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Abstract: An energy management control strategy based on the instantaneous optimization method
of equivalent consumption minimization strategy (ECMS) under motor power compensation for
mild hybrid vehicles is proposed in this study to improve fuel economy and ensure the dynamic
performance of cars. A mild hybrid platform is built, and the future supplementary model of
electric energy and the future consumption model of electric energy are established according to
different power flow directions. It determines the equivalent fuel consumption rate of powertrain as
the objective function by defining the equivalent factor and corresponding derivation, carries out
optimization calculation, and obtains the energy distribution relationship between the engine and the
motor. The motor power compensation strategy based on the control strategy is adopted to solve the
effect of turbocharged engines’ transient response on vehicle dynamics and fuel economy. The actual
results showed that vehicle power and fuel economy can be improved under the control strategy and
compensation strategy design. Meanwhile, different motors allow the compensating coefficient to
have different power-boosting and fuel economy effects.

Keywords: energy management; motor power compensation; mild hybrid system; turbocharged
engine response

1. Introduction

The automotive industry has developed considerably since the world’s first car was
produced in the 1980s, and it has completely changed travel in human society. Cars will
continue to be an important travel tool for human beings in the future [1]. However,
problems of resource shortage and environmental pollution have intensified with the
continuous growth in car ownership. The development of new energy vehicles is an
important means to address the contradiction among economic development, resource
shortage, and environmental protection under the worsening situation and pressures
[2–5]. The three main types of new energy vehicles are battery electric (BEV), hybrid
electric (HEV), and fuel cell (FCV) vehicles [6]. Among them, hybrid electric vehicles
are currently the most suitable for development and promotion. Compared with other
forms of hybrid electric vehicles, mild hybrid vehicles are characterized by a simple system
structure, minimal modification to the vehicle chassis, low cost, short production cycle,
and convenient mass production. The energy management strategy of the power system
is difficult to investigate because the quality of the management strategy determines the
overall performance of the vehicle. Management strategies aim to control the energy flow
between different power sources of the powertrain according to the power demand of the
vehicle to reduce energy consumption and emission pollution [7–12].

Energy management can be divided into rule- and optimization-based strategies ac-
cording to control logic [13]. Rule-based management strategies are commonly used to
collect information, such as driving speed, power requirement of the vehicle, and battery
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power, during the driving process. A set-rule threshold logic table is available for data,
such as power battery state, which can be subdivided into two categories: deterministic and
fuzzy rules [14–17]. Piyush B et al. [18] proposed a switching and prediction-based power
management strategy for fuel cell hybrid buses. Operation data were obtained through
Simulink simulation and real vehicle tests. The experimental comparison of management
strategies showed that the latter presents excellent advantages for the significant improve-
ment of the average efficiency of the fuel cell system while reducing hydrogen consumption.
Kim M et al. [19] put forward a new management technique based on thermostat strategy
called hybrid thermostat strategy for series hybrid electric vehicles and combined it with
the power follower strategy using AMESim and Simulink co-simulation and optimization
to improve efficiency.

Optimization-based management strategies can be further subdivided into global and
real-time optimization. This type of management strategy can effectively solve the problem
of poor performance among rule-based management strategies. The nonlinear optimization
problem is constrained to achieve optimal performance under different vehicle driving
conditions [20–23]. M.S.Teja [24] used a particle swarm optimization algorithm to optimize
fuel consumption, power output, and energy flow of HEVs. The policy comparison proved
that this method can rapidly complete the design and reduce fuel consumption and vehicle
emissions. Scholars, such as Satoshi [25], investigated an effective energy management
system, optimized the operating area of the internal combustion engine, and proposed a
torque control strategy for charging the battery of a parallel hybrid electric vehicle (HEV)
to reduce the amount of CO2 and NOx emissions sufficiently [26].

The fuel economy advantage of mild hybrid systems in existing studies on energy man-
agement control strategies requires optimization. Therefore, an energy management control
strategy for a mild hybrid system considering motor power compensation is proposed in this
study to improve the fuel economy of traditional turbocharged engine-powered vehicles.

2. Establishment of a Mild Hybrid System Platform

The simulation of a vehicle power system can be divided into forward and backward
simulations according to the relative direction of variable signal transmission and energy
flow. If the direction of both variable signal transmission and energy flow is the same, then
the simulation is considered forward; however, if their direction is in reverse, then the
simulation is considered backward [27].

The basic structure of the forward simulation analysis platform is shown in Figure 1 [28].
The forward simulation analysis platform adopts a closed-loop control system, in which the
driver model receives the target and actual vehicle speeds and controls the pedal position
through a corresponding algorithm. The control system model completes the engine and the
motor according to the received signal and the specified control strategy. The output torque
is transmitted to the tire model through the vehicle powertrain model to control the entire
vehicle model. The internal logic of the simulation method is close to the real vehicle to ensure
that dynamic characteristics of the whole vehicle are demonstrated realistically.
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Figure 2. Future power supplement model. 
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3. Research on Energy Management Control Strategy
3.1. Instantaneous Optimization Method Based on Equivalent Consumption
Minimization Strategy
3.1.1. Equivalent Fuel Consumption Rate Model

The equivalent fuel consumption rate model is divided into an “electric energy future
supplement model” and an “electric energy future consumption model” according to the
charge and discharge state of the power battery pack.

The motor is in drive mode, the power battery pack is in a discharged state and
consumes electric energy, and the current consumed power will be supplemented by the
engine fuel consumption at some time in the future when the mild hybrid system requires
the motor to provide power assistance. The fuel consumption rate framework is called the
“Future Energy Supplement Model”, as shown in Figure 2.
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Figure 2. Future power supplement model.

Assuming that the power consumption at this time will be supplemented in the next
N charging cycles, the equivalent fuel consumption rate of the current power battery pack
is expressed as follows:

.
mBatt =

∑N
i=1

.
mICE−F_i

N
> 0 (1)

where
.

mICE−F_i is the actual fuel consumption rate that the engine consumes for the power
battery pack in the “I” cycle in the future.

The total fuel consumption rate of the power system at the current moment is expressed
as follows:

.
mtotal =

.
mICE +

.
mBatt =

bICEPICE
3600

+
bICE(PDrive − PICE)

3600ηmηchgηdisηm
(2)

where PICE is the current engine power output, PDrive is the sum of the engine output and
motor input power values required at the current time, ηm is the operating efficiency of the
motor, bICE is the actual effective fuel consumption rate of the engine in the “I” cycle in the
future, ηchg is the charging efficiency of the battery pack, and ηdis is the recorded discharge
efficiency of the battery pack in the ith cycle in the future.

The power battery pack is in the state of charge and stores electric energy when
the mild hybrid system requires the motor to absorb power and generate electricity. The
currently stored electric energy will drive the vehicle instead of the engine fuel consumption
at some time in the future. The equivalent fuel consumption rate model at this time is
called the “electric energy future consumption model”, as shown in Figure 3.
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Assuming that the power replenishment at this time will be consumed in the next N
discharge cycles, the equivalent fuel consumption rate of the current power battery pack is
expressed as follows:

.
mBatt =

∑N
i=1

.
mICE−F_i

N
< 0 (3)

The total fuel consumption rate of the power system at the current moment is expressed
as follows:

.
mtotal =

.
mICE +

.
mBatt =

bICEPICE
3600

+
bICEηdisηmηchgηm(PDrive − PICE)

3600
(4)

3.1.2. Equivalent Factor Definition and Selection

The instantaneous optimization method based on ECMS is to convert the electric
energy charged and discharged by the current power battery pack into fuel consumption at
present or at a certain moment in the future. The mathematical model of the equivalent
fuel consumption rate of the power battery pack needs to be simplified accordingly for
practical application. The equivalent fuel consumption rate

.
mBatt of the battery pack can be

rewritten as follows:{ .
mBatt =

fdis(PDrive−PICE)
3600ηdisηm

> 0 (Discharge)
.

mBatt =
fchgηchgηm(PDrive−PICE)

3600 < 0 (Charging)
(5)

where fdis and fchg include all the estimated values in the process of deriving the equivalent
fuel consumption rate of the battery pack and defined as the equivalent factor; hence,
this value varies under different driving conditions. The equivalent factor is expressed
as follows [29]: {

fdis =
bICE

ηmηchg
(Discharge)

fchg = bICEηdisηm(Charging)
(6)

The selection of the equivalent factor is determined by estimating the driving demand
of the car in a certain period of time in the future, and the driving condition exerts a strong
influence on it. Hence, the equivalent factor should be selected according to the specific
driving conditions. The selected equivalent factors are listed in Table 1.
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Table 1. Equivalent factor selection under different working conditions.

Control Parameter Smooth Road
Condition

Neutral Road
Condition

Congested Road
Condition

fdis
g (kwh) 375 390 395

fchg
g (kwh) 310 320 330

3.1.3. SOC Compensation Strategy

The energy management control strategy should maintain the power battery pack’s
state of charge (SOC) within a reasonable range. However, the ECMS instantaneous
optimization method is unable to control the power battery pack’s SOC. Therefore, an SOC
compensation strategy must be designed to adjust the power battery pack on the basis
of the remaining power. Depending on the remaining power in the power battery pack,
the charge and discharge power is adjusted to avoid overcharging or over-discharging the
power battery pack.

The SOC compensation strategy is applied to the penalty function method in this
study. Moreover, a weight coefficient Ksoc for the equivalent fuel consumption rate of
power battery pack

.
mBatt is set. The total equivalent fuel consumption rate of the power

system is then expressed as follows:

.
mtotal =

.
mICE + KSOC

.
mBatt (7)

The penalty function KSOC adjusts the power consumption of the power battery pack.
When the battery pack’s SOC is equal to the target value SOCt, KSOC = 1,there is no
need to perform SOC compensation. When the battery pack SOC is higher than the target
value SOCt, KSOC < 1, which reduces the equivalent amount of battery power, the control
strategy tends to reduce the actual engine fuel consumption, increasing the amount of
electricity used by the battery pack. When the battery pack’s SOC is lower than the target
value SOCt, KSOC > 1, which increases the equivalent amount of battery power, the control
strategy tends to improve the actual engine fuel consumption reduces the amount of battery
power used.

The penalty function KSOC uses the proportional link polynomial penalty function to
define the SOC deviation eSOC as follows:

eSOC = SOCt − SOC(t) (8)

SOClow and SOChigh represent the lower and upper limits of the SOC of the power
battery pack, respectively. Thus, the adjustment range of the SOC is expressed as follows:

∆SOC =
SOChigh − SOClow

2
(9)

The penalty function is calculated as follows:

KSOC = a
( eSOC

∆SOC

)2b+1
+ 1 (10)

where a is the proportional coefficient of the penalty function and b is the order coefficient of the
penalty function and a non-negative integer. Various values of a and b are used to obtain the
penalty function curves of different shapes, as shown in Figure 4. The proportional and order
coefficients of the penalty function used in this study are set to a = 1 and b = 1, respectively.
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3.1.4. Regenerative Braking Correction

The motor stores the recovered braking energy in the form of electrical energy in the
power battery pack when the mild hybrid system is in the regenerative braking mode of
operation. A part of the power stored in the battery power consumed is stored again in the
battery pack by regenerative braking when the power system requires the motor to provide
auxiliary power in the future, that is, when the motor is in the drive mode. Although this
part of the electric energy belongs to the “future supplement”, it does not actually consume
fuel and lead to a lower amount of fuel consumed in the future supplementary electric
energy than the estimated value [30,31].

The effects of regenerative braking energy recovery under the discharge condition of
the battery pack and the equivalent fuel consumption rate must be considered to adopt the
energy management control strategy under the driving conditions of mild hybrid vehicles
and optimize its fuel economy advantages. The mathematical model is revised. Regenera-
tive braking is difficult to estimate because it occurs at some point in the future. Hence, the
regenerative braking compensation algorithm is used to estimate the regenerative braking
power that will occur in the future on the basis of the regenerative braking power that has
occurred over a period of time.

The average regenerative braking power in N control cycles that have previously
occurred is expressed as follows:

Preg =
∑N

i=1 Preg_i∆t
N∆t

(11)

where Preg is the regenerative braking power of the “I” cycle of the N control cycles that
have previously occurred. The average regenerative braking power Preg is used to correct
the equivalent fuel consumption rate

.
mBatt of the battery pack under discharge conditions.

Similar to the equivalent factor, the selection of the average regenerative braking
power is also determined by estimating the driving demand of the car at a certain time in
the future, and the driving condition exerts a strong influence on it. Therefore, it should be
selected according to specific driving conditions.

The vehicle speed is low, the braking force required for deceleration braking is small,
and the absolute value of Preg is small when the vehicle is under congested conditions. The
speed of the vehicle is higher than the congested condition, the braking force required for
deceleration braking also improves, the deceleration braking frequency in this condition is
higher, and the absolute value of Preg increases when the vehicle is under neutral conditions.
The deceleration braking frequency is low and the absolute value of Preg is small although
the vehicle speed is high when the vehicle is running under smooth conditions. As shown
in Table 2, the average regenerative braking power is selected according to this principle.
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Table 2. Average regenerative braking power value under different road conditions.

Control Parameter Smooth Road
Condition

Neutral Road
Condition

Congested Road
Condition

Preg(kw) −0.5 −0.7 −0.2

3.1.5. Objective Function and Constraint Determination

The objective function of the ECMS-based instantaneous optimization method is
expressed as follows:

F =


min

(
PICEbICE

3600 + KSOC fdis
PDrive−PICE+Preg

3600ηdisηm

)
min

(
PICEbICE

3600 + KSOC fchg
ηchgηm(PDrive−PICE)

3600

) (12)

Constraints combined with the characteristics of components, such as engine, motor,
and power battery pack are determined as follows:

nidle < nICE < nICE_max
0 ≤ TICE(nICE) ≤ TICE_max(nICE)

0 ≤ nm ≤ nm_max
0 ≤ Tm(nm) ≤ Tm_max(nm)
PBatt_min ≤ PBatt ≤ PBatt_max
SOClow ≤ SOC ≤ SOChigh

nICE = nm

(13)

where nICE is the engine operating speed, nidle is the engine idle speed, nICE_max is the
maximum engine speed, TICE(nICE) is the output torque of the engine, TICE_max(nICE) is
the maximum output torque at the current engine speed, nm is the motor speed, nm_max
is the maximum motor speed, Tm(nm) is the motor output torque, Tm_max(nm) is the
maximum output torque at the current motor speed, PBatt is the battery pack output power,
PBatt_min is the minimum output power of the battery pack, and PBatt_max is the maximum
output power of the battery pack.

Finally, the energy management control strategy map is illustrated, as shown
in Figure 5.

Machines 2022, 10, x FOR PEER REVIEW 7 of 22 
 

 

for deceleration braking also improves, the deceleration braking frequency in this 
condition is higher, and the absolute value of 𝑃  increases when the vehicle is under 
neutral conditions. The deceleration braking frequency is low and the absolute value of 𝑃  is small although the vehicle speed is high when the vehicle is running under smooth 
conditions. As shown in Table 2, the average regenerative braking power is selected 
according to this principle. 

Table 2. Average regenerative braking power value under different road conditions. 

Control Parameter Smooth Road 
Condition 

Neutral Road 
Condition 

Congested Road 
Condition 𝑃 (𝑘𝑤) −0.5 −0.7 −0.2 

3.1.5. Objective Function and Constraint Determination 
The objective function of the ECMS-based instantaneous optimization method is 

expressed as follows: 

𝐹 = ⎩⎪⎨
⎪⎧ 𝑚𝑖𝑛 𝑃 𝑏3600 + 𝐾 𝑓 𝑃 − 𝑃 + 𝑃3600𝜂 𝜂𝑚𝑖𝑛 𝑃 𝑏3600 + 𝐾 𝑓 𝜂 𝜂 (𝑃 − 𝑃 )3600  (12)

Constraints combined with the characteristics of components, such as engine, motor, 
and power battery pack are determined as follows: 

⎩⎪⎪
⎨⎪
⎪⎧ 𝑛 < 𝑛 < 𝑛 _0 ≤ 𝑇 (𝑛 ) ≤ 𝑇 _ (𝑛 )0 ≤ 𝑛 ≤ 𝑛 _0 ≤ 𝑇 (𝑛 ) ≤ 𝑇 _ (𝑛 )𝑃 _ ≤ 𝑃 ≤ 𝑃 _𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑛 = 𝑛

 (13)

where 𝑛  is the engine operating speed, 𝑛  is the engine idle speed, nICE_max is the 
maximum engine speed, 𝑇 (𝑛 ) is the output torque of the engine, 𝑇 _ (𝑛 ) is 
the maximum output torque at the current engine speed, 𝑛  is the motor speed, 𝑛 _  
is the maximum motor speed, 𝑇 (𝑛 ) is the motor output torque, 𝑇 _ (𝑛 ) is the 
maximum output torque at the current motor speed, 𝑃  is the battery pack output 
power, 𝑃 _  is the minimum output power of the battery pack, and 𝑃 _  is the 
maximum output power of the battery pack. 

Finally, the energy management control strategy map is illustrated, as shown in 
Figure 5. 
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Figure 5. Energy management control strategy map. 

  

Figure 5. Energy management control strategy map.

3.2. Simulation Comparison Analysis

The two standardized cycle test conditions of NEDC and WLTP are used (Figure 6).
The NEDC cycle consists of urban and suburban working conditions, including four urban
low-speed and one suburban high-speed working condition. The WLTP cycle uses a
Class 3 vehicle test cycle with a maximum speed of more than 120 km/h and consists
of low-, medium-, high-, and ultrahigh-speed sections. In this paper, two typical formal
working conditions are selected to validate the algorithm. WLTP is now the most widely
used test condition, and NEDC is currently also used for emission testing under current
Chinese standards.
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The traditional power system, ECMS control strategy, and ECMS mild hybrid system
are compared and analyzed under two test conditions to prove the fuel economy effec-
tiveness of the designed ECMS instantaneous optimization method. Fuel consumption
curves of the three power systems obtained via simulation are illustrated in Figure 7. The
numerical summary is presented in Table 3.

Machines 2022, 10, x FOR PEER REVIEW 8 of 22 
 

 

3.2. Simulation Comparison Analysis 
The two standardized cycle test conditions of NEDC and WLTP are used (Figure 6). 

The NEDC cycle consists of urban and suburban working conditions, including four 
urban low-speed and one suburban high-speed working condition. The WLTP cycle uses 
a Class 3 vehicle test cycle with a maximum speed of more than 120 km/h and consists of 
low-, medium-, high-, and ultrahigh-speed sections. In this paper, two typical formal 
working conditions are selected to validate the algorithm. WLTP is now the most widely 
used test condition, and NEDC is currently also used for emission testing under current 
Chinese standards. 

  
(a) (b) 

Figure 6. (a) NEDC cycle test condition; (b) WLDP cycle test condition. 

The traditional power system, ECMS control strategy, and ECMS mild hybrid system 
are compared and analyzed under two test conditions to prove the fuel economy 
effectiveness of the designed ECMS instantaneous optimization method. Fuel 
consumption curves of the three power systems obtained via simulation are illustrated in 
Figure 7. The numerical summary is presented in Table 3. 

  
(a) (b) 

Figure 7. Comparison of fuel consumption of various power systems under different test conditions. 
(a) NEDV cycle test condition; (b) WLDP cycle test condition. 

  

Figure 7. Comparison of fuel consumption of various power systems under different test conditions.
(a) NEDV cycle test condition; (b) WLDP cycle test condition.

Table 3. Comparison of fuel consumption under various power systems.

Test Condition NEDC WLTP

power system Tra ECMS No Tra ECMS No
Fuel consumption 771.1 727.6 673.2 2037.8 1812.96 1694.2

100 km fuel consumption 9.63 9.10 8.42 12.10 10.74 10.12

Figure 7 shows that MHEV with the ECMS control strategy can more effectively reduce
fuel consumption compared with MHEVs and conventional power vehicles without ECMS
control strategies.

The simulation results of the mild hybrid system with and without the ECMS control
strategy are compared and analyzed. The process of generating electricity with the motor
causes the operating conditions of the engine to change and result in a different engine
load after the application of the ECMS control strategy.

Figures 8–11 present the motor output torque and the engine load of different power
systems after applying the ECMS control strategy under NEDC and WLTP test conditions.
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The motor works power-assisted engine when the vehicle accelerates or the working
condition changes drastically. The motor is typically in power generation mode when the
vehicle stabilizes or the working condition changes smoothly to store electric energy. This
feature reduces the load when the engine is under high load and increases the load when
the engine is under low load to prevent the engine from operating at very low or high loads.
The change of engine load is reflected in the distribution of operating conditions on the
universal characteristic MAP as shown in Figures 12 and 13.
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The mild hybrid system with the ECMS control strategy allows most of the engine’s
operating conditions compared with a mild hybrid system with only an automatic idle start
and stop and regenerative braking energy recovery under the two cyclic test conditions.
The movement of the point toward the high-efficiency zone causes the thermal efficiency
of the engine to change. The thermal efficiency of the engine in each power system under
the two test conditions is shown in Figures 14 and 15, and the average thermal efficiency
values are listed in Table 4.
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Table 4. Comparison of fuel consumption under various power systems.

Test Condition NEDC WLDP

Power system NO ECMS ECMS NO ECMS ECMS
Engine average thermal efficiency 0.211 0.251 0.2449 0.280

As shown in Figures 14 and 15, the mild hybrid system with the ECMS control strategy
under the two test conditions reduces consumption during the engine running process
more than the mild hybrid system without the ECMS control strategy. The extremely low
efficiency of the middle part of the engine improved the overall efficiency of the engine.

Table 4 shows that the mild hybrid system with the ECMS control strategy under the
two test conditions increases the average thermal efficiency value during engine operation.
The increase in average thermal efficiency represents a reduction in fuel consumption. This
explains why the ECMS control strategy can improve the fuel economy of the vehicle.

The results demonstrated that the ECMS control strategy under NEDC and WLTP test
conditions can reduce fuel consumption by 7.071% per 100 km and 5.963% per 100 km,
respectively. This finding clearly verifies the fuel economy of the ECMS control strategy.

4. Motor Dynamic Compensation Strategy Considering Turbocharged Engine
Response Characteristics

The phenomenon of “turbo lag” occurs in the turbocharged engine during the accel-
eration of the vehicle; that is, the transient response is slow. This situation is manifested
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by the slow change of output torque of the engine and slow response when the engine
load demand changes rapidly. The transient response of the turbine engine exerts a strong
influence on vehicle dynamics and fuel economy. Therefore, the proposed motor power
compensation strategy based on the original energy management control strategy can
compensate for turbo lag.

4.1. Formulation of Motor Power Compensation Strategy

The ECMS control strategy aims to distribute the demand torque of the engine and
the motor under steady-state conditions. The investigated motor dynamic compensation
strategy is applied to optimize the transient response characteristics of the engine and
energy management control strategy for the mild hybrid system. The input of the motor
power compensation strategy module is the accelerator pedal signal, total demand torque
of the engine and the motor (target total output torque), real-time output torque of the
engine and the motor, engine and motor speed, and SOC value of the power battery pack.
Meanwhile, the output is the motor compensation. The basic principle of the motor power
compensation strategy is shown in Figure 16.
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Figure 16. Basic principle of motor power compensation strategy.

When the turbocharged engine is in transient response, the motor’s power compensa-
tion will cause the total output torque or power of the engine and motor to change during
the process, thus affecting the performance of the vehicle. Defining the motor allows use of
the compensable coefficient α and introducing a weighting factor MSOC that varies with
the SOC of the power battery pack. Its SOC curve with the power battery pack is shown in
Figure 17, and the formula is expressed as in (14).

MSOC =

{
2 − KSOC, SOC ≤ 0.6

1, SOC > 0.6
(14)Machines 2022, 10, x FOR PEER REVIEW 13 of 22 
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Figure 17. Compensation coefficient MSOC with power battery SOC curve.
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Therefore, the motor compensation power Pm_add can be expressed as in (15).
Pm_add = MSOC·min

(
Pm_permit, Pm_ideal

)
Pm_permit = αPm_permit_max
Pm_permit_max = Pm_out_max − Pm_out
Pm_ideal = Ptotal_target − Ptotal_actual

(15)

where Pm_permit allows the compensable power for the motor, Pm_permit_max is the maximum
compensable power of the motor, Pm_out_max is the maximum output power of the motor at
the current speed, Pm_out is the output power of the motor at the current speed, Pm_ideal is the
ideal compensation power for the motor, Pm_ideal is the total output power of the engine and
motor target, and Ptotal_actural is the real-time total output power of the engine and motor.

The required power Pm_total of the motor during the transient response of the engine
after adding the motor power compensation strategy can be expressed as:

Pm_total = Pm_add + Pm_ECMS (16)

4.2. Analysis of the Influence of Motor Power Compensation Strategy on Vehicle Dynamics

Two typical operating conditions are extracted from the NEDC and WLTP cycles
after adding the motor power compensation strategy. The typical working condition
A represents the modal working condition, and the other typical working condition B
represents the transient operating condition. Diagrams of working conditions A and B are
shown in Figure 18. The motor allowable compensation coefficient α is set to 0, 0.2, 0.4,
0.6, 0.8, and 1, where α = 0 represents the motor power compensation strategy and α = 1
represents the motor full-power compensation. The vehicle dynamics analysis in this work
is carried out under different motors’ allowable compensable coefficients.
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Figures 19 and 20 show a comparison of the actual and target vehicle speeds under
working conditions A and B. The standard deviation σ values of the actual and target
vehicle speeds are listed in Tables 5 and 6, respectively.
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Table 6. The standard deviation of the vehicle speed corresponding to the compensable coefficient
for different motors under working condition B.

α 0 0.2 0.4 0.6 0.8 1

σ/km/h 1.858 1.701 1.696 1.695 1.695 1.695

According to the data in Tables 5 and 6, the motor power compensation strategy
can reduce the standard deviation between the actual and target vehicle speeds, and
the standard deviation decreases with the increase in the motor allowable compensation
coefficient until the same. Figure 21 presents the comparison of the actual vehicle speed
with the compensation coefficient of 0 and 0.2 under condition A. Figure 22 illustrates the
comparison of the actual vehicle speed with the compensation coefficient of 0 and 0.6 under
condition B.
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The results showed that the motor power compensation strategy can increase vehicle
speed rapidly and achieve a speed close to the target vehicle speed. A high degree of
motor compensation within a certain range corresponds to excellent power improvement.
The standard deviation between the actual and target vehicle speeds can be reduced by
a maximum of 8.123% and 8.765% under working conditions A and B, respectively. The
increase in real-time total output torque of the engine and motor due to the compensation
power of the motor during the transient response of the engine directly increases the power,
thereby reducing the difference between the real-time and target total output torque values. The
comparison between the total and real-time total output torque of the engine and motor target
corresponding to the compensable coefficient under different operating conditions is presented
in Figures 23 and 24, and their standard deviation σ values are listed in Tables 7 and 8.

As shown in Tables 7 and 8, the standard deviation between the real-time and target
total output torque values of the engine and the motor within a certain range reduces more
with the compensation strategy compared with that of the motor power compensation strat-
egy. The difference decreases with the increase of the allowable compensation coefficient of
the motor within the range, thereby confirming the correctness of the above-mentioned
compensation strategy for improving the dynamics of the vehicle.
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Table 7. Standard deviation of the torque corresponding to the compensable coefficient of different
motors under working condition A.

α 0 0.2 0.4 0.6 0.8 1

σ/km/h 6.535 5.385 5.385 5.385 5.385 5.385
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Table 8. Standard deviation of the torque corresponding to the compensable coefficient of different
motors under working condition B.

α 0 0.2 0.4 0.6 0.8 1

σ/km/h 11.95 8.558 7.897 7.765 7.762 7.762

4.3. Analysis of the Influence of Motor Power Compensation Strategy on Fuel Economy of Vehicles

According to the analysis of the dynamic impact of the vehicle, the motor power
compensation strategy changes the actual vehicle speed and causes the engine speed to
change, thereby affecting the engine’s transient ratio fuel consumption value and ultimately
lead to a change in the engine’s fuel consumption. Compared with the original energy
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management control strategy, the change in the output torque of the motor will affect the
amount of fuel consumed by the engine in the future; the replenishment and consumption
of electric energy result in a change in the equivalent fuel consumption of the mild hybrid
system. The bench test method was adopted to analyze and verify the impact of the motor
power compensation strategy on the fuel economy of the vehicle under the allowable
compensation coefficient of different motors.

The selected typical modal working condition A and the typical transient working con-
dition B are tested using the built test rig on different allowable compensation coefficients
of the motor. The numerical results are summarized in Tables 9 and 10.

Table 9. Energy consumption table corresponding to the compensable coefficients of different motors
underworking condition A in bench test.

α 0 0.2 0.4 0.6 0.8 1

m1/g 37.8 36.9 36.9 36.9 36.9 36.9
m2/g 26.4 25.7 25.7 25.7 25.7 25.7
L1/L 16.9 16.5 16.5 16.5 16.5 16.5
L2/L 11.8 11.5 11.5 11.5 11.5 11.5

Table 10. Energy consumption table corresponding to the compensable coefficients of different
motors underworking condition B in bench test.

α 0 0.2 0.4 0.6 0.8 1

m1/g 34.8 33.9 33.4 33.1 33.1 36.9
m2/g 29.5 28.9 28.4 28.4 28.4 28.4
L1/L 18 17.5 17.2 17.1 17.1 17.1
L2/L 15.2 14.9 14.7 14.6 14.6 14.6

Compared with the motor power compensation strategy, the motor power compen-
sation strategy can effectively reduce the fuel consumption of the engine and the equiv-
alent fuel consumption of the power system while the compensation coefficient of the
motor increases.

The change in engine fuel consumption is greater than the equivalent of the battery
pack when the motor is compensated for power in the transient state of the engine despite
the increase in the amount of fuel consumed in the future replenishment of electric energy
or reduction in the amount of fuel consumed in the future consumption of electric energy.
The equivalent fuel consumption of the above power system also reduces with the increase
in the allowable compensation coefficient of the motor. The equivalent fuel consumption
of 100,000 m can be reduced by 2.542% and 3.947% under working conditions A and B,
respectively. The motor allows a compensable coefficient of 0.2 and 0.6 under operating
conditions A and B, respectively, at the intercept point where the fuel consumption is no
longer changing.

The case where the vehicle’s power and fuel economy no longer change with the in-
crease of the motor’s allowable compensation coefficient is called compensation saturation.
The compensable coefficient is called the compensating saturation point when the initial
motor compensates for saturation. The compensation saturation occurs because the actual
compensation power of the motor is affected by the SOC compensation coefficient. When
the actual compensation power of the motor increases with the allowable compensation
power of the motor, the power system tends to consume more power, and the SOC value
of the power battery pack tends to decrease, which tends to lower the SOC compensation
coefficient, thereby suppressing the motor. The actual compensation power increases until
the compensation saturation point is reached. The actual compensation power of the
motor then stays the same, although the motor allows the compensable power to continue
to increase.

The motor power compensation strategy can reduce fuel consumption because the
engine speed is closer to the target speed through the improvement of the vehicle’s power
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and the engine speed is in the transient response of the engine from a lower load to
a slightly higher load. This improvement can lead to a lower transient ratio than fuel
consumption, a reduced transient ratio fuel consumption value, decrease the average
fuel consumption of the engine under driving conditions, and finally enhance the fuel
economy of the whole vehicle. The average fuel consumption of the engine under the two
working conditions is presented in Tables 11 and 12. Adding the compensation strategy
can reduce the average fuel consumption of the engine and the average engine ratio before
compensating for the saturation point. The fuel consumption decreases as the motor
allows the compensation coefficient to increase, thereby confirming the correctness of the
above-mentioned compensation strategy to improve the fuel economy of the vehicle.

Table 11. Average specific fuel consumption corresponding to the compensable coefficient of different
motors under working condition A in the bench test.

α 0 0.2 0.4 0.6 0.8 1

be/g 352.8 343.3 343.3 343.3 343.3 343.3

Table 12. Average specific fuel consumption corresponding to the compensable coefficient of different
motors under working condition B in the bench test.

α 0 0.2 0.4 0.6 0.8 1

be/g 360.5 353.9 350.6 349.2 349.2 349.2

5. Discussion and Conclusions

A forward hybrid simulation platform for mild hybrid systems is built and the use of
the ECMS instantaneous optimization method is put forward to formulate energy manage-
ment control strategies in this work. A motor power compensation strategy considering
the characteristics of a turbocharged engine transient response is also proposed.

The equivalent fuel consumption rate model of the power battery pack under charge
and discharge conditions is established on the basis of the instantaneous optimization
method of ECMS. The equivalent factor is introduced for the simplified calculation, the SOC
compensation of the power battery pack introduces a penalty function, the regenerative
braking correction introduces the average regenerative braking power, and the above
control parameters are set for different working conditions in the process of determining
the objective function according to the model. The constraints are then combined as
an energy management control strategy to optimize the energy distribution relationship
between the generator and the motor. The results showed that the ECMS control strategy
can achieve an engine operating point close to the high-efficiency zone, improve the average
thermal efficiency of the engine, and enhance the fuel economy of the vehicle. The ECMS
control strategy can additionally reduce the fuel consumption by 7.071% per 100 km and
5.163% per 100 km under the NEDC and WLTP test conditions, respectively

The transient response of the turbocharged engine affects the vehicle’s power and
fuel economy. The motor is used to compensate power and solve the negative impact
of turbocharged engine response characteristics according to the energy management
control strategy. The results demonstrated that the motor power compensation strategy can
improve the vehicle’s dynamic performance. The standard deviation between the actual
and target vehicle speeds can be reduced by 8.123% and 8.765% under the NEDC and
WLTP cycle selection sections, respectively. Hence, the ECMS mild hybrid control strategy
introduced by motor power compensation can maintain the power and improve the fuel
economy of the vehicle.

We will continue to explore strategies for improving vehicle fuel economy and test
the motor power compensation strategy using real vehicles to validate the proposed
algorithm further in future investigations. The compensation strategy will be optimized
and improved on the basis of the experimental results to enhance the practicality of the
motor compensation strategy and fuel economy while ensuring vehicle power.
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