Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = electric hybrid turbocharger

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 13172 KiB  
Article
Impact of Optimization Variables on Fuel Consumption in Large Four-Stroke Diesel Marine Engines with Electrically Divided Turbochargers
by Anibal Aguillon Salazar, Georges Salameh, Pascal Chesse, Nicolas Bulot and Yoann Thevenoux
Machines 2024, 12(12), 926; https://doi.org/10.3390/machines12120926 - 17 Dec 2024
Cited by 2 | Viewed by 1287
Abstract
The objective of this study is to understand how each variable impacts the optimal configuration of a marine diesel engine equipped with an electric hybrid air-charging system that allows energy assistance and recovery. The aim is to minimize CO2 emissions by reducing [...] Read more.
The objective of this study is to understand how each variable impacts the optimal configuration of a marine diesel engine equipped with an electric hybrid air-charging system that allows energy assistance and recovery. The aim is to minimize CO2 emissions by reducing fuel consumption. The hybrid system offers flexibility in adjusting parameters from both the engine and air-charging system. It is compared with the baseline engine, which uses a free-floating turbocharger. The results show a significant improvement at low engine loads, where the baseline engine struggles to provide sufficient air. While turbine speed has little influence, compressor power reduces fuel consumption at low loads. However, at mid loads, resizing the turbomachine is necessary for further improvements. At high loads, full optimization of all variables is required to reduce fuel consumption. The electric hybrid system is particularly effective in tugboat-like conditions, where low loads dominate, but less impactful for ro-pax ferries. Despite the potential of the hybrid system, a fully optimized turbocharger could provide greater benefits due to reduced losses. Future studies could explore combining the adaptability of the hybrid system with a highly efficient turbocharger to reduce emissions across all load conditions. Full article
(This article belongs to the Special Issue Advanced Engine Energy Saving Technology)
Show Figures

Figure 1

22 pages, 2417 KiB  
Review
Review of the Integration of Hybrid Electric Turbochargers for Mass-Produced Road Vehicles
by Cosmin Constantin Suciu, Sorin Vlad Igret, Ion Vetres and Ioana Ionel
Energies 2024, 17(6), 1484; https://doi.org/10.3390/en17061484 - 20 Mar 2024
Cited by 1 | Viewed by 2741
Abstract
This study presents the findings of a comprehensive SWOT analysis on the integration of hybrid electric turbochargers (HETs) in mass-produced road vehicles. Through a synthesis of multiple research findings, this study compared the performance of HETs on thermal engines versus traditional turbochargers and [...] Read more.
This study presents the findings of a comprehensive SWOT analysis on the integration of hybrid electric turbochargers (HETs) in mass-produced road vehicles. Through a synthesis of multiple research findings, this study compared the performance of HETs on thermal engines versus traditional turbochargers and HETs on thermal engines versus HETs on hybrid engines. The analysis highlights key strengths, weaknesses, opportunities, and threats associated with the adoption of HET technology in the automotive industry. The results of the SWOT analysis provide valuable insights for both manufacturers and consumers regarding the feasibility and benefits of adopting HET technology in modern vehicles. By elucidating the fundamental mechanics of turbochargers and demonstrating the potential of hybrid electric turbocharging, this study contributes to a deeper understanding of the role of HETs in shaping the future of automotive engineering. In conclusion, this study underscores the potential of HETs to substantially mitigate the environmental impact of the transportation sector by reducing emissions and conserving energy. The novelty of this study is reflected in its comprehensive synthesis of multiple research findings, offering insights into the feasibility and benefits of adopting HET technology in modern vehicles, thereby contributing to a deeper understanding of the role of HETs in shaping the future of automotive engineering and highlighting their continued significance, as evidenced by the systematic SWOT analysis presented. Their ability to optimize fuel efficiency and power output, coupled with the feasibility of downsized engines, positions HETs as an attractive option for sustainable mobility solutions. Further research is warranted to comprehensively understand the environmental and economic implications of widespread HET adoption. Full article
Show Figures

Graphical abstract

18 pages, 10405 KiB  
Article
Energy Analysis of a Novel Turbo-Compound System for Mild Hybridization of a Gasoline Engine
by Simone Lombardi, Federico Ricci, Roberto Martinelli, Laura Tribioli, Carlo Nazareno Grimaldi and Gino Bella
Energies 2023, 16(18), 6444; https://doi.org/10.3390/en16186444 - 6 Sep 2023
Cited by 2 | Viewed by 2268
Abstract
Efficient and low-polluting mobility is a major demand in all countries. Hybrid electric vehicles have already shown to be suitable to respond to this need, being a reliable alternative to conventional cars, at least in urban environments. Nevertheless, such vehicles present a yet [...] Read more.
Efficient and low-polluting mobility is a major demand in all countries. Hybrid electric vehicles have already shown to be suitable to respond to this need, being a reliable alternative to conventional cars, at least in urban environments. Nevertheless, such vehicles present a yet unexplored potential. In this paper, we will investigate how the powertrain efficiency may possibly benefit, in an integrated drivetrain for a hybrid electric vehicle, based on a turbocharged gasoline engine, of an innovative supercharging system. The compressor and turbine will be mechanically decoupled so as to independently optimize their operation, avoiding turbo lag and maximizing energy recovery by completely eliminating the waste-gate valve. This, in turns, requires changing the turbine so as to have a flattest possible efficiency/load curve. Therefore, an ad-hoc designed turbine will be implemented in the decoupled configuration, to be used to drive an electrical generator and produce electrical energy for charging the battery. This study presents a preliminary assessment of the potential of a turbo-compounded system for a 1L turbocharged gasoline engine for a small city car. To this aim, a one-dimensional dynamic model of the engine has been built in GT-Suite and has been calibrated and validated by means of experimental data obtained on a dynamometer, both in steady state and dynamic conditions. In particular, the model has been calibrated by means of experimental data obtained in stationary conditions and its robustness has then been verified through experimental data obtained under transient conditions. The model also includes data retrieved from the characterization of the existing turbine and compressor, while a new performance map for the turbine has been designed to better exploit the potential of the components’ decoupling. Results include the estimation of energy recovery potential of such a solution. Under the implementation of a straightforward control strategy, which runs both compressor and turbine at the same speed, the system is able to achieve a 60.57% increase in energy recovered from the exhaust gasses in the turbine. Afterwards, an attempt was made to limit the minimum turbine speed to 45000 rpm and simultaneously decrease the instantaneous speed by 3000 rpm compared to the compressor, attaining a further increase of 1.7% in the energy recovered by the turbine. Full article
(This article belongs to the Special Issue Advanced Technology in Internal Combustion Engines)
Show Figures

Figure 1

17 pages, 11541 KiB  
Article
Performance Validation of High-Speed Motor for Electric Turbochargers Using Various Test Methods
by Tae-Woo Lee and Do-Kwan Hong
Electronics 2023, 12(13), 2937; https://doi.org/10.3390/electronics12132937 - 4 Jul 2023
Cited by 2 | Viewed by 3027
Abstract
As environmental regulations on automotive exhaust gas are gradually strengthened to cope with climate change, internal combustion engines, including those in hybrid electric vehicles, are continuously being downsized. Supercharging technologies are essential to compensate for the reduced engine power. One of the supercharging [...] Read more.
As environmental regulations on automotive exhaust gas are gradually strengthened to cope with climate change, internal combustion engines, including those in hybrid electric vehicles, are continuously being downsized. Supercharging technologies are essential to compensate for the reduced engine power. One of the supercharging technologies, the turbocharger, has a response delay in the low-speed region, which is known as turbo lag. Various technologies have emerged to reduce turbo lag. Recently, electric supercharging technologies capable of reducing turbo lag using high-speed motors have been developed and commercialized. However, they are difficult to obtain for high-speed motors because of the cost of load performance test equipment. For this reason, many previous studies have compared analysis and experiment results under no-load conditions, or they have estimated performance in the high-speed region from results at low speed with light loads. This makes it difficult to know exactly how the performance of the motor is affected under loads applied to an actual system. In this study, performance test evaluation was conducted using a high-speed torque sensor, eddy current brake, and inertial dynamometer. Input/output power and efficiency were calculated using the measured voltage, current and output side torque and speed, and the results were compared. Full article
Show Figures

Figure 1

17 pages, 6137 KiB  
Article
Hybrid Propulsion Efficiency Increment through Exhaust Energy Recovery—Part 2: Numerical Simulation Results
by Emiliano Pipitone, Salvatore Caltabellotta, Antonino Sferlazza and Maurizio Cirrincione
Energies 2023, 16(5), 2232; https://doi.org/10.3390/en16052232 - 25 Feb 2023
Cited by 2 | Viewed by 1801
Abstract
The efficiency of hybrid electric vehicles may be substantially increased if the energy of exhaust gases, which do not complete the expansion inside the cylinder of the internal combustion engine, is efficiently recovered using a properly designed turbo-generator and employed for vehicle propulsion. [...] Read more.
The efficiency of hybrid electric vehicles may be substantially increased if the energy of exhaust gases, which do not complete the expansion inside the cylinder of the internal combustion engine, is efficiently recovered using a properly designed turbo-generator and employed for vehicle propulsion. Previous studies, carried out by the same authors of this work, showed a potential hybrid vehicle fuel efficiency increment up to 15% employing a 20 kW turbine on a 100 HP-rated power thermal unit. The innovative thermal unit proposed here is composed of a supercharged engine endowed with a properly designed turbo-generator, which comprises two fundamental elements: an exhaust gas turbine expressly designed and optimized for the application, and a suitable electric generator necessary to convert the recovered energy into electric energy, which can be stored in the on-board energy storage system of the vehicle. In this two-part work, the realistic efficiency of the innovative thermal unit for hybrid vehicles is evaluated and compared to a traditional turbocharged engine. In Part 1, the authors presented a model for the prediction of the efficiency of a dedicated radial turbine, based on a simple but effective mean-line approach; the same paper also reports a design algorithm, which, thanks to some assumptions and approximations, allows fast determination of the right turbine geometry for a given design operating condition. It is worth pointing out that, being optimized for quasi-steady power production, the exhaust gas turbine here considered is quite different from the ones commonly employed for turbocharging applications; for this reason, and in consideration of the required power size, such a turbine is not available on the market, nor has its development been previously carried out in the scientific literature. In this paper, Part 2, a radial turbine geometry is defined for the thermal unit previously calculated, employing the design algorithm described in Part 1; the realistic energetic advantages that could be achieved by the implementation of the turbo-generator on a hybrid propulsion system are evaluated through the performance prediction model under different operating conditions of the thermal unit. As an overall result, it was estimated that, compared to a reference traditional turbocharged engine, the turbo-compound system could gain vehicle efficiency improvement between 3.1% and 17.9%, according to the output power delivered, with an average efficiency increment of 10.9% evaluated on the whole operating range. Full article
(This article belongs to the Special Issue Modelling of Thermal and Energy Systems II)
Show Figures

Figure 1

25 pages, 3610 KiB  
Article
Hybrid Propulsion Efficiency Increment through Exhaust Energy Recovery—Part 1: Radial Turbine Modelling and Design
by Emiliano Pipitone, Salvatore Caltabellotta, Antonino Sferlazza and Maurizio Cirrincione
Energies 2023, 16(3), 1030; https://doi.org/10.3390/en16031030 - 17 Jan 2023
Cited by 2 | Viewed by 2145
Abstract
The efficiency of Hybrid Electric Vehicles (HEVs) may be substantially increased if the energy of the exhaust gases, which do not complete the expansion inside the cylinder of the internal combustion engine, is efficiently recovered by means of a properly designed turbogenerator and [...] Read more.
The efficiency of Hybrid Electric Vehicles (HEVs) may be substantially increased if the energy of the exhaust gases, which do not complete the expansion inside the cylinder of the internal combustion engine, is efficiently recovered by means of a properly designed turbogenerator and employed for vehicle propulsion; previous studies, carried out by the same authors of this work, showed a potential hybrid vehicle fuel efficiency increment up to 15% by employing a 20 kW turbine on a 100 HP rated power thermal unit. The innovative thermal unit here proposed is composed of a supercharged engine endowed with a properly designed turbogenerator, which comprises two fundamental elements: an exhaust gas turbine expressly designed and optimized for the application, and a suitable electric generator necessary to convert the recovered energy into electric energy, which can be stored in the on-board energy storage system of the vehicle. In these two parts, the realistic efficiency of the innovative thermal unit for hybrid vehicle is evaluated and compared to a traditional turbocharged engine. In Part 1, the authors present a model for the prediction of the efficiency of a dedicated radial turbine, based on a simple but effective mean-line approach; the same paper also reports a design algorithm, which, owing to some assumptions and approximations, allows a fast determination of the proper turbine geometry for a given design operating condition. It is worth pointing out that, being optimized for quasi-steady power production, the exhaust gas turbine considered is quite different from the ones commonly employed for turbocharging application; for this reason, and in consideration of the required power size, such a turbine is not available on the market, nor has its development been previously carried out in the scientific literature. In the Part 2 paper, a radial turbine geometry is defined for the thermal unit previously calculated, employing the design algorithm described in Part 1; the realistic energetic advantage that could be achieved by the implementation of the turbogenerator on a hybrid propulsion system is evaluated through the performance prediction model under the different operating conditions of the thermal unit. As an overall result, it was estimated that, compared to a reference traditional turbocharged engine, the turbocompound system could gain vehicle efficiency improvement between 3.1% and 17.9%, depending on the output power level, while an average efficiency increment of 10.9% was determined for the whole operating range. Full article
(This article belongs to the Special Issue Modelling of Thermal and Energy Systems II)
Show Figures

Figure 1

22 pages, 23174 KiB  
Article
Energy Management Strategy of Mild Hybrid Electric Vehicle Considering Motor Power Compensation
by Hengxu Lv, Chuanxue Song, Naifu Zhang, Da Wang and Chunyang Qi
Machines 2022, 10(11), 986; https://doi.org/10.3390/machines10110986 - 28 Oct 2022
Cited by 3 | Viewed by 2125
Abstract
An energy management control strategy based on the instantaneous optimization method of equivalent consumption minimization strategy (ECMS) under motor power compensation for mild hybrid vehicles is proposed in this study to improve fuel economy and ensure the dynamic performance of cars. A mild [...] Read more.
An energy management control strategy based on the instantaneous optimization method of equivalent consumption minimization strategy (ECMS) under motor power compensation for mild hybrid vehicles is proposed in this study to improve fuel economy and ensure the dynamic performance of cars. A mild hybrid platform is built, and the future supplementary model of electric energy and the future consumption model of electric energy are established according to different power flow directions. It determines the equivalent fuel consumption rate of powertrain as the objective function by defining the equivalent factor and corresponding derivation, carries out optimization calculation, and obtains the energy distribution relationship between the engine and the motor. The motor power compensation strategy based on the control strategy is adopted to solve the effect of turbocharged engines’ transient response on vehicle dynamics and fuel economy. The actual results showed that vehicle power and fuel economy can be improved under the control strategy and compensation strategy design. Meanwhile, different motors allow the compensating coefficient to have different power-boosting and fuel economy effects. Full article
(This article belongs to the Special Issue Emerging Technologies in New Energy Vehicle)
Show Figures

Figure 1

31 pages, 5976 KiB  
Article
Efficiency Advantages of the Separated Electric Compound Propulsion System for CNG Hybrid Vehicles
by Emiliano Pipitone and Salvatore Caltabellotta
Energies 2021, 14(24), 8481; https://doi.org/10.3390/en14248481 - 15 Dec 2021
Cited by 9 | Viewed by 2992
Abstract
As is widely known, internal combustion engines are not able to complete the expansion process of the gas inside the cylinder, causing theoretical energy losses in the order of 20%. Several systems and methods have been proposed and implemented to recover the unexpanded [...] Read more.
As is widely known, internal combustion engines are not able to complete the expansion process of the gas inside the cylinder, causing theoretical energy losses in the order of 20%. Several systems and methods have been proposed and implemented to recover the unexpanded gas energy, such as turbocharging, which partially exploits this energy to compress the fresh intake charge, or turbo-mechanical and turbo-electrical compounding, where the amount of unexpanded gas energy not used by the compressor is dedicated to propulsion or is transformed into electric energy. In all of these cases, however, maximum efficiency improvements between 4% and 9% have been achieved. In this work, the authors deal with an alternative propulsion system composed of a CNG-fueled spark ignition engine equipped with a turbine-generator specifically dedicated to unexpanded exhaust gas energy recovery and with a separated electrically driven turbocompressor. The system was conceived specifically for hybrid propulsion architectures, with the electric energy produced by the turbine generator being easily storable in the on-board energy storage system and re-usable for vehicle traction. The proposed separated electric turbo-compound system has not been studied in the scientific literature, nor have its benefits ever been analyzed. In this paper, the performances of the analyzed turbo-compound system are evaluated and compared with a traditional reference turbocharged engine from a hybrid application perspective. It is demonstrated that separated electric compounding has great potential, with promising overall efficiency advantages: fuel consumption reductions of up to 15% are estimated for the same power output level. Full article
Show Figures

Figure 1

21 pages, 679 KiB  
Article
Optimal Degree of Hybridization for Spark-Ignited Engines with Optional Variable Valve Timings
by Andyn Omanovic, Norbert Zsiga, Patrik Soltic and Christopher Onder
Energies 2021, 14(23), 8151; https://doi.org/10.3390/en14238151 - 5 Dec 2021
Cited by 5 | Viewed by 2647
Abstract
The electric hybridization of vehicles with an internal combustion engine is an effective measure to reduce CO2 emissions. However, the identification of the dimension and the sufficient complexity of the powertrain parts such as the engine, electric machine, and battery is not [...] Read more.
The electric hybridization of vehicles with an internal combustion engine is an effective measure to reduce CO2 emissions. However, the identification of the dimension and the sufficient complexity of the powertrain parts such as the engine, electric machine, and battery is not trivial. This paper investigates the influence of the technological advancement of an internal combustion engine and the sizing of all propulsion components on the optimal degree of hybridization and the corresponding fuel consumption reduction. Thus, a turbocharged and a naturally aspirated engine are both modeled with the additional option of either a fixed camshaft or a fully variable valve train. All models are based on data obtained from measurements on engine test benches. We apply dynamic programming to find the globally optimal operating strategy for the driving cycle chosen. Depending on the engine type, a reduction in fuel consumption by up to 32% is achieved with a degree of hybridization of 45%. Depending on the degree of hybridization, a fully variable valve train reduces the fuel consumption additionally by up to 9% and advances the optimal degree of hybridization to 50%. Furthermore, a sufficiently high degree of hybridization renders the gearbox obsolete, which permits simpler vehicle concepts to be derived. A degree of hybridization of 65% is found to be fuel optimal for a vehicle with a fixed transmission ratio. Its fuel economy diverges less than 4% from the optimal fuel economy of a hybrid electric vehicle equipped with a gearbox. Full article
(This article belongs to the Special Issue Fuel Consumption of Hybrid Vehicles)
Show Figures

Figure 1

20 pages, 7277 KiB  
Article
Advanced Engine Technologies for Turbochargers Solutions
by Rareș-Lucian Chiriac, Anghel Chiru, Răzvan Gabriel Boboc and Ulf Kurella
Appl. Sci. 2021, 11(21), 10075; https://doi.org/10.3390/app112110075 - 27 Oct 2021
Cited by 2 | Viewed by 6654
Abstract
Research in the process of internal combustion engines shows that their efficiency can be increased through several technical and functional solutions. One of these is turbocharging. For certain engine operating modes, the available energy of the turbine can also be used to drive [...] Read more.
Research in the process of internal combustion engines shows that their efficiency can be increased through several technical and functional solutions. One of these is turbocharging. For certain engine operating modes, the available energy of the turbine can also be used to drive an electricity generator. The purpose of this paper is to highlight the possibilities and limitations of this solution. For this purpose, several investigations were carried out in the virtual environment with the AMESim program, as well as experimental research on a diesel engine for automobiles and on a stand for testing turbochargers (Turbo Test Pro produced by CIMAT). The article also includes a comparative study between the power and torque of the naturally aspirated internal combustion engine and equipped with a hybrid turbocharger. The results showed that the turbocharger has a very high operating potential and can be coupled with a generator without decreasing the efficiency of the turbocharger or the internal combustion engine. The main result was the generation of electrical power of 115 W at a turbocharger shaft speed of 140,000–160,000 rpm with an electric generator shaft speed of 14,000–16,000 rpm. There are many constructive solutions for electrical turbochargers with the generator positioned between the compressor and the turbine wheel. This paper is presenting a solution of a hybrid turbocharger with the generator positioned and coupled with the compressor wheel on the exterior side. Full article
(This article belongs to the Special Issue Advances in Combustion Engineering)
Show Figures

Figure 1

20 pages, 7367 KiB  
Article
Experimental Fitting of Redesign Electrified Turbocompressor of a Novel Mild Hybrid Power Train for a City Car
by Roberto Capata
Energies 2021, 14(20), 6516; https://doi.org/10.3390/en14206516 - 11 Oct 2021
Cited by 7 | Viewed by 1774
Abstract
As part of a project for the realization of a hybrid vehicle with an innovative power train system, the proposal presented is to disconnect the turbocharger group and study the different behavior of the compressor and turbine, so decoupled. In an actual turbocharger, [...] Read more.
As part of a project for the realization of a hybrid vehicle with an innovative power train system, the proposal presented is to disconnect the turbocharger group and study the different behavior of the compressor and turbine, so decoupled. In an actual turbocharger, when the power of the turbine exceeds that required by the compressor, the wastegate valve opens. In this way, a part of the flue gases does not evolve into a turbine and limits the power generated. In the solution proposed here (the paper considers only “compressor side”) all the flow rate of the flue gases is processed by the turbine. In this way, for each rpms of the IC engine, the turbine generates more power than that required by the compressor. This makes it possible to use this surplus of power for the auxiliaries and/or to recharge the battery pack of the considered hybrid vehicle. An additional advantage is, thanks to this surplus generated, that the battery pack can be smaller and can be recharged while driving. Therefore, the entire system operates as a “Range Extended”. As mentioned above, this work is focused on the direct compressor—innovative electric motor coupling will be sized and realized, and a subsequent series of experimental tests will confirm the feasibility of this phase of the project. Full article
Show Figures

Figure 1

16 pages, 2021 KiB  
Article
Marine Dual-Fuel Engines Power Smart Management by Hybrid Turbocharging Systems
by Marco Altosole, Flavio Balsamo, Ugo Campora and Luigia Mocerino
J. Mar. Sci. Eng. 2021, 9(6), 663; https://doi.org/10.3390/jmse9060663 - 15 Jun 2021
Cited by 30 | Viewed by 5375
Abstract
The performance of a marine dual-fuel engine, equipped with an innovative hybrid turbocharger producing electric power to satisfy part of the ship’s electric load, is presented by a simulation comparison with the traditional turbocharging technology. The two distinct fuel types, combined with the [...] Read more.
The performance of a marine dual-fuel engine, equipped with an innovative hybrid turbocharger producing electric power to satisfy part of the ship’s electric load, is presented by a simulation comparison with the traditional turbocharging technology. The two distinct fuel types, combined with the hybrid turbocharger, involve a substantial change in the engine control modes, resulting in more flexible and efficient power management. Therefore, the investigation requires a numerical analysis depending on the engine load variation, in both fuelling modes, to highlight different behaviours. In detail, a dual-fuel engine simulation model is validated for a particular application in order to perform a complete comparison, reported in tabular and graphical form, between the two examined turbocharging solutions. The simulation analysis is presented in terms of the engine working data and overall energy conversion efficiency. Full article
(This article belongs to the Special Issue Smart Control of Ship Propulsion System)
Show Figures

Figure 1

24 pages, 12768 KiB  
Article
Design of a Tandem Compressor for the Electrically-Driven Turbocharger of a Hybrid City Car
by Nicolò Cuturi and Enrico Sciubba
Energies 2021, 14(10), 2890; https://doi.org/10.3390/en14102890 - 17 May 2021
Cited by 10 | Viewed by 2876
Abstract
Within a broader national project aimed at the hybridization of a standard city car (the 998 cc Mitsubishi-derived gasoline engine of the Smart W451), our team tackled the problem of improving the supercharger performance and response. The originally conceived design innovation was that [...] Read more.
Within a broader national project aimed at the hybridization of a standard city car (the 998 cc Mitsubishi-derived gasoline engine of the Smart W451), our team tackled the problem of improving the supercharger performance and response. The originally conceived design innovation was that of eliminating the mechanical connection between the compressor and the turbine. In the course of the study, it turned out that it is also possible to modify both components to extract extra power from the engine and to use it to recharge the battery pack. This required a redesign of both compressor and turbine. First, the initial configuration was analyzed on the basis of the design data provided by the manufacturer. Then, a preliminary performance assessment of the turbocharged engine allowed us to identify three “typical” operating points that could be used to properly redesign the turbomachinery. It was decided to maintain the radial configuration for both turbine and compressor, but to redesign the latter by adding an inducer. For the turbine, only minor modifications to the nozzle guide vanes (NGV) and rotor blades shape were deemed necessary, while a more substantial modification was in order for the compressor. Fully 3-D computational fluid dynamics simulations of the rotating machines were performed to assess their performance at three operating points: the kick-in point of the original turbo (2000 rpm), the maximum power regime (5500 rpm), and an intermediate point (3500 rpm) close to the minimum specific fuel consumption for the original engine. The results presented in this paper demonstrate that the efficiency of the compressor is noticeably improved for steady operation at all three operating points, and that its choking characteristics have been improved, while its surge line has not been appreciably affected. The net energy recovery was also calculated and demonstrated interesting returns in terms of storable energy in the battery pack. Full article
(This article belongs to the Special Issue Selected Papers from The First World Energies Forum (WEF-1))
Show Figures

Figure 1

17 pages, 6477 KiB  
Article
Steady State Experimental Characterization of a Twin Entry Turbine under Different Admission Conditions
by Vittorio Usai and Silvia Marelli
Energies 2021, 14(8), 2228; https://doi.org/10.3390/en14082228 - 16 Apr 2021
Cited by 13 | Viewed by 2164
Abstract
The increasingly restrictive limits on exhaust emissions of automotive internal combustion engines imposed in recent years are pushing OEMs to seek new solutions to improve powertrain efficiency. Despite the increase in electric and hybrid powertrains, the turbocharging technique is still one of the [...] Read more.
The increasingly restrictive limits on exhaust emissions of automotive internal combustion engines imposed in recent years are pushing OEMs to seek new solutions to improve powertrain efficiency. Despite the increase in electric and hybrid powertrains, the turbocharging technique is still one of the most adopted solution in automotive internal combustion engines to achieve good efficiency with high specific power levels. Nowadays, turbocharged downsized engines are the most common solution to lower CO2 emissions. Pulse turbocharging is the most common boosting layout in automotive applications as the best response in terms of time-to-boost and exhaust energy extraction. In a high-fractionated engine with four or more cylinders, a twin entry turbine can be adopted to maximize pulse turbocharging benefits and avoid interaction in the discharge phase of the cylinders. The disadvantages of the twin entry turbine are mainly due to the complexity of the exhaust piping line and the high amount of information required to build a rigorous and reliable matching model. This paper presents a detailed experimental characterization of a twin entry turbine with particular reference to the turbine efficiency and the swallowing capacity under different admission conditions. The steady flow experimental campaign was performed at the turbocharger test bench of the University of Genoa, in order to analyze the behavior of the twin entry turbine in full, partial and unbalanced admission. These are the conditions in which the turbine must work instantaneously during its normal operation in engine application. The results show a different swallowing capacity of each sector and the interactions between the two entries. Full article
(This article belongs to the Special Issue Advanced Boosting Systems)
Show Figures

Figure 1

26 pages, 17120 KiB  
Article
Transient Simulation of the Six-Inlet, Two-Stage Radial Turbine under Pulse-Flow Conditions
by Dariusz Kozak and Paweł Mazuro
Energies 2021, 14(8), 2043; https://doi.org/10.3390/en14082043 - 7 Apr 2021
Cited by 2 | Viewed by 2084
Abstract
In recent years, the automotive sector has been focused on emission reductions using hybrid and electric vehicles. This was mainly caused by political trends promoting “green energy”. However, that does not mean that internal combustion engines (ICEs) should be forgotten. The ICE has [...] Read more.
In recent years, the automotive sector has been focused on emission reductions using hybrid and electric vehicles. This was mainly caused by political trends promoting “green energy”. However, that does not mean that internal combustion engines (ICEs) should be forgotten. The ICE has still the potential of recovering energy from exhaust gases. One of the promising ways to recover energy is turbocharging. Over the years engine manufacturers have designed very efficient turbocharger systems which have greatly increased the overall engine efficiency. This led to pollutant emission reductions. This paper presents the results of the three-dimensional (3-D) numerical simulations of the two-stage, six-inlet turbocharging system under the influence of unsteady, pulsed-flow conditions. The calculations were carried out for three turbine speeds. The most interesting results of this study were the separation of exhaust gases coming from the six-exhaust pipes and the performance of both stages under pulse-flow conditions. The two-stage turbocharging system was compared against the single-stage turbocharging system and the results showed that the newly designed two-stage turbine system properly separated the exhaust gases of the adjacent exhaust pipes. Full article
(This article belongs to the Special Issue Numerical Simulation for Next Generation Engines)
Show Figures

Figure 1

Back to TopTop