feb 2025
Viewed by 793
Abstract
This paper presents research on active vibration control (A-V-C), which is being carried out to reduce structural vibration in the field of active vibration control and describes the most important method of implementation. Non-adaptive and adaptive systems feedback with adaptive algorithms are outlined. [...] Read more.
This paper presents research on active vibration control (A-V-C), which is being carried out to reduce structural vibration in the field of active vibration control and describes the most important method of implementation. Non-adaptive and adaptive systems feedback with adaptive algorithms are outlined. Electrodynamic shakers, used to excite an SDOF system to study its dynamic characteristics, are introduced. Signal analysis determines the response of a system under known excitation and presents it in a convenient form. The proposed method directly measures the payload displacement relative to the ground. We carry out a detailed investigation based on a realistic single-degree-of-freedom (SDOF), demonstrate the effectiveness of the proposed adaptive control law, estimate the control parameters, and show that the target dynamics of the isolator are attained. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

13 pages, 16029 KiB  
Article
Numerical Simulation of Perkins Instability in the Midlatitude F-Region Ionosphere: The Influence of Background Ionospheric Multi-Factors
by Yi Liu, Ting Lan, Yufeng Zhou, Yunzhou Zhu, Zhiqiang Fan, Yewen Wu, Yuqiang Zhang and Xiang Wang
Atmosphere 2025, 16(2), 221; https://doi.org/10.3390/atmos16020221 - 16 Feb 2025
Viewed by 623
Abstract
A numerical simulation of Perkins instability in the midlatitude F-region ionosphere is developed in this study. The growth of nighttime plasma density perturbation excited by Perkins instability was successfully reproduced. The simulated results show that the ionospheric perturbation structure elongated from northwest (NW) [...] Read more.
A numerical simulation of Perkins instability in the midlatitude F-region ionosphere is developed in this study. The growth of nighttime plasma density perturbation excited by Perkins instability was successfully reproduced. The simulated results show that the ionospheric perturbation structure elongated from northwest (NW) to southeast (SE) was generated from initial random seeding by applying a very large southeastward neutral wind (200 m/s). The domain wave vector direction agreed with the linear Perkins theory. Our simulated results were consistent with the previous observations and simulations. To investigate the influence of background ionospheric multi-factors on the generation of nighttime medium-scale traveling ionospheric disturbance (MSTID), we simulated the evolution process of ionospheric perturbations under initial background ionospheric conditions. The simulated results indicate the importance of neutral scale height on the development of nighttime MSTID and suggest that a smaller neutral scale height would amplify the amplitude of ionospheric perturbations. The influences of gravity wave (GW) activity and polarized electric field seeding from plasma instability in the E region are also discussed in this study. We conclude that the additional seeding processes play a major role in the accelerated Perkins instability and amplify ionospheric perturbations. The electrodynamic coupling process has a greatly significant effect on the growth rate of Perkins instability compared to GW activity. Full article
(This article belongs to the Section Planetary Atmospheres)
Show Figures

Figure 1

82 pages, 17098 KiB  
Review
Statistical Dynamics and Subgrid Modelling of Turbulence: From Isotropic to Inhomogeneous
by Jorgen S. Frederiksen, Vassili Kitsios and Terence J. O’Kane
Atmosphere 2024, 15(8), 921; https://doi.org/10.3390/atmos15080921 - 31 Jul 2024
Cited by 2 | Viewed by 1471
Abstract
Turbulence is the most important, ubiquitous, and difficult problem of classical physics. Feynman viewed it as essentially unsolved, without a rigorous mathematical basis to describe the statistical dynamics of this most complex of fluid motion. However, the paradigm shift came in 1959, with [...] Read more.
Turbulence is the most important, ubiquitous, and difficult problem of classical physics. Feynman viewed it as essentially unsolved, without a rigorous mathematical basis to describe the statistical dynamics of this most complex of fluid motion. However, the paradigm shift came in 1959, with the formulation of the Eulerian direct interaction approximation (DIA) closure by Kraichnan. It was based on renormalized perturbation theory, like quantum electrodynamics, and is a bare vertex theory that is manifestly realizable. Here, we review some of the subsequent exciting achievements in closure theory and subgrid modelling. We also document in some detail the progress that has been made in extending statistical dynamical turbulence theory to the real world of interactions with mean flows, waves and inhomogeneities such as topography. This includes numerically efficient inhomogeneous closures, like the realizable quasi-diagonal direct interaction approximation (QDIA), and even more efficient Markovian Inhomogeneous Closures (MICs). Recent developments include the formulation and testing of an eddy-damped Markovian anisotropic closure (EDMAC) that is realizable in interactions with transient waves but is as efficient as the eddy-damped quasi-normal Markovian (EDQNM). As well, a similarly efficient closure, the realizable eddy-damped Markovian inhomogeneous closure (EDMIC) has been developed. Moreover, we present subgrid models that cater for the complex interactions that occur in geophysical flows. Recent progress includes the determination of complete sets of subgrid terms for skilful large-eddy simulations of baroclinic inhomogeneous turbulent atmospheric and oceanic flows interacting with Rossby waves and topography. The success of these inhomogeneous closures has also led to further applications in data assimilation and ensemble prediction and generalization to quantum fields. Full article
(This article belongs to the Special Issue Isotropic Turbulence: Recent Advances and Current Challenges)
Show Figures

Figure 1

11 pages, 2412 KiB  
Article
A Collisional-Radiative Model for Kr III Ions
by Shikha Rathi and Lalita Sharma
Atoms 2024, 12(8), 39; https://doi.org/10.3390/atoms12080039 - 29 Jul 2024
Viewed by 1417
Abstract
A collisional radiative model for Kr III in the ultraviolet regime is developed. For this purpose, atomic parameters for 4s24p4, 4s4p5, 4s24p3nl, and [...] Read more.
A collisional radiative model for Kr III in the ultraviolet regime is developed. For this purpose, atomic parameters for 4s24p4, 4s4p5, 4s24p3nl, and 4s24p35d configurations with n ranging from 5 to 7 and l=s,p, using the multiconfiguration Dirac–Hatree–Fock method are calculated. The effects of Breit and radiative quantum electrodynamic corrections are also included. Electron impact excitation cross-sections from the ground state, along with four metastable states arising from the 4s24p4 configuration to all fine structure levels of interest, are calculated using the relativistic distorted wave method. The reliability of the model is tested by comparing the predicted results with the previous measurements. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

13 pages, 6975 KiB  
Article
Frequency-Dependent Fatigue Properties of Additively Manufactured PLA
by Martin Česnik and Janko Slavič
Polymers 2024, 16(15), 2147; https://doi.org/10.3390/polym16152147 - 29 Jul 2024
Cited by 1 | Viewed by 1428
Abstract
Vibration-fatigue failure occurs when a structure is dynamically excited within its natural frequency range. Unlike metals, which have constant fatigue parameters, polymers can exhibit frequency-dependent fatigue parameters, significantly affecting the vibration resilience of 3D-printed polymer structures. This manuscript presents a study utilizing a [...] Read more.
Vibration-fatigue failure occurs when a structure is dynamically excited within its natural frequency range. Unlike metals, which have constant fatigue parameters, polymers can exhibit frequency-dependent fatigue parameters, significantly affecting the vibration resilience of 3D-printed polymer structures. This manuscript presents a study utilizing a novel vibration-fatigue testing methodology to characterize the frequency dependence of polymer material fatigue parameters under constant temperature conditions. In this investigation, 3D-printed PLA samples with frequency-tunable geometry were experimentally tested on an electro-dynamical shaker with a random vibration profile. Using the validated numerical models, the estimation of vibration-fatigue life was obtained and compared to the experimental results. Performing the numerical minimization of estimated and actual fatigue lives, the frequency-dependent fatigue parameters were assessed. In particular, the results indicate that the tested samples exhibit varying fatigue parameters within the loading frequency range of 250–750 Hz. Specifically, as the loading frequency increases, the fatigue exponent increases and fatigue strength decreases. These findings confirm the frequency dependence of fatigue parameters for 3D-printed polymer structures, underscoring the necessity of experimental characterization to reliably estimate the vibration-fatigue life of 3D-printed polymer structures. The utilization of the introduced approach therefore enhances the vibration resilience of the 3D-printed polymer mechanical component. Full article
(This article belongs to the Collection Feature Papers in Polymer Processing and Engineering)
Show Figures

Figure 1

31 pages, 10592 KiB  
Article
Detecting Wheel Slip to Suppress Self-Excited Oscillations in Braking Mode
by Aleksander V. Klimov, Baurzhan K. Ospanbekov, Akop V. Antonyan, Viktor R. Anisimov, Egor A. Dvoeglazov, Danila A. Novogorodov, Andrey V. Keller, Sergey S. Shadrin, Daria A. Makarova, Vladimir S. Ershov and Yury M. Furletov
World Electr. Veh. J. 2024, 15(8), 340; https://doi.org/10.3390/wevj15080340 - 28 Jul 2024
Cited by 1 | Viewed by 1182
Abstract
The wheels of decelerating vehicles in braking mode roll with increased slip, up to complete lock-up, which is a negative phenomenon. This is effectively managed by the anti-lock braking system (ABS). However, in the course of braking, especially before the system activation, self-excited [...] Read more.
The wheels of decelerating vehicles in braking mode roll with increased slip, up to complete lock-up, which is a negative phenomenon. This is effectively managed by the anti-lock braking system (ABS). However, in the course of braking, especially before the system activation, self-excited oscillatory processes with high amplitudes may occur, causing increased dynamic loads on the drive system. The paper studies the braking processes of a vehicle with an electromechanical individual traction drive in both electrodynamic regenerative and combined braking modes, utilizing the drive and the primary braking system. The theoretical framework is provided for identifying the self-excited oscillation onset conditions and developing a technique to detect wheel slips during braking to suppress these oscillations. To check the functionality of the wheel-slip observer in braking mode, the performance of the self-excited oscillation pulse suppression algorithm was studied in the MATLAB Simulink 2018b software package. The study results can be used to develop control systems equipped with the function of suppressing self-excited oscillations by vehicle motion. Full article
Show Figures

Figure 1

28 pages, 3508 KiB  
Review
On Casimir and Helmholtz Fluctuation-Induced Forces in Micro- and Nano-Systems: Survey of Some Basic Results
by Daniel Dantchev
Entropy 2024, 26(6), 499; https://doi.org/10.3390/e26060499 - 7 Jun 2024
Cited by 9 | Viewed by 2199
Abstract
Fluctuations are omnipresent; they exist in any matter, due either to its quantum nature or to its nonzero temperature. In the current review, we briefly cover the quantum electrodynamic Casimir (QED) force as well as the critical Casimir (CC) and Helmholtz (HF) forces. [...] Read more.
Fluctuations are omnipresent; they exist in any matter, due either to its quantum nature or to its nonzero temperature. In the current review, we briefly cover the quantum electrodynamic Casimir (QED) force as well as the critical Casimir (CC) and Helmholtz (HF) forces. In the QED case, the medium is usually a vacuum and the massless excitations are photons, while in the CC and HF cases the medium is usually a critical or correlated fluid and the fluctuations of the order parameter are the cause of the force between the macroscopic or mesoscopic bodies immersed in it. We discuss the importance of the presented results for nanotechnology, especially for devising and assembling micro- or nano-scale systems. Several important problems for nanotechnology following from the currently available experimental findings are spelled out, and possible strategies for overcoming them are sketched. Regarding the example of HF, we explicitly demonstrate that when a given integral quantity characterizing the fluid is conserved, it has an essential influence on the behavior of the corresponding fluctuation-induced force. Full article
(This article belongs to the Collection Foundations of Statistical Mechanics)
Show Figures

Figure 1

12 pages, 2662 KiB  
Article
Exploring the Use of Cold Atmospheric Plasma for Sound and Vibration Generation
by Nasser Ghaderi, Navid Hasheminejad, Joris Dirckx and Steve Vanlanduit
Sensors 2024, 24(11), 3518; https://doi.org/10.3390/s24113518 - 30 May 2024
Cited by 1 | Viewed by 1747
Abstract
In this study, we investigate the potential of cold atmospheric plasma (CAP) as a non-contact excitation device, comparing its performance with an ultrasound transmitter. Utilizing a scanning Laser Doppler Vibrometer (LDV), we visualize the acoustic wavefront generated by a CAP probe and an [...] Read more.
In this study, we investigate the potential of cold atmospheric plasma (CAP) as a non-contact excitation device, comparing its performance with an ultrasound transmitter. Utilizing a scanning Laser Doppler Vibrometer (LDV), we visualize the acoustic wavefront generated by a CAP probe and an ultrasound sensor within a designated 50 mm × 50 mm area in front of each probe. Our focus lies in assessing the applicability of a CAP probe for exciting a small polymethyl methacrylate (PMMA) sample. By adjusting the dimensions of the sample to resonate at the excitation frequency of the probe, we can achieve high vibrational velocities, enabling further mechanical analysis. In contrast with traditional vibration excitation techniques such as electrodynamical shakers and hammer impact excitation, a plasma probe can offer distinct advantages without altering the structure’s dynamics since it is contactless. Furthermore, in comparison with laser excitation, plasma excitation provides a higher power level. Additionally, while pressurized air systems are applicable for limited low frequencies, plasma probes can perform at higher frequencies. Our findings in this study suggest that CAP is comparable with acoustic excitation, indicating its potential as an effective mechanical excitation method. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

Back to TopTop