Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (535)

Search Parameters:
Keywords = electrical pulsing treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1111 KB  
Article
Pulse Frequency and Water Velocity Determine Crossing Probability in Pulsed Direct-Current Fish Barriers
by Wanshuang Yi, Lu Cai, Yun Tan, Bo Xu, Jun Li, Lianwei Liu, Lanlan Xu, David Johnson, Shihong Zhu and Guosheng Yang
Fishes 2025, 10(10), 510; https://doi.org/10.3390/fishes10100510 - 10 Oct 2025
Viewed by 139
Abstract
Fish barrier technology by pulsed direct current has broad application potential to guide fish to suitable waters. The primary objective of this investigation was to study the effects of electric pulse frequency and water velocity on fish deterrence by pulsed direct current. The [...] Read more.
Fish barrier technology by pulsed direct current has broad application potential to guide fish to suitable waters. The primary objective of this investigation was to study the effects of electric pulse frequency and water velocity on fish deterrence by pulsed direct current. The test fish were adults of two common carp species, Hypophthalmichthys nobilis (bighead carp, standard length 0.460–0.545 m) and Cyprinus carpio (Eurasian carp, standard length 0.292–0.335 m). Experiments were conducted in the 20 m swimming chamber of a 50 m flume, with a pulsed electric barrier produced by vertical electrodes located in the middle of the swimming chamber. The effectiveness of the electric barrier in deterring fish from swimming upstream past the electrodes was tested. The electric pulse generator produces a square wave pulse, with a voltage of 150 V and width of 2 ms. There were four electric pulse frequency treatments (4 Hz, 6 Hz, 8 Hz, 10 Hz), and two water velocity treatments (0.2 m/s, 0.6 m/s), with 10 replicates of each treatment. There were four primary findings. (1) Of the 160 fish tested, no fish was stunned and only 4 trembled (lost the ability to swim) for more than 2 s after encountering the electric barrier. (2) At a given water velocity, the crossing probability decreased as pulse frequency increased, and the decrease was largest when the frequency increased from 8 to 10 Hz. (3) At a given electric pulse frequency, the crossing probability was higher at the high water velocity, and barrier efficiency was more sensitive to velocity at higher pulse frequencies. (4) H. nobilis, a stronger swimmer, crossed more often than C. carpio. This study can provide ideas for the management of invasive species. However, the study was conducted under controlled laboratory conditions, and field experiments should be carried out before field applications. Full article
(This article belongs to the Special Issue Adaptation and Response of Fish to Environmental Changes)
Show Figures

Figure 1

18 pages, 1153 KB  
Article
Pulsed Electric Fields Reshape the Malting Barley Metabolome: Insights from UHPLC-HRMS/MS
by Adam Behner, Nela Prusova, Marcel Karabin, Lukas Jelinek, Jana Hajslova and Milena Stranska
Molecules 2025, 30(19), 3953; https://doi.org/10.3390/molecules30193953 - 1 Oct 2025
Viewed by 291
Abstract
The Pulsed Electric Field (PEF) technique represents a modern technology for treating and processing food and agricultural raw materials. The application of high-voltage electric pulses has been shown to modify macrostructure, improve extractability, and enhance the microbial safety of the treated matrix. In [...] Read more.
The Pulsed Electric Field (PEF) technique represents a modern technology for treating and processing food and agricultural raw materials. The application of high-voltage electric pulses has been shown to modify macrostructure, improve extractability, and enhance the microbial safety of the treated matrix. In this study, we investigated metabolomic changes occurring during the individual technological steps of malting following PEF treatment. Methanolic extracts of technological intermediates of malting barley were analyzed using metabolomic fingerprinting performed with UHPLC-HRMS/MS. For data processing and interpretation, the freely available MS-DIAL—MS-CleanR—MS-Finder software platform was used. The metabolomes of the treated and untreated barley samples revealed significant changes. Tentatively identified PEF-related biomarkers included 1,2-diacylglycerol-3-phosphates, triacylglycerols, linoleic acids and their derivatives, octadecanoids, N-acylserotonins, and very long-chain fatty acids, and probably reflect abiotic stress response. Monitoring of the profiles of selected biomarkers in PEF malting batch indirectly revealed a potential enhancement of enzymatic activity after the PEF treatment. These results contribute to fundamental knowledge regarding the influence of PEF on final malt from a metabolomic perspective. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

14 pages, 4404 KB  
Article
The Influence of Pulsed Superimposed DC Electric Field Synergistically Inducing Orientation Arrangement of BNNSs on Thermal Properties of Epoxy Composites
by Xiaopeng Wang, Songyuan Li, Zhen Yin, Qi Zhang, Lei Deng, Yiqin Peng and Yan Mi
Micromachines 2025, 16(10), 1126; https://doi.org/10.3390/mi16101126 - 30 Sep 2025
Viewed by 273
Abstract
Modern power systems require better heat dissipation and thermal stability, but traditional low-filler composites cannot significantly enhance thermal conductivity. To address this issue, electric field induction technology orientation can efficiently orient boron nitride nanosheets (BNNSs), thereby improving the thermal conductivity of epoxy composites [...] Read more.
Modern power systems require better heat dissipation and thermal stability, but traditional low-filler composites cannot significantly enhance thermal conductivity. To address this issue, electric field induction technology orientation can efficiently orient boron nitride nanosheets (BNNSs), thereby improving the thermal conductivity of epoxy composites composed of BNNSs as the thermally conductive filler. In this study, an innovative approach employing a pulsed superimposed direct current (DC) electric field to synergistically induce filler orientation is used to construct efficient thermally conductive channels. The study found that the thermal conductivity of the composite prepared by superimposing an 8 kV/mm pulsed electric field on a 30 V/mm DC electric field is about 0.474 W/(m·K), which is 34.66% higher than that prepared by only a pulsed-induced field and 17.5% higher than the theoretical superposition value. Similarly, the composite prepared by superimposing a 4 kV/mm pulsed electric field on a 70 V/mm DC electric field increased to about 0.464 W/(m·K), which is 27.47% higher than that prepared by only a DC-induced field and 12.4% higher than the theoretical superposition value. These results indicate that the superimposed electric field treatment synergistically improves the thermal conductivity of the composite. Compared to other materials, composites prepared using the superimposed pulsed and DC electric field induction also exhibit superior thermal stability. This strategy effectively addresses the issue of material thermal aging caused by insufficient thermal conductivity, providing innovative ideas and a solid theoretical foundation for material design and thermal management. Full article
(This article belongs to the Special Issue Low-Dimensional Materials and Applications in Electronics)
Show Figures

Figure 1

29 pages, 1623 KB  
Review
Electric Field Effects on Microbial Cell Properties: Implications for Detection and Control in Wastewater Systems
by Camelia Ungureanu, Silviu Răileanu, Daniela Simina Ștefan, Iosif Lingvay, Attila Tokos and Mircea Ștefan
Environments 2025, 12(10), 343; https://doi.org/10.3390/environments12100343 - 25 Sep 2025
Viewed by 772
Abstract
Electric fields (EFs) have emerged as effective, non-chemical tools for modulating microbial populations in complex matrices such as wastewater. This review consolidates current advances on EF-induced alterations in microbial structures and functions, focusing on both vegetative cells and spores. Key parameters affected include [...] Read more.
Electric fields (EFs) have emerged as effective, non-chemical tools for modulating microbial populations in complex matrices such as wastewater. This review consolidates current advances on EF-induced alterations in microbial structures and functions, focusing on both vegetative cells and spores. Key parameters affected include membrane thickness, transmembrane potential, electrical conductivity, and dielectric permittivity, with downstream impacts on ion homeostasis, metabolic activity, and viability. Such bioelectrical modifications underpin EF-based detection methods—particularly impedance spectroscopy and dielectrophoresis—which enable rapid, label-free, in situ microbial monitoring. Beyond detection, EFs can induce sublethal or lethal effects, enabling selective inactivation without chemical input. This review addresses the influence of field type (DC, AC, pulsed), intensity, and exposure duration, alongside limitations such as species-specific variability, heterogeneous environmental conditions, and challenges in achieving uniform field distribution. Emerging research highlights the integration of EF-based platforms with biosensors, machine learning, and real-time analytics for enhanced environmental surveillance. By linking microbiological mechanisms with engineering solutions, EF technologies present significant potential for sustainable water quality management. Their multidisciplinary applicability positions them as promising components of next-generation wastewater monitoring and treatment systems, supporting global efforts toward efficient, adaptive, and environmentally benign microbial control strategies. Full article
(This article belongs to the Special Issue Advanced Technologies for Contaminant Removal from Water)
Show Figures

Figure 1

17 pages, 627 KB  
Review
The Role of Electrochemotherapy in Managing Cutaneous Metastases from Breast Carcinoma: A Narrative Review
by Francesco Russano, Davide Brugnolo, Paolo Del Fiore, Marco Rastrelli, Luigi Dall’Olmo and Simone Mocellin
Biomedicines 2025, 13(10), 2345; https://doi.org/10.3390/biomedicines13102345 - 25 Sep 2025
Viewed by 382
Abstract
Cutaneous metastases from breast carcinoma represent a debilitating complication of advanced disease progression, significantly impacting patients’ quality of life. Electrochemotherapy (ECT), which combines cytotoxic drugs such as bleomycin or cisplatin with electric pulses to enhance cellular permeability, has shown promising efficacy as a [...] Read more.
Cutaneous metastases from breast carcinoma represent a debilitating complication of advanced disease progression, significantly impacting patients’ quality of life. Electrochemotherapy (ECT), which combines cytotoxic drugs such as bleomycin or cisplatin with electric pulses to enhance cellular permeability, has shown promising efficacy as a local treatment for these lesions. Objectives: This literature review examines the principles of ECT, its mechanisms of action and the clinical outcomes in patients with primary breast cancer. Across clinical series, patient-level ORR typically ranges from ~70–90% and CR up to ~58% at 6–12 weeks, with lower rates in larger (>3 cm) or deeper lesions. ECT is safe, well tolerated, and potentially synergistic with other systemic therapies. However, its efficacy is influenced by factors such as lesion size, tumor receptor status, and prior radiotherapy. Optimizing patient selection, standardizing treatment protocols, and developing combination approaches with immunotherapy or targeted therapies represent key future directions to improve clinical outcomes. Full article
Show Figures

Figure 1

38 pages, 2356 KB  
Review
Non-Thermal Technologies in Food Fermentation: Mechanisms, Benefits, and Industrial Perspectives for Sustainable Development
by Fernanda Elaine Barros Souza, Sueli Rodrigues and Thatyane Vidal Fonteles
Processes 2025, 13(9), 2988; https://doi.org/10.3390/pr13092988 - 18 Sep 2025
Viewed by 540
Abstract
Non-thermal technologies (NTTs) such as ultrasound (US), pulsed electric fields (PEF), high-pressure processing (HPP), cold plasma (CP), and pulsed light (PL) are emerging as versatile tools in food fermentation, offering microbial control and process enhancement without the detrimental heat effects of conventional methods. [...] Read more.
Non-thermal technologies (NTTs) such as ultrasound (US), pulsed electric fields (PEF), high-pressure processing (HPP), cold plasma (CP), and pulsed light (PL) are emerging as versatile tools in food fermentation, offering microbial control and process enhancement without the detrimental heat effects of conventional methods. Operating at ambient low temperatures, these techniques preserve heat-sensitive compounds, modulate microbial activity, and improve mass transfer, enabling both quality retention and functional enrichment. Recent studies highlight their potential to stimulate metabolic pathways and enhance the release of bioactive compounds, opening new opportunities for fermented food production. The bibliometric analysis of the recent literature further reveals a growing interest in NTT applications in fermentation, with HPP and PEF showing the highest industrial maturity. Each technology exhibits distinct mechanisms and optimal niches across upstream, midstream, and downstream stages: HPP for uniform volumetric treatment, US for fermentation intensification, CP for surface-selective oxidative chemistry, PEF for membrane permeability control, and PL for rapid, residue-free decontamination. While the degree of industrial readiness varies, critical barriers such as scale-up limitations, high capital costs, energy distribution uniformity, process standardization, and techno-economic feasibility remain to be overcome. Beyond technical aspects, the successful commercialization of NTTs will also depend on addressing regulatory approval pathways, ensuring consumer trust and acceptance, and demonstrating their contribution to sustainability goals through lower energy use, reduced food waste, and environmentally responsible processing. Strategic, stand-alone, or hybrid applications of NTTs can therefore act not only as technological alternatives but also as enablers of a more sustainable, consumer-centered, and innovation-driven food system. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Graphical abstract

12 pages, 1198 KB  
Article
Efficient Yeast Inactivation and Protein Extraction from Wine Lees Using Pulsed Electric Fields and Ultrasound: A Comparative Energy-Based Approach
by George Ntourtoglou, Aikaterini Tzamourani, Angeliki Kasioura, Artemis Tsioka, Pol Gimenez-Gil, Danai Gkizi, Maria Dimopoulou, Panagiotis Arapitsas and Alexandra Evangelou
Appl. Sci. 2025, 15(18), 9860; https://doi.org/10.3390/app15189860 - 9 Sep 2025
Viewed by 734
Abstract
The valorization of wine lees, a major by-product of winemaking, is gaining attention as part of broader initiatives to promote circular economy and sustainable resource use in the agri-food sector. This study assessed ultrasound (US), pulsed electric fields (PEF), and their combination (PEF [...] Read more.
The valorization of wine lees, a major by-product of winemaking, is gaining attention as part of broader initiatives to promote circular economy and sustainable resource use in the agri-food sector. This study assessed ultrasound (US), pulsed electric fields (PEF), and their combination (PEF + US) as non-thermal technologies for promoting yeast autolysis and recovering intracellular proteins from wine lees. All treatments effectively reduced yeast viability, with populations decreasing from ~7.0 to ~4.7 log CFU/mL within 5 min. PEF alone achieved this microbial inactivation with a low energy input of 25–100 kJ/kg. In contrast, US yielded the highest protein release (~5700 μg/mL after 20 min), although it required a substantial energy input (~19,800 kJ/kg). The combined PEF + US method provided comparable protein yields (~5400 μg/mL) while reducing energy consumption by more than 50%. These results demonstrate that PEF is the optimal method for low-energy microbial inactivation, whereas US and PEF + US are more effective for protein recovery. The synergy of the combined approach offers a balanced and scalable solution for sustainable bioprocessing, reinforcing the potential of hybrid technologies in the green extraction of wine industry by-products and their integration into circular bioeconomy strategies. Full article
Show Figures

Figure 1

17 pages, 5176 KB  
Article
Integrated Nanosecond Pulse Irreversible Electroporation (INSPIRE): Impact of Exposed Electrode Length on Ablation Geometry in an In Vivo Liver Model
by Jordan A. Fong, Logan Reeg, Jewels Darrow, Robert H. Williamson, Anna Riordan, Alexia K. Cash, Max Beecroft, Callie A. Fogle, Kyle G. Mathews, Nathan C. Nelson, Alina C. Iuga, David A. Gerber and Michael B. Sano
Cancers 2025, 17(17), 2891; https://doi.org/10.3390/cancers17172891 - 2 Sep 2025
Viewed by 849
Abstract
Objectives: There is a critical need for effective focal therapies for patients with inoperable or anatomically complex tumors where conventional ablation techniques pose high risk or are ineffective. Integrated Nanosecond Pulsed Irreversible Electroporation (INSPIRE) is a novel non-thermal ablation modality which uses real [...] Read more.
Objectives: There is a critical need for effective focal therapies for patients with inoperable or anatomically complex tumors where conventional ablation techniques pose high risk or are ineffective. Integrated Nanosecond Pulsed Irreversible Electroporation (INSPIRE) is a novel non-thermal ablation modality which uses real time temperature feedback during pulse delivery to safely treat tumors near critical structures. This study evaluated the impact of exposed electrode length on ablation zone size, reproducibility, and cardiac safety in a large animal model. Methods: INSPIRE treatments were performed in an in vivo healthy porcine liver model. All treatments administered 6000 V 1000 ns pulses with a 45 °C temperature set point. Treatments were administered percutaneously via an electrode and grounding pad approach using an internally cooled electrode applicator. The exposed electrode region at the distal end of the applicator was set to either 0.5, 1.0, 1.5, or 2.0 cm. Ablation zones were assessed via ultrasound, contrast-enhanced CT, and gross pathology one week post-treatment. Cardiac safety was evaluated by measuring pre- and post-treatment serum Troponin levels. Results: All treatments were completed without adverse events. Troponin levels remained stable (pre: 0.249 ng/mL; post: 0.224 ng/mL), indicating no measurable cardiac injury. The 1.5 cm exposure length produced the largest and most consistent ablation volumes, with a mean volume of 12.8 ± 2.6 cm3 and average dimensions of 3.7 × 2.7 cm in under 6 min. Increasing exposure length beyond 1.5 cm introduced greater variability and reduced treatment volumes. Conclusions: INSPIRE enables safe, large-volume, single-applicator ablation without a need for electrical pulse synchronization with R wave in cardiac rhythm. The 1.5 cm exposure length offers optimal balance between energy delivery and treatment consistency. These findings support further clinical investigation of INSPIRE for non-thermal ablation of inoperable tumors. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

28 pages, 881 KB  
Review
Innovative Non-Thermal Processing Technologies for Shelf Life Extension and Retention of Bioactive Compounds in Liquid Foods: Current Status and Future Prospects
by Muhammad Arslan, Muhammad Zareef, Mubrrah Afzal, Haroon Elrasheid Tahir, Zhihua Li, Halah Aalim, Hamza M. A. Abaker and Xiaobo Zou
Foods 2025, 14(17), 2953; https://doi.org/10.3390/foods14172953 - 25 Aug 2025
Viewed by 1159
Abstract
Consumer demands for fresh and minimally processed liquid foods that support disease prevention and promote health emphasize the need for innovative processing technologies that ensure microbiological safety and preserve bioactive compounds. In addition, consumers are becoming more concerned about the presence of chemical [...] Read more.
Consumer demands for fresh and minimally processed liquid foods that support disease prevention and promote health emphasize the need for innovative processing technologies that ensure microbiological safety and preserve bioactive compounds. In addition, consumers are becoming more concerned about the presence of chemical additives in liquid foods. Non-thermal processing technologies, including high-pressure processing, high-pressure homogenization, pulsed electric field, pulsed magnetic field, high-pressure carbon dioxide, ultrasound treatment, radiation processing, ozone processing, cold plasma, and membrane processing, offer excellent prospects for the application in liquid foods. The given technologies aim to retain bioactive properties, deactivate enzymatic activity, and destroy microorganisms, thereby extending the shelf life of liquid foods. Thus, this current review, without a doubt, could be valuable to the liquid food industries and the scientific world by offering great insight into the latest developments in the use of innovative non-thermal processing technologies, which can be employed for shelf life extension and the retention of bioactive compounds in liquid foods. This paper also discusses the challenges faced by the liquid food industry that need to be addressed in future studies. Full article
(This article belongs to the Special Issue Emerging Processing Technology and Equipment for Foods)
Show Figures

Figure 1

25 pages, 8677 KB  
Article
Pulsed Electric Field-Assisted “Green” Extraction of Betalains and Phenolic Compounds from Opuntia stricta var. dillenii Prickly Pears: Process Optimization and Biological Activity of Green Extracts
by Iván Gómez-López, Annachiara Pirozzi, Serena Carpentieri, María P. Portillo, Gianpiero Pataro, Giovanna Ferrari and M. Pilar Cano
Foods 2025, 14(17), 2934; https://doi.org/10.3390/foods14172934 - 22 Aug 2025
Viewed by 581
Abstract
Opuntia stricta var. dillenii (OPD) fruits are rich in betalains and phenolic compounds, which are recognized for their potential health-promoting properties. This study focuses on the optimization of pulsed electric field (PEF)-assisted solid–liquid green extraction (SLE) from OPD whole fruit, using response surface [...] Read more.
Opuntia stricta var. dillenii (OPD) fruits are rich in betalains and phenolic compounds, which are recognized for their potential health-promoting properties. This study focuses on the optimization of pulsed electric field (PEF)-assisted solid–liquid green extraction (SLE) from OPD whole fruit, using response surface methodology (RSM) experimental design to obtain green extracts rich in bioactive compounds. The optimal PEF pre-treatment conditions (electric field strength and energy input) were determined based on the cell disintegration index (Zp), followed by optimizing SLE conditions (temperature, time, and ethanol content). High-performance liquid chromatography (HPLC-DAD-ESI-Qtof) was used to characterize the individual bioactive compound profile of the obtained OPD green extracts. Results showed that optimal PEF pre-treatment conditions were at 10.5 kJ/kg and 5 kV/cm, followed by SLE at 35 °C for 165 min, using water as the solvent. Conventional optimal SLE conducted at 45 °C, 8% ethanol, and 128 min was applied as the control process. The combined PEF-assisted SLE process enhanced total betalain and phenolic compound yields by 61% and 135%, respectively. Antioxidant activities (DPPH by 145%, FRAP by 28%) and anti-inflammatory potential (hyaluronidase inhibition by 19%) were also significantly improved. This study underscores the potential use of a PEF pre-treatment to improve obtaining green extracts rich in bioactive compounds with high biological activities from OPD whole fruits, using water as a solvent. Full article
Show Figures

Graphical abstract

19 pages, 4634 KB  
Article
Tuning Titanium Surface Properties via μPPEO for Improved Osseointegration and Cell Adhesion
by Natália Z. P. De Melo, Stephany C. F. Bessa, Jussier O. Vitoriano, Carlos E. B. Moura, Rodrigo S. Pessoa and Clodomiro Alves-Junior
Materials 2025, 18(16), 3792; https://doi.org/10.3390/ma18163792 - 13 Aug 2025
Viewed by 547
Abstract
This study investigates a novel approach based on micro-pulse plasma electrolytic oxidation (μPPEO), aiming to improve the control over key parameters such as the Ca/P ratio, the formation of anatase and rutile phases, and the porosity of titanium surfaces—factors that are critical for [...] Read more.
This study investigates a novel approach based on micro-pulse plasma electrolytic oxidation (μPPEO), aiming to improve the control over key parameters such as the Ca/P ratio, the formation of anatase and rutile phases, and the porosity of titanium surfaces—factors that are critical for enhancing bioactivity. By employing electrical micro-pulses with widths of 50 μs or 100 μs, our aim was to restrict the discharge time and subsequent surface/electrolyte reactions. The results demonstrate that μPPEO-treated surfaces exhibit uniform pore diameters, a Ca/P ratio of approximately 1.67, and the better control of anatase/rutile formation. The μPPEO treatment successfully produced hydrophilic surfaces, with the 6Ti50 sample displaying the highest polar component of surface energy. Notably, this sample was the only one to support cell viability comparable to that of the polystyrene surface on the 24-well plate, emphasizing its strong potential for clinical applications. Across all treated surfaces, OFCOL osteoblasts displayed a spindle-like morphology with elongated filopodia, suggesting favorable cell interactions and adaptability to the treated surfaces. This study underscores the promise of PPEO as a valuable technique for biomedical applications, particularly in controlling and optimizing dental implant surfaces. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

23 pages, 1384 KB  
Article
Effect of Nanometals and Pulsed Electric Field (PEF) on the Germination Capacity of Seeds and Antioxidative Properties of Seedlings of Sunflower
by Magdalena Kachel-Górecka, Karolina Sokal and Małgorzata Stryjecka
Plants 2025, 14(16), 2512; https://doi.org/10.3390/plants14162512 - 12 Aug 2025
Viewed by 519
Abstract
The increasing integration of physical and nanotechnological treatments in agriculture has unlocked new possibilities for enhancing seed performance and the functional properties of seedlings. This study aimed to determine the effect of the coupled use of pulsed electric field (PEF) and the soaking [...] Read more.
The increasing integration of physical and nanotechnological treatments in agriculture has unlocked new possibilities for enhancing seed performance and the functional properties of seedlings. This study aimed to determine the effect of the coupled use of pulsed electric field (PEF) and the soaking (coating) of sunflower seeds in metal nanoparticles (AgNP and CuNP) on their germination capacity and on the stem and root length, content of pigments (chlorophyll a, chlorophyll b, carotenoids), color profile, and antioxidative properties (FRAP, polyphenols, TPC, ABTS, and DPPH) of sunflower seedlings. The study results enable the drawing of explicit conclusions that the higher PEF energy applied (5.5 kJ kg−1) and seed treatment with nanoparticle solutions, in most cases, diminished the germination capacity of sunflower seeds (from 3.50 to 44.11%) compared to the control samples. A decreased seedling stem length was determined at both PEF energy levels tested, i.e., 1 kJ kg−1 and 5.5 kJ kg−1, with the values obtained being 11.86% to 46.14% lower compared to the respective control samples. The root length of the seedlings decreased as well, i.e., by 7.34 to 41%. The content of chlorophyll a (chl a) increased in the seedlings from all experimental variants compared to the control, whereas that of chlorophyll b (chl b) decreased by 3.24 to 7.86% in the control variant with PEF and CuNP. The FRAP value, total content of polyphenols, and TPC ranged from 10.20 to 12.95 (mg TE g−1 DM), from 42.23 to 49.19 (mg GAE g−1 DM), and from 20.20 to 23.90 (mg GAE g−1 DM), respectively, and showed an upward trend compared to the control samples. The results of this study indicate that further research is needed to understand how the analyzed treatments affect seedling growth and demonstrate reduced germination capacity and enhanced antioxidant activity due to the synergistic effect of a high PEF and nanoparticle solutions. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

15 pages, 1541 KB  
Communication
Effect of Non-Thermal Treatments of Clear Apple Juice on Exogenous Pectinases
by Alberto Zavarise, Alema Puzović, Andres Felipe Moreno Barreto, Dario Pavon Vargas, Manfred Goessinger, Maja Mikulič Petkovšek, Massimiliano Rinaldi, Christian Haselmair-Gosch, Luca Cattani and Heidi Halbwirth
Beverages 2025, 11(4), 113; https://doi.org/10.3390/beverages11040113 - 6 Aug 2025
Viewed by 814
Abstract
Pulsed electric field (PEF) and high-pressure processing (HPP) are non-thermal treatments, developed to ensure preservation of food products whilst maintaining taste and valuable nutrients. In this study, we investigated their potential for the inactivation of 3 commercial exogenous pectinases (polygalacturonase, pectin transeliminase, pectin [...] Read more.
Pulsed electric field (PEF) and high-pressure processing (HPP) are non-thermal treatments, developed to ensure preservation of food products whilst maintaining taste and valuable nutrients. In this study, we investigated their potential for the inactivation of 3 commercial exogenous pectinases (polygalacturonase, pectin transeliminase, pectin esterase) commonly used in juice processing for clarification of juices. The inactivation of these enzymes after processing is mandatory by European law. Clear apple juice was treated with both non-thermal processing methods, as well as with thermal pasteurization as the standard method. For HPP, 3 pressures (250, 450, and 600 MPa) and different holding times (from 2 to 12 min) were tested. For PEF, 3 electric field intensities (10, 13, and 15 kV/cm) and different specific energy values (from 121 to 417 kJ/kg). Standard thermal pasteurization resulted in a complete inactivation of all tested pectinases. HPP treatment only showed marginal effects on polygalacturonase and pectin transeliminase at the highest pressure and holding times, which are beyond levels used in industrial settings. For PEF, dependence upon high electric field strength and specific energy values was evident; however, here too, the effect was only moderate at the levels attainable within the scope of this study. Assuming a continued linear relationship, usable results could be achieved in an industrial setting, albeit under more extreme conditions. Full article
(This article belongs to the Section Beverage Technology Fermentation and Microbiology)
Show Figures

Graphical abstract

23 pages, 3877 KB  
Article
Enhancing Bioactive Compound Extraction from Rose Hips Using Pulsed Electric Field (PEF) Treatment: Impacts on Polyphenols, Carotenoids, Volatiles, and Fermentation Potential
by George Ntourtoglou, Chaido Bardouki, Andreas Douros, Nikolaos Gkanatsios, Eleni Bozinou, Vassilis Athanasiadis, Stavros I. Lalas and Vassilis G. Dourtoglou
Molecules 2025, 30(15), 3259; https://doi.org/10.3390/molecules30153259 - 4 Aug 2025
Viewed by 695
Abstract
Rose hips are rich in polyphenols, making them a promising ingredient for the development of functional fruit-based beverages. This study aimed to evaluate the effect of Pulsed Electric Field (PEF) extraction treatment on rose hip (RH) pulp to enhance the extraction of polyphenols, [...] Read more.
Rose hips are rich in polyphenols, making them a promising ingredient for the development of functional fruit-based beverages. This study aimed to evaluate the effect of Pulsed Electric Field (PEF) extraction treatment on rose hip (RH) pulp to enhance the extraction of polyphenols, carotenoids, and volatile compounds. Additionally, this study examined the impact of adding rose hip berries during different stages of carbohydrate fermentation on the resulting phenolic and aroma profiles. A control wort and four experimental formulations were prepared. Rose hip pulp—treated or untreated with PEF—was added either during fermentation or beforehand, and the volatiles produced were analyzed using GC-MS (in triplicate). Fermentation was carried out over 10 days at 20 °C using Saccharomyces cerevisiae and Torulaspora delbrueckii. At a 10:1 ratio, all beverage samples were subjected to physicochemical testing and HPLC analysis for polyphenols, organic acids, and carotenoids, as well as GC-MS analysis for aroma compounds. The results demonstrated that the use of PEF-treated rose hips significantly improved phenolic compound extraction. Moreover, the PEF treatment enhanced the aroma profile of the beverage, contributing to a more complex and appealing sensory experience. This research highlights the rich polyphenol content of rose hips and the potential of PEF-treated fruit as a natural ingredient to improve both the functional and sensory qualities of fruit-based beverages. Their application opens new possibilities for the development of innovative, health-promoting drinks in the brewing industry. Full article
Show Figures

Figure 1

18 pages, 2432 KB  
Article
Alkali Lignin-Based Biopolymer Formulations for Electro-Assisted Drug Delivery of Natural Antioxidants in Breast Cancer Cells—A Preliminary Study
by Severina Semkova, Radina Deneva, Georgi Antov, Donika Ivanova and Biliana Nikolova
Int. J. Mol. Sci. 2025, 26(15), 7481; https://doi.org/10.3390/ijms26157481 - 2 Aug 2025
Viewed by 712
Abstract
Recently, a number of natural biologically active substances have been proven to be attractive alternatives to conventional anticancer medicine or as adjuvants in contemporary combination therapies. Although lignin-based materials were previously accepted as waste materials with limited usefulness, recent studies increasingly report the [...] Read more.
Recently, a number of natural biologically active substances have been proven to be attractive alternatives to conventional anticancer medicine or as adjuvants in contemporary combination therapies. Although lignin-based materials were previously accepted as waste materials with limited usefulness, recent studies increasingly report the possibility of their use for novel applications in various industrial branches, including biomedicine. In this regard, the safety, efficiency, advantages and limitations of lignin compounds for in vitro/in vivo applications remain poorly studied and described. This study was carried out to investigate the possibility of using newly synthesized, alkali lignin-based micro-/nano-biopolymer formulations (Lignin@Formulations/L@F) as carriers for substances with antioxidant and/or anticancer effectiveness. Moreover, we tried to assess the opportunity for using an electro-assisted approach for achieving improved intracellular internalization. An investigation was conducted on an in vitro panel of breast cell lines, namely two breast cancer lines with different metastatic potentials and one non-tumorigenic line as a control. The characterization of all tested formulations was performed via DLS (dynamic light scattering) analysis. We developed an improved separation procedure via size/charge unification for all types of Lignin@Formulations. Moreover, in vitro applications were investigated. The results demonstrate that compared to healthy breast cells, both tested cancer lines exhibited slight sensitivity after treatment with different formulations (empty or loaded with antioxidant substances). This effect was also enhanced after applying electric pulses. L@F loaded with Quercetin was also explored only on the highly metastatic cancer cell line as a model for the breast cancer type most aggressive and non-responsive to traditional treatments. All obtained data suggest that the tested formulations have potential as carriers for the electro-assisted delivery of natural antioxidants such as Quercetin. Full article
(This article belongs to the Special Issue Natural Products in Cancer Prevention and Treatment)
Show Figures

Figure 1

Back to TopTop