Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,287)

Search Parameters:
Keywords = electricity market operators

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2421 KiB  
Article
Optimization of Cooperative Operation of Multiple Microgrids Considering Green Certificates and Carbon Trading
by Xiaobin Xu, Jing Xia, Chong Hong, Pengfei Sun, Peng Xi and Jinchao Li
Energies 2025, 18(15), 4083; https://doi.org/10.3390/en18154083 (registering DOI) - 1 Aug 2025
Abstract
In the context of achieving low-carbon goals, building low-carbon energy systems is a crucial development direction and implementation pathway. Renewable energy is favored because of its clean characteristics, but the access may have an impact on the power grid. Microgrid technology provides an [...] Read more.
In the context of achieving low-carbon goals, building low-carbon energy systems is a crucial development direction and implementation pathway. Renewable energy is favored because of its clean characteristics, but the access may have an impact on the power grid. Microgrid technology provides an effective solution to this problem. Uncertainty exists in single microgrids, so multiple microgrids are introduced to improve system stability and robustness. Electric carbon trading and profit redistribution among multiple microgrids have been challenges. To promote energy commensurability among microgrids, expand the types of energy interactions, and improve the utilization rate of renewable energy, this paper proposes a cooperative operation optimization model of multi-microgrids based on the green certificate and carbon trading mechanism to promote local energy consumption and a low carbon economy. First, this paper introduces a carbon capture system (CCS) and power-to-gas (P2G) device in the microgrid and constructs a cogeneration operation model coupled with a power-to-gas carbon capture system. On this basis, a low-carbon operation model for multi-energy microgrids is proposed by combining the local carbon trading market, the stepped carbon trading mechanism, and the green certificate trading mechanism. Secondly, this paper establishes a cooperative game model for multiple microgrid electricity carbon trading based on the Nash negotiation theory after constructing the single microgrid model. Finally, the ADMM method and the asymmetric energy mapping contribution function are used for the solution. The case study uses a typical 24 h period as an example for the calculation. Case study analysis shows that, compared with the independent operation mode of microgrids, the total benefits of the entire system increased by 38,296.1 yuan and carbon emissions were reduced by 30,535 kg through the coordinated operation of electricity–carbon coupling. The arithmetic example verifies that the method proposed in this paper can effectively improve the economic benefits of each microgrid and reduce carbon emissions. Full article
Show Figures

Figure 1

40 pages, 4775 KiB  
Article
Optimal Sizing of Battery Energy Storage System for Implicit Flexibility in Multi-Energy Microgrids
by Andrea Scrocca, Maurizio Delfanti and Filippo Bovera
Appl. Sci. 2025, 15(15), 8529; https://doi.org/10.3390/app15158529 (registering DOI) - 31 Jul 2025
Abstract
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular [...] Read more.
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular focus on accurately modeling the structure of electricity and natural gas bills. The objective is to assess the added economic value of integrating a battery energy storage system (BESS) under the assumption it is employed to provide implicit flexibility—namely, bill management, energy arbitrage, and peak shaving. Results show that under assumed market conditions, tariff schemes, and BESS costs, none of the analyzed BESS configurations achieve a positive net present value. However, a 2 MW/4 MWh BESS yields a 3.8% reduction in annual operating costs compared to the base case without storage, driven by increased self-consumption (+2.8%), reduced thermal energy waste (–6.4%), and a substantial decrease in power-based electricity charges (–77.9%). The performed sensitivity analyses indicate that even with a significantly higher day-ahead market price spread, the BESS is not sufficiently incentivized to perform pure energy arbitrage and that the effectiveness of a time-of-use power-based tariff depends not only on the level of price differentiation but also on the BESS size. Overall, this study provides insights into the role of BESS in MEMGs and highlights the need for electricity bill designs that better reward the provision of implicit flexibility by storage systems. Full article
(This article belongs to the Special Issue Innovative Approaches to Optimize Future Multi-Energy Systems)
Show Figures

Figure 1

20 pages, 10604 KiB  
Article
A Safety-Based Approach for the Design of an Innovative Microvehicle
by Michelangelo-Santo Gulino, Susanna Papini, Giovanni Zonfrillo, Thomas Unger, Peter Miklis and Dario Vangi
Designs 2025, 9(4), 90; https://doi.org/10.3390/designs9040090 (registering DOI) - 31 Jul 2025
Abstract
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper [...] Read more.
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper presents the design and development of an innovative self-balancing microvehicle under the H2020 LEONARDO project, which aims to address these challenges through advanced engineering and user-centric design. The vehicle combines features of monowheels and e-scooters, integrating cutting-edge technologies to enhance safety, stability, and usability. The design adheres to European regulations, including Germany’s eKFV standards, and incorporates user preferences identified through representative online surveys of 1500 PLEV users. These preferences include improved handling on uneven surfaces, enhanced signaling capabilities, and reduced instability during maneuvers. The prototype features a lightweight composite structure reinforced with carbon fibers, a high-torque motorized front wheel, and multiple speed modes tailored to different conditions, such as travel in pedestrian areas, use by novice riders, and advanced users. Braking tests demonstrate deceleration values of up to 3.5 m/s2, comparable to PLEV market standards and exceeding regulatory minimums, while smooth acceleration ramps ensure rider stability and safety. Additional features, such as identification plates and weight-dependent motor control, enhance compliance with local traffic rules and prevent misuse. The vehicle’s design also addresses common safety concerns, such as curb navigation and signaling, by incorporating large-diameter wheels, increased ground clearance, and electrically operated direction indicators. Future upgrades include the addition of a second rear wheel for enhanced stability, skateboard-like rear axle modifications for improved maneuverability, and hybrid supercapacitors to minimize fire risks and extend battery life. With its focus on safety, regulatory compliance, and rider-friendly innovations, this microvehicle represents a significant advancement in promoting safe and sustainable urban mobility. Full article
(This article belongs to the Section Vehicle Engineering Design)
Show Figures

Figure 1

19 pages, 6937 KiB  
Article
Optimal Placement of Distributed Solar PV Adapting to Electricity Real-Time Market Operation
by Xi Chen and Hai Long
Sustainability 2025, 17(15), 6879; https://doi.org/10.3390/su17156879 - 29 Jul 2025
Viewed by 185
Abstract
Distributed photovoltaic (PV) generation is increasingly important for urban energy systems amid global climate change and the shift to renewable energy. Traditional PV deployment prioritizes maximizing energy output, often neglecting electricity price variability caused by time-of-use tariffs. This study develops a high-resolution planning [...] Read more.
Distributed photovoltaic (PV) generation is increasingly important for urban energy systems amid global climate change and the shift to renewable energy. Traditional PV deployment prioritizes maximizing energy output, often neglecting electricity price variability caused by time-of-use tariffs. This study develops a high-resolution planning and economic assessment model for building-integrated PV (BIPV) systems, incorporating hourly electricity real-time market prices, solar geometry, and submeter building spatial data. Wuhan (30.60° N, 114.05° E) serves as the case study to evaluate optimal PV placement and tilt angles on rooftops and façades, focusing on maximizing economic returns rather than energy production alone. The results indicate that adjusting rooftop PV tilt from a maximum generation angle (30°) to a maximum revenue angle (15°) slightly lowers generation but increases revenue, with west-facing orientations further improving returns by aligning output with peak electricity prices. For façades, south-facing panels yielded the highest output, while north-facing panels with tilt angles above 20° also showed significant potential. Façade PV systems demonstrated substantially higher generation potential—about 5 to 15 times that of rooftop PV systems under certain conditions. This model provides a spatially detailed, market-responsive framework supporting sustainable urban energy planning, quantifying economic and environmental benefits, and aligning with integrated approaches to urban sustainability. Full article
(This article belongs to the Special Issue Sustainable Energy Planning and Environmental Assessment)
Show Figures

Figure 1

26 pages, 4789 KiB  
Article
Analytical Modelling of Arc Flash Consequences in High-Power Systems with Energy Storage for Electric Vehicle Charging
by Juan R. Cabello, David Bullejos and Alvaro Rodríguez-Prieto
World Electr. Veh. J. 2025, 16(8), 425; https://doi.org/10.3390/wevj16080425 - 29 Jul 2025
Viewed by 199
Abstract
The improvement of environmental conditions has become a priority for governments and legislators. New electrified mobility systems are increasingly present in our environment, as they enable the reduction of polluting emissions. Electric vehicles (EVs) are one of the fastest-growing alternatives to date, with [...] Read more.
The improvement of environmental conditions has become a priority for governments and legislators. New electrified mobility systems are increasingly present in our environment, as they enable the reduction of polluting emissions. Electric vehicles (EVs) are one of the fastest-growing alternatives to date, with exponential growth expected over the next few years. In this article, the various charging modes for EVs are explored, and the risks associated with charging technologies are analysed, particularly for charging systems in high-power DC with Lithium battery energy storage, given their long market deployment and characteristic behaviour. In particular, the Arc Flash (AF) risk present in high-power DC chargers will be studied, involving numerous simulations of the charging process. Subsequently, the Incident Energy (IE) analysis is carried out at different specific points of a commercial high-power ‘Mode 4’ charger. For this purpose, different analysis methods of recognised prestige, such as Doan, Paukert, or Stokes and Oppenlander, are applied, using the latest version of the ETAP® simulation tool version 22.5.0. This study focuses on quantifying the potential severity (consequences) of an AF event, assuming its occurrence, rather than performing a probabilistic risk assessment according to standard methodologies. The primary objective of this research is to comprehensively quantify the potential consequences for workers involved in the operation, maintenance, repair, and execution of tasks related to EV charging systems. This analysis makes it possible to provide safe working conditions and to choose the appropriate and necessary personal protective equipment (PPE) for each type of operation. It is essential to develop this novel process to quantify the consequences of AF and to protect the end users of EV charging systems. Full article
(This article belongs to the Special Issue Fast-Charging Station for Electric Vehicles: Challenges and Issues)
Show Figures

Figure 1

18 pages, 1370 KiB  
Article
Price Impacts of Energy Transition on the Interconnected Wholesale Electricity Markets in the Northeast United States
by Jay W. Zarnikau, Chi-Keung Woo, Kang Hua Cao and Han Steffan Qi
Energies 2025, 18(15), 4019; https://doi.org/10.3390/en18154019 - 28 Jul 2025
Viewed by 140
Abstract
Our regression analysis documents that energy policies to promote renewable energy development, as well as hydroelectric imports from Canada, lead to short-run reductions in average electricity prices (also known as merit-order effects) throughout the Northeast United States. Changes in the reliance upon renewable [...] Read more.
Our regression analysis documents that energy policies to promote renewable energy development, as well as hydroelectric imports from Canada, lead to short-run reductions in average electricity prices (also known as merit-order effects) throughout the Northeast United States. Changes in the reliance upon renewable energy in one of the Northeast’s three interconnected electricity markets will impact wholesale prices in the other two. The retirement of a 1000 MW nuclear plant can increase prices by about 9% in the Independent System Operator of New England market and 7% in the New York Independent System Operator market in the short run at reference hubs, while also raising prices in neighboring markets. Some proposed large-scale off-shore wind farms would not only lower prices in local markets at the reference hubs modeled but would also lower prices in neighboring markets. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

86 pages, 10602 KiB  
Article
Optimizing Virtual Power Plants Cooperation via Evolutionary Game Theory: The Role of Reward–Punishment Mechanisms
by Lefeng Cheng, Pengrong Huang, Mengya Zhang, Kun Wang, Kuozhen Zhang, Tao Zou and Wentian Lu
Mathematics 2025, 13(15), 2428; https://doi.org/10.3390/math13152428 - 28 Jul 2025
Viewed by 193
Abstract
This paper addresses the challenge of fostering cooperation among virtual power plant (VPP) operators in competitive electricity markets, focusing on the application of evolutionary game theory (EGT) and static reward–punishment mechanisms. This investigation resolves four critical questions: the minimum reward–punishment thresholds triggering stable [...] Read more.
This paper addresses the challenge of fostering cooperation among virtual power plant (VPP) operators in competitive electricity markets, focusing on the application of evolutionary game theory (EGT) and static reward–punishment mechanisms. This investigation resolves four critical questions: the minimum reward–punishment thresholds triggering stable cooperation, the influence of initial market composition on equilibrium selection, the sufficiency of static versus dynamic mechanisms, and the quantitative mapping between regulatory parameters and market outcomes. The study establishes the mathematical conditions under which static reward–punishment mechanisms transform competitive VPP markets into stable cooperative systems, quantifying efficiency improvements of 15–23% and renewable integration gains of 18–31%. Through rigorous evolutionary game-theoretic analysis, we identify critical parameter thresholds that guarantee cooperation emergence, resolving longstanding market coordination failures documented across multiple jurisdictions. Numerical simulations and sensitivity analysis demonstrate that static reward–punishment systems enhance cooperation, optimize resources, and increase renewable energy utilization. Key findings include: (1) Reward–punishment mechanisms effectively promote cooperation and system performance; (2) A critical region exists where cooperation dominates, enhancing market outcomes; and (3) Parameter adjustments significantly impact VPP performance and market behavior. The theoretical contributions of this research address documented market failures observed across operational VPP implementations. Our findings provide quantitative foundations for regulatory frameworks currently under development in seven national energy markets, including the European Union’s proposed Digital Single Market for Energy and Japan’s emerging VPP aggregation standards. The model’s predictions align with successful cooperation rates achieved by established VPP operators, suggesting practical applicability for scaled implementations. Overall, through evolutionary game-theoretic analysis of 156 VPP implementations, we establish precise conditions under which static mechanisms achieve 85%+ cooperation rates. Based on this, future work could explore dynamic adjustments, uncertainty modeling, and technologies like blockchain to further improve VPP resilience. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control of Dynamical Systems)
Show Figures

Figure 1

38 pages, 2182 KiB  
Article
Smart Grid Strategies for Tackling the Duck Curve: A Qualitative Assessment of Digitalization, Battery Energy Storage, and Managed Rebound Effects Benefits
by Joseph Nyangon
Energies 2025, 18(15), 3988; https://doi.org/10.3390/en18153988 - 25 Jul 2025
Viewed by 346
Abstract
Modern utilities face unprecedented pressures as trends in digital transformation and democratized energy choice empower consumers to engage in peak shaving, flexible load management, and adopt grid automation and intelligence solutions. A powerful confluence of architectural, technological, and socio-economic forces is transforming the [...] Read more.
Modern utilities face unprecedented pressures as trends in digital transformation and democratized energy choice empower consumers to engage in peak shaving, flexible load management, and adopt grid automation and intelligence solutions. A powerful confluence of architectural, technological, and socio-economic forces is transforming the U.S. electricity market, triggering significant changes in electricity production, transmission, and consumption. Utilities are embracing digital twins and repurposed Utility 2.0 concepts—distributed energy resources, microgrids, innovative electricity market designs, real-time automated monitoring, smart meters, machine learning, artificial intelligence, and advanced data and predictive analytics—to foster operational flexibility and market efficiency. This analysis qualitatively evaluates how digitalization, Battery Energy Storage Systems (BESSs), and adaptive strategies to mitigate rebound effects collectively advance smart duck curve management. By leveraging digital platforms for real-time monitoring and predictive analytics, utilities can optimize energy flows and make data-driven decisions. BESS technologies capture surplus renewable energy during off-peak periods and discharge it when demand spikes, thereby smoothing grid fluctuations. This review explores the benefits of targeted digital transformation, BESSs, and managed rebound effects in mitigating the duck curve problem, ensuring that energy efficiency gains translate into actual savings. Furthermore, this integrated approach not only reduces energy wastage and lowers operational costs but also enhances grid resilience, establishing a robust framework for sustainable energy management in an evolving market landscape. Full article
(This article belongs to the Special Issue Policy and Economic Analysis of Energy Systems)
Show Figures

Figure 1

17 pages, 2690 KiB  
Article
Impact Analysis of Price Cap on Bidding Strategies of VPP Considering Imbalance Penalty Structures
by Youngkook Song, Yongtae Yoon and Younggyu Jin
Energies 2025, 18(15), 3927; https://doi.org/10.3390/en18153927 - 23 Jul 2025
Viewed by 207
Abstract
Virtual power plants (VPPs) enable the efficient participation of distributed renewable energy resources in electricity markets by aggregating them. However, the profitability of VPPs is challenged by market volatility and regulatory constraints, such as price caps and imbalance penalties. This study examines the [...] Read more.
Virtual power plants (VPPs) enable the efficient participation of distributed renewable energy resources in electricity markets by aggregating them. However, the profitability of VPPs is challenged by market volatility and regulatory constraints, such as price caps and imbalance penalties. This study examines the joint impact of varying price cap levels and imbalance penalty structures on the bidding strategies and revenues of VPPs. A stochastic optimization model was developed, where a three-stage scenario tree was utilized to capture the uncertainty in electricity prices and renewable generation output. Simulations were performed under various market conditions using real-world price and generation data from the Korean electricity market. The analysis reveals that higher price cap coefficients lead to greater revenue and more segmented bidding strategies, especially under asymmetric penalty structures. Segment-wise analysis of bid price–quantity pairs shows that over-bidding is preferred under upward-only penalty schemes, while under-bidding is preferred under downward-only ones. Notably, revenue improvement tapers off beyond a price cap coefficient of 0.8, which indicates that there exists an optimal threshold for regulatory design. The findings of this study suggest the need for coordination between price caps and imbalance penalties to maintain market efficiency while supporting renewable energy integration. The proposed framework also offers practical insights for market operators and policymakers seeking to balance profitability, adaptability, and stability in VPP-integrated electricity markets. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

21 pages, 10456 KiB  
Article
Experimental Validation of a Modular Skid for Hydrogen Production in a Hybrid Microgrid
by Gustavo Teodoro Bustamante, Jamil Haddad, Bruno Pinto Braga Guimaraes, Ronny Francis Ribeiro Junior, Frederico de Oliveira Assuncao, Erik Leandro Bonaldi, Luiz Eduardo Borges-da-Silva, Fabio Monteiro Steiner, Jaime Jose de Oliveira Junior and Claudio Inacio de Almeida Costa
Energies 2025, 18(15), 3910; https://doi.org/10.3390/en18153910 - 22 Jul 2025
Viewed by 240
Abstract
This article presents the development, integration, and experimental validation of a modular microgrid for sustainable hydrogen production, addressing global electricity demand and environmental challenges. The system was designed for initial validation in a thermoelectric power plant environment, with scalability to other applications. Centered [...] Read more.
This article presents the development, integration, and experimental validation of a modular microgrid for sustainable hydrogen production, addressing global electricity demand and environmental challenges. The system was designed for initial validation in a thermoelectric power plant environment, with scalability to other applications. Centered on a six-compartment skid, it integrates photovoltaic generation, battery storage, and a liquefied petroleum gas generator to emulate typical cogeneration conditions, together with a high-purity proton exchange membrane electrolyzer. A supervisory control module ensures real-time monitoring and energy flow management, following international safety standards. The study also explores the incorporation of blockchain technology to certify the renewable origin of hydrogen, enhancing traceability and transparency in the green hydrogen market. The experimental results confirm the system’s technical feasibility, demonstrating stable hydrogen production, efficient energy management, and islanded-mode operation with preserved grid stability. These findings highlight the strategic role of hydrogen as an energy vector in the transition to a cleaner energy matrix and support the proposed architecture as a replicable model for industrial facilities seeking to combine hydrogen production with advanced microgrid technologies. Future work will address large-scale validation and performance optimization, including advanced energy management algorithms to ensure economic viability and sustainability in diverse industrial contexts. Full article
Show Figures

Figure 1

34 pages, 712 KiB  
Review
Transformation of Demand-Response Aggregator Operations in Future US Electricity Markets: A Review of Technologies and Open Research Areas with Game Theory
by Styliani I. Kampezidou and Dimitri N. Mavris
Appl. Sci. 2025, 15(14), 8066; https://doi.org/10.3390/app15148066 - 20 Jul 2025
Viewed by 283
Abstract
The decarbonization of electricity generation by 2030 and the realization of a net-zero economy by 2050 are central to the United States’ climate strategy. However, large-scale renewable integration introduces operational challenges, including extreme ramping, unsafe dispatch, and price volatility. This review investigates how [...] Read more.
The decarbonization of electricity generation by 2030 and the realization of a net-zero economy by 2050 are central to the United States’ climate strategy. However, large-scale renewable integration introduces operational challenges, including extreme ramping, unsafe dispatch, and price volatility. This review investigates how demand–response (DR) aggregators and distributed loads can support these climate goals while addressing critical operational challenges. We hypothesize that current DR aggregator frameworks fall short in the areas of distributed load operational flexibility, scalability with the number of distributed loads (prosumers), prosumer privacy preservation, DR aggregator and prosumer competition, and uncertainty management, limiting their potential to enable large-scale prosumer participation. Using a systematic review methodology, we evaluate existing DR aggregator and prosumer frameworks through the proposed FCUPS criteria—flexibility, competition, uncertainty quantification, privacy, and scalability. The main results highlight significant gaps in current frameworks: limited support for decentralized operations; inadequate privacy protections for prosumers; and insufficient capabilities for managing competition, uncertainty, and flexibility at scale. We conclude by identifying open research directions, including the need for game-theoretic and machine learning approaches that ensure privacy, scalability, and robust market participation. Addressing these gaps is essential to shape future research agendas and to enable DR aggregators to contribute meaningfully to US climate targets. Full article
Show Figures

Figure 1

33 pages, 2022 KiB  
Review
A Novel Community Energy Projects Governance Model and Support Ecosystem Framework Based on Heating and Cooling Projects Enabled by Energy Communities
by Anastasios I. Karameros, Athanasios P. Chassiakos and Theo Tryfonas
Sustainability 2025, 17(14), 6571; https://doi.org/10.3390/su17146571 - 18 Jul 2025
Viewed by 483
Abstract
The EU power market system has successfully maintained a centralized governance structure ensuring stable electricity supply and affordable prices for over two decades. However, the ongoing energy transition towards carbon neutrality has exposed critical governance limitations, leading to challenges in community projects implementation. [...] Read more.
The EU power market system has successfully maintained a centralized governance structure ensuring stable electricity supply and affordable prices for over two decades. However, the ongoing energy transition towards carbon neutrality has exposed critical governance limitations, leading to challenges in community projects implementation. Given that Heating and Cooling (H&C) accounts for more than 50% of the EU’s energy consumption, community H&C initiatives can drive local energy transitions and support renewable integration. This study analyzes the best practices from European community energy initiatives, supplemented by insights from the Energy Leap project. By employing a comparative analysis approach, the study proposes a technically sound and regulatory feasible governance model, alongside a robust ecosystem support framework. The proposed framework introduces new roles and new forms of partnerships between communities—private entities and consumers—taking advantage of the benefits offered by the operation of Energy Communities (ECs), enhancing community engagement and regulatory adaptability. These insights offer practical guidance and contribute to effective policymaking in support of the EU’s energy transition objectives. Full article
Show Figures

Figure 1

19 pages, 6799 KiB  
Article
Analysis of Energy Recovery Out of the Water Supply and Distribution Network of the Brussels Capital Region
by François Nuc and Patrick Hendrick
Energies 2025, 18(14), 3777; https://doi.org/10.3390/en18143777 - 16 Jul 2025
Viewed by 229
Abstract
Water Supply and Distribution Networks (WSDNs) offer underexplored potential for energy recovery. While many studies confirm their technical feasibility, few assess the long-term operational compatibility and economic viability of such solutions. This study evaluates the energy recovery potential of the Brussels Capital Region’s [...] Read more.
Water Supply and Distribution Networks (WSDNs) offer underexplored potential for energy recovery. While many studies confirm their technical feasibility, few assess the long-term operational compatibility and economic viability of such solutions. This study evaluates the energy recovery potential of the Brussels Capital Region’s WSDN using four years (2019–2022) of operational data. Rather than focusing on available technologies, the analysis examines whether the real behavior of the network supports sustainable energy extraction. The approach includes network topology identification, theoretical power modeling, and detailed flow and pressure analysis. The Brussels system, composed of a Water Supply Network (WSN) and a Water Distribution Network (WDN), reveals strong disparities: the WSN offers localized opportunities for energy recovery, while the WDN presents significant operational constraints that limit economic viability. Our findings suggest that day-ahead electricity markets provide more suitable valorization pathways than flexibility markets. Most importantly, the study highlights the necessity of long-term behavioral analysis to avoid misleading conclusions based on short-term data and to support informed investment decisions in the urban water–energy nexus. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

22 pages, 1802 KiB  
Article
Economic Operation Optimization for Electric Heavy-Duty Truck Battery Swapping Stations Considering Time-of-Use Pricing
by Peijun Shi, Guojian Ni, Rifeng Jin, Haibo Wang, Jinsong Wang and Xiaomei Chen
Processes 2025, 13(7), 2271; https://doi.org/10.3390/pr13072271 - 16 Jul 2025
Viewed by 260
Abstract
Battery-swapping stations (BSSs) are pivotal for supplying energy to electric heavy-duty trucks. However, their operations face challenges in accurate demand forecasting for battery-swapping and fair revenue allocation. This study proposes an optimization strategy for the economic operation of BSSs that optimizes revenue allocation [...] Read more.
Battery-swapping stations (BSSs) are pivotal for supplying energy to electric heavy-duty trucks. However, their operations face challenges in accurate demand forecasting for battery-swapping and fair revenue allocation. This study proposes an optimization strategy for the economic operation of BSSs that optimizes revenue allocation and load balancing to enhance financial viability and grid stability. First, factors including geographical environment, traffic conditions, and truck characteristics are incorporated to simulate swapping behaviors, supporting the construction of an accurate demand-forecasting model. Second, an optimization problem is formulated to maximize the weighted difference between BSS revenue and squared load deviations. An economic operations strategy is proposed based on an adaptive Shapley value. It enables precise evaluation of differentiated member contributions through dynamic adjustment of bias weights in revenue allocation for a strategy that aligns with the interests of multiple stakeholders and market dynamics. Simulation results validate the superior performance of the proposed algorithm in revenue maximization, peak shaving, and valley filling. Full article
Show Figures

Figure 1

27 pages, 578 KiB  
Review
Market Applications and Uncertainty Handling for Virtual Power Plants
by Yujie Jin and Ciwei Gao
Energies 2025, 18(14), 3743; https://doi.org/10.3390/en18143743 - 15 Jul 2025
Viewed by 331
Abstract
Virtual power plants achieve the flexible scheduling and management of power systems by integrating distributed energy resources such as renewable energy sources, energy storage systems, and controllable loads. However, due to the instability of renewable energy generation, load demand fluctuations, and market price [...] Read more.
Virtual power plants achieve the flexible scheduling and management of power systems by integrating distributed energy resources such as renewable energy sources, energy storage systems, and controllable loads. However, due to the instability of renewable energy generation, load demand fluctuations, and market price uncertainty, virtual power plants face a gigantic challenge operating and participating in electricity markets. First, this paper outlines the functions and uncertainties of virtual power plants; then, it describes the uncertainties of virtual power plants in terms of aggregation, participation in market bidding, and optimal dispatch; finally, it summarizes the review. Full article
Show Figures

Figure 1

Back to TopTop