Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (87)

Search Parameters:
Keywords = electro-Fenton process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1651 KB  
Article
Iron -Doped Mesoporous Nano-Sludge Biochar via Ball Milling for 3D Electro-Fenton Degradation of Brewery Wastewater
by Ju Guo, Wei Liu, Tianzhu Shi, Wei Shi, Fuyong Wu and Yi Xie
Nanomaterials 2025, 15(19), 1530; https://doi.org/10.3390/nano15191530 - 7 Oct 2025
Abstract
To address the challenges of complex composition, high chemical oxygen demand (COD) content, and the difficulty of treating organic wastewater from brewery wastewater, as well as the limitations of traditional Fenton technology, including low catalytic activity and high material costs, this study proposes [...] Read more.
To address the challenges of complex composition, high chemical oxygen demand (COD) content, and the difficulty of treating organic wastewater from brewery wastewater, as well as the limitations of traditional Fenton technology, including low catalytic activity and high material costs, this study proposes the use of biochemical sludge as a raw material. Coupled with iron salt activation and mechanical ball milling technology, a low-cost, high-performance iron-doped mesoporous nano-sludge biochar material is prepared. This material was employed as a particle electrode to construct a three-dimensional electro-Fenton system for the degradation of organic wastewater from sauce-flavor liquor brewing. The results demonstrate that the sludge-based biochar produced through this approach possesses a mesoporous structure, with an average particle size of 187 nm, a specific surface area of 386.28 m2/g, and an average pore size of 4.635 nm. Iron is present in the material as multivalent iron ions, which provide more electrochemical reaction sites. Utilizing response surface methodology, the optimized treatment process achieves a maximum COD degradation rate of 71.12%. Compared to the control sample, the average particle size decreases from 287 μm to 187 nm, the specific surface area increases from 44.89 m2/g to 386.28 m2/g, and the COD degradation rate improves by 61.1%. Preliminary investigations suggest that the iron valence cycle (Fe2+/Fe3+) and the mass transfer enhancement effect of the mesoporous nano-structure are keys to efficient degradation. The Fe-O-Si structure enhances material stability, with a degradation capacity retention rate of 88.74% after 30 cycles of use. When used as a particle electrode to construct a three-dimensional electro-Fenton system, this material demonstrates highly efficiency in organic matter degradation and shows promising potential for application in the treatment of organic wastewater from sauce-flavor liquor brewing. Full article
Show Figures

Figure 1

50 pages, 4682 KB  
Review
Current Progress in Advanced Functional Membranes for Water-Pollutant Removal: A Critical Review
by Manseeb M. Mannaf, Md. Mahbubur Rahman, Sonkorson Talukder Sabuj, Niladri Talukder and Eon Soo Lee
Membranes 2025, 15(10), 300; https://doi.org/10.3390/membranes15100300 - 2 Oct 2025
Viewed by 630
Abstract
As water pollution from dyes, pharmaceuticals, heavy metals, and other emerging contaminants continues to rise at an alarming rate, ensuring access to clean and safe water has become a pressing global challenge. Conventional water treatment methods, though widely used, often fall short in [...] Read more.
As water pollution from dyes, pharmaceuticals, heavy metals, and other emerging contaminants continues to rise at an alarming rate, ensuring access to clean and safe water has become a pressing global challenge. Conventional water treatment methods, though widely used, often fall short in effectively addressing these complex pollutants. In response, researchers have turned to Advanced Functional Membranes (AFMs) as promising alternatives, owing to their customizable structures and enhanced performance. Among the most explored AFMs are those based on metal–organic frameworks (MOFs), carbon nanotubes (CNTs), and electro–catalytic systems, each offering unique advantages such as high permeability, selective pollutant removal, and compatibility with advanced oxidation processes (AOPs). Notably, hybrid systems combining AFMs with electrochemical or photocatalytic technologies have demonstrated remarkable efficiency in laboratory settings. However, translating these successes to real-world applications remains a challenge due to issues related to cost, scalability, and long-term stability. This review explores the recent progress in AFM development, particularly MOF-based, CNT-based, and electro-Fenton (EF)-based membranes, highlighting their material aspects, pollutant filtration mechanisms, benefits, and limitations. It also offers insights into how these next-generation materials can contribute to more sustainable, practical, and economically viable water purification solutions in the near future. Full article
18 pages, 1918 KB  
Article
Sustainable Degradation of Acetaminophen by a Solar-Powered Electro-Fenton Process: A Green and Energy-Efficient Approach
by Sonia Herrera-Chávez, Silvia Gutierrez, Miguel A. Sandoval, Enric Brillas, Martin Pacheco-Álvarez and Juan M. Peralta-Hernández
Processes 2025, 13(8), 2633; https://doi.org/10.3390/pr13082633 - 20 Aug 2025
Viewed by 1867
Abstract
The presence of acetaminophen (ACTP) in aquatic environments has become a significant concern due to its environmental persistence and the potential formation of toxic transformation products. This study systematically compares the performance of three electrochemical advanced oxidation processes (EAOPs), electro-oxidation (EO), electro-Fenton (EF), [...] Read more.
The presence of acetaminophen (ACTP) in aquatic environments has become a significant concern due to its environmental persistence and the potential formation of toxic transformation products. This study systematically compares the performance of three electrochemical advanced oxidation processes (EAOPs), electro-oxidation (EO), electro-Fenton (EF), and solar photo-electro-Fenton (SPEF), for the degradation and mineralization of ACTP in aqueous media using boron-doped diamond (BDD) electrodes. Reactions were conducted under varying operational parameters, including current densities (15–60 mA cm−2), initial ACTP concentrations (10–30 mg L−1), and Fe2+ dosages. In the SPEF system, natural sunlight was utilized as the source of UV-A irradiation (30–35 W m−2). Among the evaluated processes, SPEF exhibited the highest degradation efficiency, achieving up to 97% ACTP removal and 78% chemical oxygen demand (COD) reduction within 90 min. High-performance liquid chromatography (HPLC) analysis identified phenol and catechol as major intermediates, suggesting a degradation pathway involving hydroxylation, aromatic ring cleavage, and subsequent oxidation into low-molecular-weight carboxylic acids. Kinetic modeling revealed pseudo-first-order behavior, with a maximum rate constant of 0.0865 min−1 under optimized conditions determined via Box–Behnken experimental design. Additionally, SPEF demonstrated enhanced energy efficiency (~0.052 kWh gCOD−1) and improved oxidant regeneration under solar radiation, highlighting its potential as an environmentally friendly and cost-effective alternative for pharmaceutical wastewater treatment. These results support the implementation of SPEF as a sustainable strategy for mitigating the environmental impact of emerging contaminants, especially in regions with high solar availability and limited technological resources. Full article
(This article belongs to the Special Issue Modeling and Optimization for Multi-scale Integration)
Show Figures

Figure 1

27 pages, 3653 KB  
Review
Design and Application of Atomically Dispersed Transition Metal–Carbon Cathodes for Triggering Cascade Oxygen Reduction in Wastewater Treatment
by Shengnan Huang, Guangshuo Lyu, Chuhui Zhang, Chunye Lin and Hefa Cheng
Molecules 2025, 30(15), 3258; https://doi.org/10.3390/molecules30153258 - 4 Aug 2025
Viewed by 607
Abstract
The precise synthesis of non-precious metal single-atom electrocatalysts is crucial for enhancing the yield of highly active reactive oxygen species (ROSs). Conventional oxidation methods, such as Fenton or NaClO processes, suffer from poor efficiency, high energy demand, and secondary pollution. In contrast, heterogeneous [...] Read more.
The precise synthesis of non-precious metal single-atom electrocatalysts is crucial for enhancing the yield of highly active reactive oxygen species (ROSs). Conventional oxidation methods, such as Fenton or NaClO processes, suffer from poor efficiency, high energy demand, and secondary pollution. In contrast, heterogeneous electro-Fenton systems based on cascade oxygen reduction reactions (ORRs), which require low operational voltage and cause pollutant degradation through both direct electron transfer and ROS generation, have emerged as a promising alternative. Recent studies showed that carbon cathodes decorated with atomically dispersed transition metals can effectively integrate the excellent conductivity of carbon supports with the tunable surface chemistry of metal centers. However, the electronic structure of active sites intrinsically hinders the simultaneous achievement of high activity and selectivity in cascade ORRs. This review summarizes the advances, specifically from 2020 to 2025, in understanding the mechanism of cascade ORRs and the synthesis of transition metal-based single-atom catalysts in cathode electrocatalysis for efficient wastewater treatment, and discusses the key factors affecting treatment performance. While employing atomically engineered cathodes is a promising approach for energy-efficient wastewater treatment, future efforts should overcome the barriers in active site control and long-term stability of the catalysts to fully exploit their potential in addressing water pollution challenges. Full article
Show Figures

Graphical abstract

22 pages, 7389 KB  
Article
FeCo-LDH/CF Cathode-Based Electrocatalysts Applied to a Flow-Through Electro-Fenton System: Iron Cycling and Radical Transformation
by Heng Dong, Yuying Qi, Zhenghao Yan, Yimeng Feng, Wenqi Song, Fengxiang Li and Tao Hua
Catalysts 2025, 15(7), 685; https://doi.org/10.3390/catal15070685 - 15 Jul 2025
Viewed by 582
Abstract
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with [...] Read more.
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with excellent catalytic activity and was served as the cathode in a flow-through electro-Fenton (FTEF) reactor. The electrocatalyst demonstrated excellent treatment performance (99%) in phenol simulated wastewater (30 mg L−1) under the optimized operating conditions (applied voltage = 3.5 V, pH = 6, influent flow rate = 15 mL min−1) of the FTEF system. The high removal rate could be attributed to (i) the excellent electrocatalytic oxidation performance and low interfacial charge transfer resistance of the FeCo-LDH/CF electrode as the cathode, (ii) the ability of the synthesized FeCo-LDH to effectively promote the conversion of H2O2 to •OH under certain conditions, and (iii) the flow-through system improving the mass transfer efficiency. In addition, the degradation process of pollutants within the FTEF system was additionally illustrated by the •OH dominant ROS pathway based on free radical burst experiments and electron paramagnetic resonance tests. This study may provide new insights to explore reaction mechanisms in FTEF systems. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

16 pages, 3763 KB  
Article
Enhanced Sulfamethazine Degradation over a Wide pH Range by Cost-Effective Zero-Valent Iron-Based Electro-Fenton/Sulfite Process
by Jiayi He, Ge Song, Akhtar Islam and Minghua Zhou
Catalysts 2025, 15(7), 680; https://doi.org/10.3390/catal15070680 - 12 Jul 2025
Viewed by 610
Abstract
Sulfamethazine (SMT) is an antibiotic with good antimicrobial effect and is widely used to treat human and livestock diseases. Though the degradation of SMT by the conventional Fenton and electro-Fenton (EF) processes is efficient, it is limited by a narrow pH and iron [...] Read more.
Sulfamethazine (SMT) is an antibiotic with good antimicrobial effect and is widely used to treat human and livestock diseases. Though the degradation of SMT by the conventional Fenton and electro-Fenton (EF) processes is efficient, it is limited by a narrow pH and iron sludge generation. Herein, we constructed a cost-effective EF system with the synergistic effect of zero-valent iron (Fe0) and sulfite (Fe0-EF/Sulfite), and key parameters such as applied current, catalyst dosing, sulfite dosage, and initial pH were optimized. Under the optimal conditions (Fe0 dosing of 50 mg/L, sulfite dosage of 1.5 mM, current of 40 mA, and pH of 3), the removal efficiency of 10 mg/L SMT reached 100% within 30 min, and the degradation rate constant reached 0.194 min−1. Electron paramagnetic resonance (EPR) analysis and quenching experiments confirmed the generation of various reactive oxygen species (ROS), such as OH, SO4, O2, and 1O2, which significantly improved the pollutant removal efficiency. Sulfite accelerated iron cycling and inhibited the formation of iron sludge, thus broadening the pH range of the reaction from three to eight and overcoming the limitations of the conventional EF process. The Fe0-EF/Sulfite system performs cost-effectively at a wide pH range, providing an efficient and low-carbon solution for environmental pollution remediation with broad application prospects. Full article
(This article belongs to the Special Issue Catalytic Materials for Hazardous Wastewater Treatment)
Show Figures

Graphical abstract

13 pages, 537 KB  
Review
An Overview of Electrochemical Advanced Oxidation Processes for Pesticide Removal
by Maiara A. P. Frigulio, Alexandre S. Valério and Juliane C. Forti
Processes 2025, 13(7), 2227; https://doi.org/10.3390/pr13072227 - 11 Jul 2025
Cited by 1 | Viewed by 967
Abstract
This article provides an overview of the use of electrochemical advanced oxidation processes (EAOPs) applied to the treatment of water contaminated by pesticides. Given the global increase in the use of pesticides and the ineffectiveness of conventional treatment methods, EAOPs emerge as promising [...] Read more.
This article provides an overview of the use of electrochemical advanced oxidation processes (EAOPs) applied to the treatment of water contaminated by pesticides. Given the global increase in the use of pesticides and the ineffectiveness of conventional treatment methods, EAOPs emerge as promising alternatives. They stand out for their efficiency in the degradation of organic compounds, minimal reliance on additional chemical reagents, and minimal generation of waste. The main methods addressed include anodic oxidation, photoelectro-oxidation, electro-Fenton and photoelectro-Fenton, which use hydroxyl radicals, a potent non-selective oxidant, to mineralize pollutants. A total of 165 studies were reviewed, with emphasis on the contributions of countries such as China, Spain, Brazil, and India. Factors such as electrode type, presence of catalysts, pH, and current density influence the effectiveness of treatments. Combined processes, especially those integrating UV light and renewable sources, have proven to be more efficient. Despite challenges related to electrode cost and durability, recent advances highlight the sustainability and scalability of EAOPs for the treatment of agricultural and industrial effluents contaminated with pesticides. Full article
(This article belongs to the Special Issue Green Separation and Purification Processes)
Show Figures

Figure 1

32 pages, 1458 KB  
Review
A Review of Methods for the Removal of Endocrine-Disrupting Compounds with a Focus on Oestrogens and Pharmaceuticals Found in Wastewater
by Jolanta Latosińska and Agnieszka Grdulska
Appl. Sci. 2025, 15(12), 6514; https://doi.org/10.3390/app15126514 - 10 Jun 2025
Cited by 1 | Viewed by 2327
Abstract
Steroid hormones are micropollutants that contaminate water worldwide and have significant impacts on human health and the environment, even at very low concentrations. The aim of this article is to provide an overview of technologies for the removal of endocrine-disrupting compounds with a [...] Read more.
Steroid hormones are micropollutants that contaminate water worldwide and have significant impacts on human health and the environment, even at very low concentrations. The aim of this article is to provide an overview of technologies for the removal of endocrine-disrupting compounds with a focus on oestrogens (estrone E1, 17β-oestradiol E2, estriol E3), the synthetic oestrogen (17α-ethinylestradiol EE2 and bisphenol A BPA), and pharmaceuticals found in wastewater. Hormonal and pharmaceutical contaminants are mostly persistent organic compounds that cannot be easily removed using conventional wastewater treatment processes. For this reason, researchers have tried to develop more efficient tertiary wastewater treatment technologies to reduce micropollutant concentrations in wastewater. This review covers the following processes: Advanced oxidation, nanofiltration, ultrasound, electro-Fenton processes, electrolysis, adsorption, ozonation, photolysis, photocatalysis, ultrafiltration, and electrocoagulation. Attention was paid to the effectiveness of the processes in terms of eliminating hormones and pharmaceuticals from wastewater, as well as on economic and environmental aspects. The combination of different processes can be a promising treatment scheme for retaining and degrading hormonal and pharmaceutical compounds from wastewater. With hybrid technologies, the advantages of the methods are combined to maximise the removal of pollutants. However, optimal methods of wastewater treatment depend on the quality and quantity of the wastewater, as well as the residual hormonal and pharmaceutical compounds and their hazardous effects. Full article
(This article belongs to the Special Issue Wastewater Treatment Technologies—3rd Edition)
Show Figures

Figure 1

24 pages, 8136 KB  
Review
Recent Advances in the Electron Transfer Mechanism of Fe-Based Electro-Fenton Catalysts for Emerging Organic Contaminant Degradation
by Lu Huang, Yufeng Zhao, Yu Bai, Junxi Song and Guojin Sun
Catalysts 2025, 15(6), 549; https://doi.org/10.3390/catal15060549 - 1 Jun 2025
Viewed by 1350
Abstract
Heterogeneous electro-Fenton (HEF) technology utilizing iron-based cathode catalysts has emerged as an efficient advanced oxidation process for wastewater treatment, demonstrating outstanding performance in degrading emerging organic contaminants (EOCs) while maintaining environmental sustainability. The performance of this technology is governed by two critical processes: [...] Read more.
Heterogeneous electro-Fenton (HEF) technology utilizing iron-based cathode catalysts has emerged as an efficient advanced oxidation process for wastewater treatment, demonstrating outstanding performance in degrading emerging organic contaminants (EOCs) while maintaining environmental sustainability. The performance of this technology is governed by two critical processes: the accumulation of H2O2 and the electron transfer mechanisms governing the Fe(III)/Fe(II) redox cycle. This review comprehensively summarizes recent advances in understanding the electron transfer mechanisms in iron-based HEF systems and their applications for EOC degradation. Five representative catalyst categories are critically analyzed, including zero-valent iron/alloys, iron oxides, iron-carbon/nitrogen-doped carbon composites, iron sulfides/phosphides, and iron-based MOFs, with a particular focus on their structural design, catalytic performance, and electron transfer mechanisms. A particular focus is placed on strategies enhancing Fe(III)/Fe(II) cycling efficiency and the interplay between radical (OH) and non-radical (1O2) oxidation pathways, including their synergistic effects in complex wastewater systems. Major challenges, including catalyst stability, pH adaptability, and selective oxidation in complex matrices, are further discussed. Potential solutions to these limitations are also discussed. This review provides fundamental insights for designing high-efficiency iron-based HEF catalysts and outlines future research directions to advance practical applications. Full article
(This article belongs to the Special Issue Efficient Electro-Fenton-Catalysis)
Show Figures

Graphical abstract

20 pages, 2486 KB  
Article
An Experimental Study on the Novel Ozone-Electro-Fenton Coupled Reactor for Treating Ofloxacin-Containing Industrial Wastewater
by Yifeng Han, Lifen Zhang, Keyan Liu, Jinliang Tao and Feng Wei
Water 2025, 17(11), 1649; https://doi.org/10.3390/w17111649 - 29 May 2025
Viewed by 655
Abstract
Industrial organic wastewater, with its complex composition, high biological toxicity, and recalcitrance, has become a major challenge in water pollution control. This is especially true for antibiotic-containing wastewater, such as ofloxacin wastewater, for which there is an urgent need to develop effective treatment [...] Read more.
Industrial organic wastewater, with its complex composition, high biological toxicity, and recalcitrance, has become a major challenge in water pollution control. This is especially true for antibiotic-containing wastewater, such as ofloxacin wastewater, for which there is an urgent need to develop effective treatment technologies. Conventional treatment processes are insufficiently efficient, while individual advanced oxidation processes (AOPs) have drawbacks such as poor oxidation selectivity and catalyst deactivation. To address these issues, researchers have explored the coupling of different AOPs and found that such combinations can enhance the oxidation performance, achieve complementary advantages, reduce the equipment costs, and offer great development potential. An experiment was conducted to evaluate the performance of an Ozone-Electro-Fenton coupled process in treating ofloxacin industrial wastewater. The results demonstrated that under the same conditions, after four hours of treatment, the coupled process achieved a 70% reduction in the UV absorption peak of the wastewater, compared to less than 20% for individual processes, indicating a significant synergistic effect. Further optimization of the ozone aeration structure revealed that with a hole size of 0.5 mm, single-layer aeration holes, and six holes, the COD removal rate reached 96% after six hours, the ozone utilization improved to 85%, and the gas holdup stabilized at 4.6%. Under these conditions, the mixture of ozone and air bubbles formed mixed bubbles. Influenced by the electric field and electrode plate wall effects, the bubble residence time was prolonged. The bubble size was approximately 2.8 mm, the gas flow horizontal velocity was about 18.5 m/s, and after a horizontal displacement of 0.17 mm in the wastewater, the lateral velocity became zero. The ratio of the distance between the bubble center and the wall to the equivalent bubble diameter was approximately 3.45. The bubbles were subject to a strong wall effect, which extended their residence time. This not only facilitated the removal of small bubbles from the electrode plates but also enhanced the ion diffusion near the plates, thereby boosting pollutant degradation. This study shows that the Ozone-Electro-Fenton coupled process is highly effective in degrading ofloxacin industrial wastewater, offering an innovative solution for treating other antibiotic-containing wastewater. Future research will focus on further optimizing the process, improving its adaptability to complex matrix wastewater, and validating it at the pilot scale to promote its engineering application. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

34 pages, 2757 KB  
Review
Electrochemical-Based Technologies for Removing NSAIDs from Wastewater: Systematic Review with Bibliometric Analysis
by Katarina D. Stojanović, Danka D. Aćimović and Tanja P. Brdarić
Processes 2025, 13(5), 1272; https://doi.org/10.3390/pr13051272 - 22 Apr 2025
Viewed by 804
Abstract
Electrochemical-based processes have shown great promise in removing organic pollutants such as non-steroidal anti-inflammatory drugs (NSAIDs) from wastewater due to their effectiveness in addressing environmental pollution. This study conducts a bibliometric analysis of the most-cited articles in the field to systematically evaluate the [...] Read more.
Electrochemical-based processes have shown great promise in removing organic pollutants such as non-steroidal anti-inflammatory drugs (NSAIDs) from wastewater due to their effectiveness in addressing environmental pollution. This study conducts a bibliometric analysis of the most-cited articles in the field to systematically evaluate the progress and current state of electrochemical methods for NSAID removal from wastewater. Additionally, it highlights the potential of combining electrochemical techniques with other treatment methods to enhance the overall efficiency of NSAID removal. Research in this field has mainly focused on three technologies: electro-peroxone process (E-peroxone), electro-Fenton (EF), and electrochemical oxidation (EO). Early studies prioritized EO-based treatments, but interest has gradually shifted toward EF and E-peroxone. Future research is expected to focus on the development of cost-effective electrode materials, improving energy efficiency, and exploring hybrid systems for more effective treatment of wastewater contaminated with NSAIDs. An integrated bibliometric and systematic review framework presented in this study provides the first comprehensive assessment of electrochemical strategies for NSAIDs removal, highlighting the evolution of research focus and the potential of hybrid approaches. Full article
(This article belongs to the Special Issue Municipal Wastewater Treatment and Removal of Micropollutants)
Show Figures

Figure 1

15 pages, 3999 KB  
Article
Sustainable Remediation of Polyethylene Microplastics via a Magnetite-Activated Electro-Fenton System: Enhancing Persulfate Efficiency for Eco-Friendly Pollution Mitigation
by Weimin Gao, Tian Tian, Xiangju Cheng, Dantong Zhu and Lirong Yuan
Sustainability 2025, 17(8), 3559; https://doi.org/10.3390/su17083559 - 15 Apr 2025
Cited by 1 | Viewed by 1086
Abstract
Polyethylene microplastics (PE MPs) pose a severe threat to aquatic ecosystems and human health, demanding urgent, sustainable remediation strategies. While the electro-Fenton process is widely used for treating refractory pollutants in wastewater, its standalone application remains inadequate for PE MPs due to their [...] Read more.
Polyethylene microplastics (PE MPs) pose a severe threat to aquatic ecosystems and human health, demanding urgent, sustainable remediation strategies. While the electro-Fenton process is widely used for treating refractory pollutants in wastewater, its standalone application remains inadequate for PE MPs due to their stable chemical structure and complex molecular chains. This study introduces a green and sustainable magnetite-activated persulfate electro-Fenton (Mt-PS-EF) system designed to address these limitations while aligning with circular-economy principles. By synergizing Fe₃O₄ catalysis, persulfate activation, and electrochemical processes, the Mt-PS-EF system achieves efficient PE MP degradation through hydroxyl (·OH) and sulfate (SO₄·⁻) radical-driven oxidation. Under optimized conditions (60 mg/L PE, 40 mM persulfate, 150 mg Fe3O₄, 20 h treatment), a 90.6% degradation rate was attained, with PE MPs undergoing chain scission, surface erosion, and release of low-molecular-weight organics. Crucially, the magnetic property of magnetite facilitated the recovery and reuse of the catalyst, significantly reducing material costs and minimizing waste generation. By integrating catalytic efficiency with resource recovery, this work advances scalable, eco-friendly solutions for microplastic pollution mitigation, directly contributing to UN Sustainable Development Goals (SDGs) 6 (Clean Water) and 14 (Life Below Water). The findings highlight the potential of hybrid electro-Fenton technologies in achieving sustainable wastewater treatment and plastic waste management. Full article
Show Figures

Figure 1

43 pages, 5509 KB  
Review
Metal–Organic Frameworks: Next-Generation Materials for Environmental Remediation
by Daniel Terrón, Angeles Sanromán and Marta Pazos
Catalysts 2025, 15(3), 244; https://doi.org/10.3390/catal15030244 - 4 Mar 2025
Cited by 4 | Viewed by 2609
Abstract
Contamination of water resources, particularly from industrial discharges, agricultural runoff, or hospital wastewater, poses significant environmental and public health challenges. Traditional wastewater treatment methods often fail to effectively remove the diverse and persistent pollutants present in these sources, including emerging chemical compounds or [...] Read more.
Contamination of water resources, particularly from industrial discharges, agricultural runoff, or hospital wastewater, poses significant environmental and public health challenges. Traditional wastewater treatment methods often fail to effectively remove the diverse and persistent pollutants present in these sources, including emerging chemical compounds or biological agents. To address these challenges, metal–organic frameworks (MOFs) have emerged as multifunctional materials offering promising advancements in wastewater remediation. These materials can be applied directly as pollutant adsorbents or used for pathogen removal due to their antimicrobial activity. Additionally, MOFs play a crucial role in Advanced Oxidation Processes (AOPs) due to their catalytic activity. When incorporated into electro-Fenton, Fenton-like, or photocatalytic processes, MOFs enhance the generation of oxidant radicals, enabling efficient wastewater decontamination. This comprehensive review explores the potential of MOFs, focusing specifically on their design, synthesis, and application as multifunctional materials for the inactivation of pathogens and the removal of organic pollutants. Moreover, it examines their characteristics, recent advances in synthesis techniques, and the mechanisms underlying their removal efficiency. The findings presented underscore the transformative potential of MOFs in achieving clean and safer water, contributing to sustainable environmental management and public health protection. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

19 pages, 6220 KB  
Article
Synthesis of ZnO/g-C3N4 Composites Obtained by Pyrolysis of a Ternary Deep Eutectic Solvent and Their Application as Catalysts in Different AOPs
by Bárbara Lomba-Fernández, Marta Pazos, Emilio Rosales and M. Ángeles Sanromán
Appl. Sci. 2025, 15(5), 2475; https://doi.org/10.3390/app15052475 - 25 Feb 2025
Cited by 1 | Viewed by 1094
Abstract
This study investigates the synthesis and evaluation of ZnO/g-C3N4 composites as efficient green catalysts for advanced oxidation processes (AOPs) targeting the treatment of contaminated water. The composites were synthesized using a ternary deep eutectic solvent and physically–chemically characterized in detail, [...] Read more.
This study investigates the synthesis and evaluation of ZnO/g-C3N4 composites as efficient green catalysts for advanced oxidation processes (AOPs) targeting the treatment of contaminated water. The composites were synthesized using a ternary deep eutectic solvent and physically–chemically characterized in detail, confirming their structural integrity and successful synthesis. Photocatalytic, photo-Fenton- and electro-Fenton-like experiments were conducted using Rhodamine B as a model contaminant to evaluate the catalytic performance, reuse and stability of the synthesized material. The synthesized ZnO/g-C3N4 composites demonstrated excellent photocatalytic activity under LED light (395 nm), achieving a pollutant removal of around 59% in 90 min. The combined effect of the designed catalyst and Fenton-like process, a photo-Fenton-like process, significantly improved this performance, achieving removal of close to 95% in 60 min due to the synergistic effects of the irradiation and H2O2 activation. Finally, the catalytic action of synthesized ZnO/g-C3N4 composites in the electro-Fenton-like process exhibited superior efficiency, achieving 90% removal within 45 min and kinetic constants four times higher than those of anodic oxidation alone. In addition, reuse studies confirmed the stability and catalytic activity of the composites for several cycles with high removal efficiencies, demonstrating their viability for long-term and scalable water treatment applications. These findings highlight the potential of ZnO/g-C3N4 composites synthesized through DES as a sustainable and cost-effective alternative for water remediation technologies. Full article
Show Figures

Figure 1

11 pages, 4154 KB  
Communication
Degradation Efficiency and Mechanism Exploration of an Fe78Si9B13 Metallic Glass Cathode in the Electro-Fenton Degradation of p-NP
by Jiatao Xie, Shengkang Hu, Mengyuan Wei and Shenghui Xie
Materials 2025, 18(5), 930; https://doi.org/10.3390/ma18050930 - 20 Feb 2025
Viewed by 592
Abstract
Fe-based metallic glass (MG) exhibits excellent performance as a heterogeneous catalyst in degradation but is rarely used as a working electrode in electro-Fenton (EF) systems. We used Fe78Si9B13 MG as the working electrode to investigate the effect of [...] Read more.
Fe-based metallic glass (MG) exhibits excellent performance as a heterogeneous catalyst in degradation but is rarely used as a working electrode in electro-Fenton (EF) systems. We used Fe78Si9B13 MG as the working electrode to investigate the effect of the EF process on the degradation efficiency of p-nitrophenol (p-NP). The EF system had the highest catalytic efficiency (the reaction rate was 3.4 times that of chemical degradation) at a voltage of −1 V (vs. SCE) and showed 95.6% degradation of p-NP within 30 min. The electrode voltage accelerated the generation of hydroxyl radicals (·OH) in the system, thus promoting pollutant degradation. In addition, the Fe78Si9B13 MG cathode demonstrated good structural stability and reusability after 10 cycles. Fe78Si9B13 MG ribbons can serve as a suitable cathode material and provide potential optimization solutions for the degradation of organic pollutants. Full article
Show Figures

Figure 1

Back to TopTop