Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (667)

Search Parameters:
Keywords = electrical load cycling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3334 KiB  
Article
Market Research on Waste Biomass Material for Combined Energy Production in Bulgaria: A Path Toward Enhanced Energy Efficiency
by Penka Zlateva, Angel Terziev, Mariana Murzova, Nevena Mileva and Momchil Vassilev
Energies 2025, 18(15), 4153; https://doi.org/10.3390/en18154153 - 5 Aug 2025
Abstract
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle [...] Read more.
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle (ORC) utilizing wood biomass and the market interest in its deployment within Bulgaria. Its objective is to propose a technically and economically viable solution for the recovery of waste biomass through the combined production of electricity and heat while simultaneously assessing the readiness of industrial and municipal sectors to adopt such systems. The cogeneration plant incorporates an ORC module enhanced with three additional economizers that capture residual heat from flue gases. Operating on 2 t/h of biomass, the system delivers 1156 kW of electric power and 3660 kW of thermal energy, recovering an additional 2664 kW of heat. The overall energy efficiency reaches 85%, with projected annual revenues exceeding EUR 600,000 and a reduction in carbon dioxide emissions of over 5800 t/yr. These indicators can be achieved through optimal installation and operation. When operating at a reduced load, however, the specific fuel consumption increases and the overall efficiency of the installation decreases. The marketing survey results indicate that 75% of respondents express interest in adopting such technologies, contingent upon the availability of financial incentives. The strongest demand is observed for systems with capacities up to 1000 kW. However, significant barriers remain, including high initial investment costs and uneven access to raw materials. The findings confirm that the developed system offers a technologically robust, environmentally efficient and market-relevant solution, aligned with the goals of energy independence, sustainability and the transition to a low-carbon economy. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

23 pages, 2593 KiB  
Article
Preliminary Comparison of Ammonia- and Natural Gas-Fueled Micro-Gas Turbine Systems in Heat-Driven CHP for a Small Residential Community
by Mateusz Proniewicz, Karolina Petela, Christine Mounaïm-Rousselle, Mirko R. Bothien, Andrea Gruber, Yong Fan, Minhyeok Lee and Andrzej Szlęk
Energies 2025, 18(15), 4103; https://doi.org/10.3390/en18154103 - 1 Aug 2025
Viewed by 228
Abstract
This research considers a preliminary comparative technical evaluation of two micro-gas turbine (MGT) systems in combined heat and power (CHP) mode (100 kWe), aimed at supplying heat to a residential community of 15 average-sized buildings located in Central Europe over a year. Two [...] Read more.
This research considers a preliminary comparative technical evaluation of two micro-gas turbine (MGT) systems in combined heat and power (CHP) mode (100 kWe), aimed at supplying heat to a residential community of 15 average-sized buildings located in Central Europe over a year. Two systems were modelled in Ebsilon 15 software: a natural gas case (benchmark) and an ammonia-fueled case, both based on the same on-design parameters. Off-design simulations evaluated performance over variable ambient temperatures and loads. Idealized, unrecuperated cycles were adopted to isolate the thermodynamic impact of the fuel switch under complete combustion assumption. Under these assumptions, the study shows that the ammonia system produces more electrical energy and less excess heat, yielding marginally higher electrical efficiency and EUF (26.05% and 77.63%) than the natural gas system (24.59% and 77.55%), highlighting ammonia’s utilization potential in such a context. Future research should target validating ammonia combustion and emission profiles across the turbine load range, and updating the thermodynamic model with a recuperator and SCR accounting for realistic pressure losses. Full article
(This article belongs to the Special Issue Clean and Efficient Use of Energy: 3rd Edition)
Show Figures

Figure 1

24 pages, 11098 KiB  
Article
Fracture Mechanisms of Electrothermally Fatigued 631 Stainless Steel Fine Wires for Probe Spring Applications
by Chien-Te Huang, Fei-Yi Hung and Kai-Chieh Chang
Appl. Sci. 2025, 15(15), 8572; https://doi.org/10.3390/app15158572 (registering DOI) - 1 Aug 2025
Viewed by 167
Abstract
This study systematically investigates 50 μm-diameter 631 stainless steel fine wires subjected to both sequential and simultaneous electrothermomechanical loading to simulate probe spring conditions in microelectronic test environments. Under cyclic current loading (~104 A/cm2), the 50 μm 631SS wire maintained [...] Read more.
This study systematically investigates 50 μm-diameter 631 stainless steel fine wires subjected to both sequential and simultaneous electrothermomechanical loading to simulate probe spring conditions in microelectronic test environments. Under cyclic current loading (~104 A/cm2), the 50 μm 631SS wire maintained electrical integrity up to 0.30 A for 15,000 cycles. Above 0.35 A, rapid oxide growth and abnormal grain coarsening resulted in surface embrittlement and mechanical degradation. Current-assisted tensile testing revealed a transition from recovery-dominated behavior at ≤0.20 A to significant thermal softening and ductility loss at ≥0.25 A, corresponding to a threshold temperature of approximately 200 °C. These results establish the endurance limit of 631 stainless steel wire under coupled thermal–mechanical–electrical stress and clarify the roles of Joule heating, oxidation, and microstructural evolution in electrical fatigue resistance. A degradation map is proposed to inform design margins and operational constraints for fatigue-tolerant, electrically stable interconnects in high-reliability probe spring applications. Full article
(This article belongs to the Special Issue Application of Fracture Mechanics in Structures)
Show Figures

Figure 1

20 pages, 2981 KiB  
Article
Data-Driven Modelling and Simulation of Fuel Cell Hybrid Electric Powertrain
by Mehroze Iqbal, Amel Benmouna and Mohamed Becherif
Hydrogen 2025, 6(3), 53; https://doi.org/10.3390/hydrogen6030053 - 1 Aug 2025
Viewed by 81
Abstract
Inspired by the Toyota Mirai, this study presents a high-fidelity data-driven approach for modelling and simulation of a fuel cell hybrid electric powertrain. This study utilises technical assessment data sourced from Argonne National Laboratory’s publicly available report, faithfully modelling most of the vehicle [...] Read more.
Inspired by the Toyota Mirai, this study presents a high-fidelity data-driven approach for modelling and simulation of a fuel cell hybrid electric powertrain. This study utilises technical assessment data sourced from Argonne National Laboratory’s publicly available report, faithfully modelling most of the vehicle subsystems as data-driven entities. The simulation framework is developed in the MATLAB/Simulink environment and is based on a power dynamics approach, capturing nonlinear interactions and performance intricacies between different powertrain elements. This study investigates subsystem synergies and performance boundaries under a combined driving cycle composed of the NEDC, WLTP Class 3 and US06 profiles, representing urban, extra-urban and aggressive highway conditions. To emulate the real-world load-following strategy, a state transition power management and allocation method is synthesised. The proposed method dynamically governs the power flow between the fuel cell stack and the traction battery across three operational states, allowing the battery to stay within its allocated bounds. This simulation framework offers a near-accurate and computationally efficient digital counterpart to a commercial hybrid powertrain, serving as a valuable tool for educational and research purposes. Full article
Show Figures

Figure 1

21 pages, 6919 KiB  
Article
Symmetric Optimization Strategy Based on Triple-Phase Shift for Dual-Active Bridge Converters with Low RMS Current and Full ZVS over Ultra-Wide Voltage and Load Ranges
by Longfei Cui, Yiming Zhang, Xuhong Wang and Dong Zhang
Electronics 2025, 14(15), 3031; https://doi.org/10.3390/electronics14153031 - 30 Jul 2025
Viewed by 249
Abstract
Dual-active bridge (DAB) converters have emerged as a preferred topology in electric vehicle charging and energy storage applications, owing to their structurally symmetric configuration and intrinsic galvanic isolation capabilities. However, conventional triple-phase shift (TPS) control strategies face significant challenges in maintaining high efficiency [...] Read more.
Dual-active bridge (DAB) converters have emerged as a preferred topology in electric vehicle charging and energy storage applications, owing to their structurally symmetric configuration and intrinsic galvanic isolation capabilities. However, conventional triple-phase shift (TPS) control strategies face significant challenges in maintaining high efficiency across ultra-wide output voltage and load ranges. To exploit the inherent structural symmetry of the DAB topology, a symmetric optimization strategy based on triple-phase shift (SOS-TPS) is proposed. The method specifically targets the forward buck operating mode, where an optimization framework is established to minimize the root mean square (RMS) current of the inductor, thereby addressing both switching and conduction losses. The formulation explicitly incorporates zero-voltage switching (ZVS) constraints and operating mode conditions. By employing the Karush–Kuhn–Tucker (KKT) conditions in conjunction with the Lagrange multiplier method (LMM), the refined control trajectories corresponding to various power levels are analytically derived, enabling efficient modulation across the entire operating range. In the medium-power region, full-switch ZVS is inherently satisfied. In the low-power operation, full-switch ZVS is achieved by introducing a modulation factor λ, and a selection principle for λ is established. For high-power operation, the strategy transitions to a conventional single-phase shift (SPS) modulation. Furthermore, by exploiting the inherent symmetry of the DAB topology, the proposed method reveals the symmetric property of modulation control. The modulation strategy for the forward boost mode can be efficiently derived through a duty cycle and voltage gain mapping, eliminating the need for re-derivation. To validate the effectiveness of the proposed SOS-TPS strategy, a 2.3 kW experimental prototype was developed. The measured results demonstrate that the method ensures ZVS for all switches under the full load range, supports ultra-wide voltage conversion capability, substantially suppresses RMS current, and achieves a maximum efficiency of 97.3%. Full article
(This article belongs to the Special Issue Advanced Control Techniques for Power Converter and Drives)
Show Figures

Figure 1

18 pages, 2661 KiB  
Article
Resonator Width Optimization for Enhanced Performance and Bonding Reliability in Wideband RF MEMS Filter
by Gwanil Jeon, Minho Jeong, Shungmoon Lee, Youngjun Jo and Nam-Seog Kim
Micromachines 2025, 16(8), 878; https://doi.org/10.3390/mi16080878 - 29 Jul 2025
Viewed by 188
Abstract
This research investigates resonator width optimization for simultaneously enhancing electrical performance and mechanical reliability in wideband RF MEMS filters through systematic evaluation of three configurations: 0% (L1), 60% (L2), and 100% (L3) matching ratios between cap and bottom wafers using Au-Au thermocompression bonding. [...] Read more.
This research investigates resonator width optimization for simultaneously enhancing electrical performance and mechanical reliability in wideband RF MEMS filters through systematic evaluation of three configurations: 0% (L1), 60% (L2), and 100% (L3) matching ratios between cap and bottom wafers using Au-Au thermocompression bonding. The study demonstrates that resonator width alignment significantly influences both electromagnetic field coupling and bonding interface integrity. The L3 configuration with complete width matching achieved optimal RF performance, demonstrating 3.34 dB insertion loss across 4.5 GHz bandwidth (25% fractional bandwidth), outperforming L2 (3.56 dB) and L1 (3.10 dB), while providing enhanced electromagnetic wave coupling and minimized contact resistance. Mechanical reliability testing revealed superior bonding strength for the L3 configuration, withstanding up to 7.14 Kgf in shear pull tests, significantly exceeding L1 (4.22 Kgf) and L2 (2.24 Kgf). SEM analysis confirmed uniform bonding interfaces with minimal void formation (~180 nm), while Q-factor measurements showed L3 achieved optimal loaded Q-factor (QL = 3.31) suitable for wideband operation. Comprehensive environmental testing, including thermal cycling (−50 °C to +145 °C) and humidity exposure per MIL-STD-810E standards, validated long-term stability across all configurations. This investigation establishes that complete resonator width matching between cap and bottom wafers optimizes both electromagnetic performance and mechanical bonding reliability, providing a validated framework for developing high-performance, reliable RF MEMS devices for next-generation communication, radar, and sensing applications. Full article
(This article belongs to the Special Issue CMOS-MEMS Fabrication Technologies and Devices, 2nd Edition)
Show Figures

Figure 1

22 pages, 4225 KiB  
Article
One-Dimensional Simulation of Real-World Battery Degradation Using Battery State Estimation and Vehicle System Models
by Yuya Hato, Wei-hsiang Yang, Toshio Hirota, Yushi Kamiya and Kiyotaka Sato
World Electr. Veh. J. 2025, 16(8), 420; https://doi.org/10.3390/wevj16080420 - 25 Jul 2025
Viewed by 256
Abstract
This study aims to develop a method for analyzing real-world battery degradation in electric vehicles in order to identify the optimal battery management system (BMS) during the early digital phase of vehicle development. Battery management of lithium-ion batteries (LiBs) in electric vehicles is [...] Read more.
This study aims to develop a method for analyzing real-world battery degradation in electric vehicles in order to identify the optimal battery management system (BMS) during the early digital phase of vehicle development. Battery management of lithium-ion batteries (LiBs) in electric vehicles is important to ensure a stable output and to counteract degradation and thermal runaway. To design the optimal system, it is most effective to use a 1D (one-dimensional) vehicle system simulation model, which connects each unit model inside the vehicle, due to the system’s complexity. In order to create a long-term degradation simulation in a vehicle system model, it is important to reduce computational load. Therefore, in this paper, we studied a suitable battery degradation calculation for the vehicle system model based on an equivalent circuit model (ECM) and degradation approximation formulas. After implementing these models, we analyzed long-term degradation behavior through the real-world operation of an electric vehicle driver. We first implemented a high-accuracy ECM using transient charge–discharge tests and Bayesian Optimization. Next, we formulated approximation formulas for degradation prediction based on calendar and cycle degradation tests. Finally, we simulated real-world degradation behavior using these models. The simulation results revealed that even for users who frequently use electric vehicles, degradation under storage conditions is the dominant factor in overall degradation. Full article
Show Figures

Figure 1

23 pages, 13580 KiB  
Article
Enabling Smart Grid Resilience with Deep Learning-Based Battery Health Prediction in EV Fleets
by Muhammed Cavus and Margaret Bell
Batteries 2025, 11(8), 283; https://doi.org/10.3390/batteries11080283 - 24 Jul 2025
Viewed by 270
Abstract
The widespread integration of electric vehicles (EVs) into smart grid infrastructures necessitates intelligent and robust battery health diagnostics to ensure system resilience and performance longevity. While numerous studies have addressed the estimation of State of Health (SOH) and the prediction of remaining useful [...] Read more.
The widespread integration of electric vehicles (EVs) into smart grid infrastructures necessitates intelligent and robust battery health diagnostics to ensure system resilience and performance longevity. While numerous studies have addressed the estimation of State of Health (SOH) and the prediction of remaining useful life (RUL) using machine and deep learning, most existing models fail to capture both short-term degradation trends and long-range contextual dependencies jointly. In this study, we introduce V2G-HealthNet, a novel hybrid deep learning framework that uniquely combines Long Short-Term Memory (LSTM) networks with Transformer-based attention mechanisms to model battery degradation under dynamic vehicle-to-grid (V2G) scenarios. Unlike prior approaches that treat SOH estimation in isolation, our method directly links health prediction to operational decisions by enabling SOH-informed adaptive load scheduling and predictive maintenance across EV fleets. Trained on over 3400 proxy charge-discharge cycles derived from 1 million telemetry samples, V2G-HealthNet achieved state-of-the-art performance (SOH RMSE: 0.015, MAE: 0.012, R2: 0.97), outperforming leading baselines including XGBoost and Random Forest. For RUL prediction, the model maintained an MAE of 0.42 cycles over a five-cycle horizon. Importantly, deployment simulations revealed that V2G-HealthNet triggered maintenance alerts at least three cycles ahead of critical degradation thresholds and redistributed high-load tasks away from ageing batteries—capabilities not demonstrated in previous works. These findings establish V2G-HealthNet as a deployable, health-aware control layer for smart city electrification strategies. Full article
Show Figures

Figure 1

14 pages, 4639 KiB  
Article
CNTs/CNPs/PVA–Borax Conductive Self-Healing Hydrogel for Wearable Sensors
by Chengcheng Peng, Ziyan Shu, Xinjiang Zhang and Cailiu Yin
Gels 2025, 11(8), 572; https://doi.org/10.3390/gels11080572 - 23 Jul 2025
Viewed by 302
Abstract
The development of multifunctional conductive hydrogels with rapid self-healing capabilities and powerful sensing functions is crucial for advancing wearable electronics. This study designed and prepared a polyvinyl alcohol (PVA)–borax hydrogel incorporating carbon nanotubes (CNTs) and biomass carbon nanospheres (CNPs) as dual-carbon fillers. This [...] Read more.
The development of multifunctional conductive hydrogels with rapid self-healing capabilities and powerful sensing functions is crucial for advancing wearable electronics. This study designed and prepared a polyvinyl alcohol (PVA)–borax hydrogel incorporating carbon nanotubes (CNTs) and biomass carbon nanospheres (CNPs) as dual-carbon fillers. This hydrogel exhibits excellent conductivity, mechanical flexibility, and self-recovery properties. Serving as a highly sensitive piezoresistive sensor, it efficiently converts mechanical stimuli into reliable electrical signals. Sensing tests demonstrate that the CNT/CNP/PVA–borax hydrogel sensor possesses an extremely fast response time (88 ms) and rapid recovery time (88 ms), enabling the detection of subtle and rapid human motions. Furthermore, the hydrogel sensor also exhibits outstanding cyclic stability, maintaining stable signal output throughout continuous loading–unloading cycles exceeding 3200 repetitions. The hydrogel sensor’s characteristics, including rapid self-healing, fast-sensing response/recovery, and high fatigue resistance, make the CNT/CNP/PVA–borax conductive hydrogel an ideal choice for multifunctional wearable sensors. It successfully monitored various human motions. This study provides a promising strategy for high-performance self-healing sensing devices, suitable for next-generation wearable health monitoring and human–machine interaction systems. Full article
Show Figures

Figure 1

26 pages, 9566 KiB  
Article
How Does Energy Harvesting from a Fluttering Foil Influence Its Nonlinear Dynamics?
by Dilip Thakur, Faisal Muhammad and Muhammad Saif Ullah Khalid
Energies 2025, 18(15), 3897; https://doi.org/10.3390/en18153897 - 22 Jul 2025
Viewed by 221
Abstract
This study investigates the nonlinear aeroelastic behavior and energy harvesting performance of a two-degrees-of-freedom NACA 0012 airfoil under varying reduced velocities and electrical load resistances. The system exhibits a range of dynamic responses, including periodic and chaotic states, governed by strong fluid–structure interactions. [...] Read more.
This study investigates the nonlinear aeroelastic behavior and energy harvesting performance of a two-degrees-of-freedom NACA 0012 airfoil under varying reduced velocities and electrical load resistances. The system exhibits a range of dynamic responses, including periodic and chaotic states, governed by strong fluid–structure interactions. Nonlinear oscillations first appear near the critical reduced velocity Ur*=6, with large-amplitude limit-cycle oscillations emerging around Ur*=8 in the absence of the electrical loading. As the load resistance increases, this transition shifts to higher Ur*, reflecting the damping effect of the electrical load. Fourier spectra reveal the presence of odd and even superharmonics in the lift coefficient, indicating nonlinearities induced by fluid–structure coupling, which diminishes at higher resistances. Phase portraits and Poincaré maps capture transitions across dynamical regimes, from periodic to chaotic behavior, particularly at a low resistance. The voltage output correlates with variations in the lift force, reaching its maximum at an intermediate resistance before declining due to a suppressing nonlinearity. Flow visualizations identify various vortex shedding patterns, including single (S), paired (P), triplet (T), multiple-pair (mP) and pair with single (P + S) that weaken at higher resistances and reduced velocities. The results demonstrate that nonlinearity plays a critical role in efficient voltage generation but remains effective only within specific parameter ranges. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

34 pages, 5960 KiB  
Article
Motor Temperature Observer for Four-Mass Thermal Model Based Rolling Mills
by Boris M. Loginov, Stanislav S. Voronin, Roman A. Lisovskiy, Vadim R. Khramshin and Liudmila V. Radionova
Sensors 2025, 25(14), 4458; https://doi.org/10.3390/s25144458 - 17 Jul 2025
Viewed by 220
Abstract
Thermal control in rolling mills motors is gaining importance as more and more hard-to-deform steel grades are rolled. The capabilities of diagnostics monitoring also expand as digital IIoT-based technologies are adopted. Electrical drives in modern rolling mills are based on synchronous motors with [...] Read more.
Thermal control in rolling mills motors is gaining importance as more and more hard-to-deform steel grades are rolled. The capabilities of diagnostics monitoring also expand as digital IIoT-based technologies are adopted. Electrical drives in modern rolling mills are based on synchronous motors with frequency regulation. Such motors are expensive, while their reliability impacts the metallurgical plant output. Hence, developing the on-line temperature monitoring systems for such motors is extremely urgent. This paper presents a solution applying to synchronous motors of the upper and lower rolls in the horizontal roll stand of plate mill 5000. The installed capacity of each motor is 12 MW. According to the digitalization tendency, on-line monitoring systems should be based on digital shadows (coordinate observers) that are similar to digital twins, widely introduced at metallurgical plants. Modern reliability requirements set the continuous temperature monitoring for stator and rotor windings and iron core. This article is the first to describe a method for calculating thermal loads based on the data sets created during rolling. The authors have developed a thermal state observer based on four-mass model of motor heating built using the Simscape Thermal Models library domains that is part of the MATLAB Simulink. Virtual adjustment of the observer and of the thermal model was performed using hardware-in-the-loop (HIL) simulation. The authors have validated the results by comparing the observer’s values with the actual values measured at control points. The discrete masses heating was studied during the rolling cycle. The stator and rotor winding temperature was analysed at different periods. The authors have concluded that the motors of the upper and lower rolls are in a satisfactory condition. The results of the study conducted generally develop the idea of using object-oriented digital shadows for the industrial electrical equipment. The authors have introduced technologies that improve the reliability of the rolling mills electrical drives which accounts for the innovative development in metallurgy. The authors have also provided recommendations on expanded industrial applications of the research results. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

31 pages, 2741 KiB  
Article
Power Flow Simulation and Thermal Performance Analysis of Electric Vehicles Under Standard Driving Cycles
by Jafar Masri, Mohammad Ismail and Abdulrahman Obaid
Energies 2025, 18(14), 3737; https://doi.org/10.3390/en18143737 - 15 Jul 2025
Viewed by 370
Abstract
This paper presents a simulation framework for evaluating power flow, energy efficiency, thermal behavior, and energy consumption in electric vehicles (EVs) under standardized driving conditions. A detailed Simulink model is developed, integrating a lithium-ion battery, inverter, permanent magnet synchronous motor (PMSM), gearbox, and [...] Read more.
This paper presents a simulation framework for evaluating power flow, energy efficiency, thermal behavior, and energy consumption in electric vehicles (EVs) under standardized driving conditions. A detailed Simulink model is developed, integrating a lithium-ion battery, inverter, permanent magnet synchronous motor (PMSM), gearbox, and a field-oriented control strategy with PI-based speed and current regulation. The framework is applied to four standard driving cycles—UDDS, HWFET, WLTP, and NEDC—to assess system performance under varied load conditions. The UDDS cycle imposes the highest thermal loads, with temperature rises of 76.5 °C (motor) and 52.0 °C (inverter). The HWFET cycle yields the highest energy efficiency, with PMSM efficiency reaching 92% and minimal SOC depletion (15%) due to its steady-speed profile. The WLTP cycle shows wide power fluctuations (−30–19.3 kW), and a motor temperature rise of 73.6 °C. The NEDC results indicate a thermal increase of 75.1 °C. Model results show good agreement with published benchmarks, with deviations generally below 5%, validating the framework’s accuracy. These findings underscore the importance of cycle-sensitive analysis in optimizing energy use and thermal management in EV powertrain design. Full article
Show Figures

Figure 1

17 pages, 5309 KiB  
Article
Application of Carbon Nanotube-Based Elastomeric Matrix for Capacitive Sensing in Diabetic Foot Orthotics
by Monisha Elumalai, Andre Childs, Samantha Williams, Gabriel Arguello, Emily Martinez, Alaina Easterling, Dawn San Luis, Swaminathan Rajaraman and Charles M. Didier
Micromachines 2025, 16(7), 804; https://doi.org/10.3390/mi16070804 - 11 Jul 2025
Viewed by 463
Abstract
Diabetic foot ulcers (DFUs) represent a critical global health issue, necessitating the development of advanced smart, flexible, and wearable sensors for continuous monitoring that are reimbursable within foot orthotics. This study presents the design and characterization of a pressure sensor implemented into a [...] Read more.
Diabetic foot ulcers (DFUs) represent a critical global health issue, necessitating the development of advanced smart, flexible, and wearable sensors for continuous monitoring that are reimbursable within foot orthotics. This study presents the design and characterization of a pressure sensor implemented into a shoe insole to monitor diabetic wound pressures, emphasizing the need for a high sensitivity, durability under cyclic mechanical loading, and a rapid response time. This investigation focuses on the electrical and mechanical properties of carbon nanotube (CNT) composites utilizing Ecoflex and polydimethylsiloxane (PDMS). Morphological characterization was conducted using Transmission Electron Microscopy (TEM), Laser Confocal Microscopy, and Scanning Electron Microscopy (SEM). The electrical and mechanical properties of the CNT/Ecoflex- and the CNT/PDMS-based sensor composites were then investigated. CNT/Ecoflex was then further evaluated due to its lower variability performance between cycles at the same pressure, as well as its consistently higher capacitance values across all trials in comparison to CNT/PDMS. The CNT/Ecoflex composite sensor showed a high sensitivity (2.38 to 3.40 kPa−1) over a pressure sensing range of 0 to 68.95 kPa. The sensor’s stability was further assessed under applied pressures simulating human weight. A custom insole prototype, incorporating 12 CNT/Ecoflex elastomeric matrix-based sensors (as an example) distributed across the metatarsal heads, midfoot, and heel regions, was developed and characterized. Capacitance measurements, ranging from 0.25 pF to 60 pF, were obtained across N = 3 feasibility trials, demonstrating the sensor’s response to varying pressure conditions linked to different body weights. These results highlight the potential of this flexible insole prototype for precise and real-time plantar surface monitoring, offering an approachable avenue for a challenging diabetic orthotics application. Full article
(This article belongs to the Special Issue Bioelectronics and Its Limitless Possibilities)
Show Figures

Figure 1

20 pages, 2381 KiB  
Article
Modeling and Analysis of Carbon Emissions Throughout Lifecycle of Electric Vehicles Considering Dynamic Carbon Emission Factors
by Yanhong Xiao, Bin Qian, Houpeng Hu, Mi Zhou, Zerui Chen, Xiaoming Lin, Peilin He and Jianlin Tang
Sustainability 2025, 17(14), 6357; https://doi.org/10.3390/su17146357 - 11 Jul 2025
Viewed by 321
Abstract
Amidst the global strategic transition towards low-carbon energy systems, electric vehicles (EVs) are pivotal for achieving deep decarbonization within the transportation sector. Consequently, enhancing the scientific rigor and precision of their life-cycle carbon footprint assessments is of paramount importance. Addressing the limitations of [...] Read more.
Amidst the global strategic transition towards low-carbon energy systems, electric vehicles (EVs) are pivotal for achieving deep decarbonization within the transportation sector. Consequently, enhancing the scientific rigor and precision of their life-cycle carbon footprint assessments is of paramount importance. Addressing the limitations of existing research, notably ambiguous assessment boundaries and the omission of dynamic coupling characteristics, this study develops a dynamic regional-level life-cycle carbon footprint assessment model for EVs that incorporates time-variant carbon emission factors. The methodology first delineates system boundaries based on established life-cycle assessment (LCA) principles, establishing a comprehensive analytical framework encompassing power battery production, vehicle manufacturing, operational use, and end-of-life recycling. Subsequently, inventory analysis is employed to model carbon emissions during the production and recycling phases. Crucially, for the operational phase, we introduce a novel source–load synergistic optimization approach integrating dynamic carbon intensity tracking. This is achieved by formulating a low-carbon dispatch model that accounts for power grid security constraints and the spatiotemporal distribution of EVs, thereby enabling the calculation of dynamic nodal carbon intensities and consequential EV emissions. Finally, data from these distinct stages are integrated to construct a holistic life-cycle carbon accounting system. Our results, based on a typical regional grid scenario, reveal that indirect carbon emissions during the operational phase contribute 75.1% of the total life-cycle emissions, substantially outweighing contributions from production (23.4%) and recycling (1.5%). This underscores the significant carbon mitigation leverage of the use phase and validates the efficacy of our dynamic carbon intensity model in improving the accuracy of regional-level EV carbon accounting. Full article
(This article belongs to the Special Issue Sustainable Management for Distributed Energy Resources)
Show Figures

Figure 1

19 pages, 3806 KiB  
Article
Electroactive Poly(amic acid) Films Grafted with Pendant Aniline Tetramer for Hydrogen Sulfide Gas Sensing Applications
by Kun-Hao Luo, Yun-Ting Chen, Hsuan-Yu Wu, Zong-Kai Ni and Jui-Ming Yeh
Polymers 2025, 17(14), 1915; https://doi.org/10.3390/polym17141915 - 11 Jul 2025
Viewed by 366
Abstract
Hydrogen sulfide (H2S) is a highly toxic and corrosive gas generated in numerous industrial and environmental processes; rapid, sensitive detection at low ppm levels is therefore crucial for ensuring occupational safety and protecting public health. This work explores the effect of [...] Read more.
Hydrogen sulfide (H2S) is a highly toxic and corrosive gas generated in numerous industrial and environmental processes; rapid, sensitive detection at low ppm levels is therefore crucial for ensuring occupational safety and protecting public health. This work explores the effect of grafting various loadings of pendant aniline tetramer pendants (PEDA) onto electroactive poly(amic acid) (EPAA) films and evaluates their performance as H2S gas sensors. Comprehensive characterization including ion trap mass spectrometry (Ion trap MS), Fourier-transform infrared spectroscopy (FTIR), cyclic voltammetry (CV), and four-probe conductivity measurements, confirmed successful PEDA incorporation and revealed enhanced electrical conductivity with increasing PEDA content. Gas sensing tests revealed that EPAA3 (3 wt% PEDA) achieved the best overall performance toward 10 ppm H2S, producing a 591% response with a rapid 108 s response time. Selectivity studies showed that the response of EPAA3 to H2S exceeded those for SO2, NO2, NH3, and CO by factors of five to twelve, underscoring its excellent discrimination against common interferents. Repeatability tests over five successive cycles gave a relative standard deviation of just 7.4% for EPAA3, and long-term stability measurements over 16 days in ambient air demonstrated that EPAA3 retained over 80%. These findings establish that PEDA-grafted PAA films combine the processability of poly(amic acid) with the sharp, reversible redox behavior of pendant aniline tetramers, delivering reproducible, selective, and stable H2S sensing. EPAA3, in particular, represents a balanced composition that maximizes sensitivity and durability, offering a promising platform for practical environmental monitoring and industrial safety applications. Full article
(This article belongs to the Special Issue Development of Applications of Polymer-Based Sensors and Actuators)
Show Figures

Figure 1

Back to TopTop