Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = egg-yolk phosphatidylcholine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1471 KiB  
Review
Vitellogenesis and Embryogenesis in Spiders: A Biochemical Perspective
by Carlos Fernando Garcia, Aldana Laino and Mónica Cunningham
Insects 2025, 16(4), 398; https://doi.org/10.3390/insects16040398 - 10 Apr 2025
Cited by 1 | Viewed by 3300
Abstract
This review compiles information on the biochemistry of spider reproduction, from vitellogenesis to postembryonic development. Despite the diversity of spiders, biochemical studies on their reproduction remain scarce. The structures, functions, and relationships of vitellogenins and lipovitellins across different groups are compared. Information on [...] Read more.
This review compiles information on the biochemistry of spider reproduction, from vitellogenesis to postembryonic development. Despite the diversity of spiders, biochemical studies on their reproduction remain scarce. The structures, functions, and relationships of vitellogenins and lipovitellins across different groups are compared. Information on two vitellogenin-associated proteins (30 and 47 kDa) is presented and discussed. By analyzing females at different reproductive stages—previtellogenesis, early vitellogenesis, vitellogenesis, and postvitellogenesis—as well as males, we examined lipid and fatty acid synthesis, mobilization, and accumulation in the yolk. Lipid dynamics across vitellogenic organs, such as the intestinal diverticula, hemolymph, and ovaries, were established. Structural lipids, mainly phosphatidylcholine and phosphatidylethanolamine, were the predominant yolk components, followed by triacylglycerols. The gonadosomatic and hepatosomatic indices are described for the first time in spiders, providing a new tool for studying vitellogenesis. Hemocyanin was detected in early spider eggs, suggesting a role in organogenesis, with its concentration increasing in later embryonic stages. In contrast, lipovitellin consumption was observed throughout embryonic development until juvenile emergence. The data compiled in this review provide valuable insights into the molecular interactions underlying a key process for oviparous animals. Full article
(This article belongs to the Special Issue Arthropod Reproductive Biology)
Show Figures

Figure 1

17 pages, 3584 KiB  
Article
Comparative Analysis of Egg Yolk Phospholipid Unsaturation and Its Impact on Neural Health in Alzheimer Disease Mice
by Yuhang Sun, Yao Wu, Bing Fang, Jingyu Li, Yue Liu, Haina Gao and Ming Zhang
Foods 2025, 14(5), 792; https://doi.org/10.3390/foods14050792 - 26 Feb 2025
Cited by 1 | Viewed by 1105
Abstract
The mechanism of egg yolk phosphatidylcholine (PC) in alleviating Alzheimer’s disease (AD) has not yet been clear. The fatty acid composition of PC, especially the ratio of polyunsaturated fatty acids (PUFA), may be a critical determinant of their structural and functional roles. This [...] Read more.
The mechanism of egg yolk phosphatidylcholine (PC) in alleviating Alzheimer’s disease (AD) has not yet been clear. The fatty acid composition of PC, especially the ratio of polyunsaturated fatty acids (PUFA), may be a critical determinant of their structural and functional roles. This study aimed to conduct a comparative analysis of the unsaturation levels of egg yolk PC and their impact on neurological health in a murine model of AD. The results showed that oral administration of high and low unsaturation PC (HUP, LUP) enhanced learning and memory abilities in AD mice, with the HUP intervention demonstrating superior efficacy compared to the LUP. Follow-up biochemical analysis of the brain tissue also suggested that HUP intervention effectively mitigated oxidative-stress damage and inhibited tau hyperphosphorylation in AD mice. Meanwhile, lipidomic analyses of the mouse hippocampus revealed that HUP intervention substantially increased the levels of phospholipids, such as PEt (phosphatidylethanol) and BisMePA (bis(methylthio)phenylacetic acid), which are recognized as vital components of neuronal cell membranes. Furthermore, HUP intervention markedly elevated the levels of phospholipids incorporating PUFAs in the hippocampus. These results revealed a mitigating role for unsaturated egg yolk PC in AD prevention and offer new insights into AD prevention from a lipidomic perspective. Full article
(This article belongs to the Special Issue Eggs and Egg Products: Production, Processing, and Safety)
Show Figures

Graphical abstract

20 pages, 4432 KiB  
Article
Design and Bioanalysis of Nanoliposome Loaded with Premium Red Palm Oil for Improved Nutritional Delivery and Stability
by Tanatchapond Rodsamai, Manat Chaijan, Prawit Rodjan, Arlee Tamman, Nassareen Supaweera, Mingyu Yin, Siriporn Riebroy Kim and Worawan Panpipat
Foods 2025, 14(4), 566; https://doi.org/10.3390/foods14040566 - 8 Feb 2025
Cited by 2 | Viewed by 852
Abstract
Red palm oil (RPO), which is rich in carotenoids and tocotrienols, offers significant health-promoting properties. However, its utilization in functional foods is hindered by poor water solubility and instability under certain processing conditions. This study aimed to overcome these limitations by enhancing the [...] Read more.
Red palm oil (RPO), which is rich in carotenoids and tocotrienols, offers significant health-promoting properties. However, its utilization in functional foods is hindered by poor water solubility and instability under certain processing conditions. This study aimed to overcome these limitations by enhancing the bioactivity and stability of RPO through the ultrasound-assisted fabrication of nanoliposomes, formulated with varying ratios of egg yolk phosphatidylcholine (EYPC) to RPO. At a 3:1 ratio, the encapsulation efficiency (EE) began to reach >90%. Nanoliposome with the highest β-carotene EE (94.9%) (p < 0.05) and a typical oil loading content of 13.40% was produced by EYPC-to-RPO at a 7:1 ratio. As EYPC levels increased, the average vesicle size and the polydispersity index decreased, but the zeta potential and pH gradually increased. Nanoliposome prepared with an EYPC: RPO ratio of 3:1 showed the lowest peroxide value (PV) of 4.99 meqO2/kg, a thiobarbuturic acid reactive substances (TBARS) value of 0.20 mmol/kg, and greater 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) inhibition over 30 days of storage at 25 °C. All nanoliposomes showed anti-inflammatory activity without cell toxicity. Nanoliposomes present a promising delivery system for enhancing the biological activity and storage stability of RPO. Full article
Show Figures

Figure 1

17 pages, 3101 KiB  
Article
New Insights into the Loss of Antioxidant Effectiveness of Phenolic Compounds in Vegetable Oils in the Presence of Phosphatidylcholine
by Joaquín Velasco, María-Jesús Gil, Yun-Qi Wen, Aída García-González and María-Victoria Ruiz-Méndez
Antioxidants 2023, 12(11), 1993; https://doi.org/10.3390/antiox12111993 - 11 Nov 2023
Cited by 6 | Viewed by 2184
Abstract
It has been proposed that lipid oxidation reactions in edible oils primarily occur in reverse micelles (RM) of amphiphilic components. While the prooxidative effect of RM has been demonstrated, the mechanism involved is not fully understood. Both reductions and enhancements in the antioxidant [...] Read more.
It has been proposed that lipid oxidation reactions in edible oils primarily occur in reverse micelles (RM) of amphiphilic components. While the prooxidative effect of RM has been demonstrated, the mechanism involved is not fully understood. Both reductions and enhancements in the antioxidant efficacy (AE) of α-tocopherol and Trolox have been observed in different studies when phosphatidylcholine (PC) was added and PC RM were formed. However, most of these investigations employed lipid systems consisting of stripped vegetable oil diluted in saturated medium-chain triacylglycerols (MCT) and utilized antioxidant concentrations well below those found in edible oils. These two specific factors were investigated in the present study. The effect of RM of purified egg yolk PC on the AE of 1.16 mmol kg−1 α-tocopherol or Trolox in stripped sunflower oil (SSO) was studied by the Rancimat (100 °C) and oven (50 °C) tests. Increasing PC concentrations (50–1000 ppm) had no significant impact on α-tocopherol, but substantial reductions in AE were observed for Trolox. This phenomenon may be attributed to the partitioning of Trolox into the pre-existing PC micelles, suggesting that primary oxidation reactions occurred in the continuous lipid phase. In addition, the effectiveness of both antioxidants decreased significantly in the presence of PC when a low antioxidant concentration (0.06 mmol kg−1) was assayed in SSO:MCT (1:3, w/w). Full article
(This article belongs to the Special Issue Antioxidants and Oxidative Stability in Fats and Oils)
Show Figures

Graphical abstract

14 pages, 4027 KiB  
Article
Investigation of the Membrane Localization and Interaction of Selected Flavonoids by NMR and FTIR Spectroscopy
by Justyna Kapral-Piotrowska, Jakub W. Strawa, Katarzyna Jakimiuk, Adrian Wiater, Michał Tomczyk, Wiesław I. Gruszecki and Bożena Pawlikowska-Pawlęga
Int. J. Mol. Sci. 2023, 24(20), 15275; https://doi.org/10.3390/ijms242015275 - 17 Oct 2023
Cited by 5 | Viewed by 1845
Abstract
In this report, we discuss the effects of undescribed flavone derivatives, HZ4 and SP9, newly isolated from the aerial parts of Hottonia palustris L. and Scleranthus perennis L. on membranes. Interaction of flavonoids with lipid bilayers is important for medicinal applications. The experiments [...] Read more.
In this report, we discuss the effects of undescribed flavone derivatives, HZ4 and SP9, newly isolated from the aerial parts of Hottonia palustris L. and Scleranthus perennis L. on membranes. Interaction of flavonoids with lipid bilayers is important for medicinal applications. The experiments were performed with FTIR and NMR techniques on liposomes prepared from DPPC (dipalmitoylphosphatidylcholine) and EYPC (egg yolk phosphatidylcholine). The data showed that the examined polyphenols incorporate into the polar head group region of DPPC phospholipids at both 25 °C and 45 °C. At the lower temperature, a slight effect in the spectral region of the ester carbonyl group is observed. In contrast, at 45 °C, both compounds bring about the changes in the spectral regions attributed to antisymmetric and symmetric stretching vibrations of CH2 and CH3 moieties. Similarly, as in DPPC lipids, the tested compounds interact with the fingerprint region of the polar head groups of the EYPC lipids and cause its reorganization. The outcomes obtained by NMR analyses confirmed the localization of both flavonoids in the polar heads zone. Unraveled effects of HZ4 and SP9 in respect to lipid bilayers can partly determine their biological activities and are crucial for their usability in medicine as disease-preventing phytochemicals. Full article
(This article belongs to the Special Issue New Insights in Natural Bioactive Compounds 2.0)
Show Figures

Figure 1

12 pages, 2456 KiB  
Article
Beta-Caryophyllene Induces Significant Changes in the Lipid Bilayer at Room and Physiological Temperatures: ATR-FTIR Spectroscopy Studies
by Ivan D. Yakimov, Ilya M. Kolmogorov and Irina M. Le-Deygen
Biophysica 2023, 3(3), 501-512; https://doi.org/10.3390/biophysica3030033 - 30 Aug 2023
Cited by 2 | Viewed by 2053
Abstract
Beta-caryophyllene (BCP) is a natural bicyclic sesquiterpene with high biological activity. Potentially, it can be used in the treatment of a wide range of neurological diseases. However, to date, there are practically no data on the interaction of BCP with biological membranes. In [...] Read more.
Beta-caryophyllene (BCP) is a natural bicyclic sesquiterpene with high biological activity. Potentially, it can be used in the treatment of a wide range of neurological diseases. However, to date, there are practically no data on the interaction of BCP with biological membranes. In the present work, we studied for the first time the interaction of BCP with model membranes—liposomes based on egg yolk phosphatidylcholine (Egg PC) with a variable cholesterol content (from 0 to 25 w.%). Using ATR-FTIR spectroscopy, we have shown that the membrane rigidity and cholesterol content dramatically affect the nature of the interaction of BCP with the bilayer both at room temperature and at physiological temperatures. The incorporation of BCP into the thickness of the bilayer leads to changes in the subpolar region of the bilayer, and at a high cholesterol content, it can provoke the formation of defects in the membrane. Full article
(This article belongs to the Special Issue Biomedical Optics)
Show Figures

Figure 1

16 pages, 2597 KiB  
Article
Untargeted UHPLC-TOF/MS Lipidomic Analysis for the Investigation of Egg Yolks after Xylanase Supplementation of the Diet of Laying Hens
by Artemis Lioupi, Georgios A. Papadopoulos, Domniki Gallou, Christina Virgiliou, Georgios I. Arsenos, Paschalis Fortomaris, Veerle Van Hoeck, Dany Morisset and Georgios Theodoridis
Metabolites 2023, 13(5), 649; https://doi.org/10.3390/metabo13050649 - 10 May 2023
Cited by 2 | Viewed by 2447
Abstract
Xylanase supplementation of diets is used to enhance nutrient digestibility in monogastrics which lack necessary enzymes for non-starch polysaccharide degradation. The effects of enzymatic treatment in the nutritional value of the feed are typically not comprehensively studied. Though the fundamental effects of xylanase [...] Read more.
Xylanase supplementation of diets is used to enhance nutrient digestibility in monogastrics which lack necessary enzymes for non-starch polysaccharide degradation. The effects of enzymatic treatment in the nutritional value of the feed are typically not comprehensively studied. Though the fundamental effects of xylanase on performance are well studied, limited data is available on the complex interactions between xylanase supplementation and hen physiology; therefore, the aim of this study was to develop a new, simple UPLC-TOF/MS lipidomics method for the analysis of hen egg yolks after supplementation with different amounts of xylanase. Sample preparation for the extraction of lipids was optimized and different sample preparation modes and solvent mixtures were tested. Optimal results for the extraction of total lipids were obtained by using the solvent mixture MTBE: MeOH (5:1, v/v). Multivariate statistical analysis of the signals of hundreds of lipids in positive and negative ionisation modes highlighted differences in several egg yolk lipid species-classes. Four lipid species-classes, phosphatidylcholines (PC and PC O), phosphatidylethanolamines (PE and PE O), phosphatidylinositols (PI), and fatty acids (FA), were among those contributing to the separation of the experimental groups (control-treated) in negative ionisation mode. In positive ionisation mode, principal beneficial lipid compounds such as phosphatidylcholines (PC and PC O), phosphatidylethanolamines (PE and PE O), triacylglycerols (TG), diacylglycerols (DG), and ceramides (Cer) were found to be increased in treated groups. Overall, supplementation of laying hens’ diets with xylanase significantly changed the lipid profile of egg yolks compared to the control diet. The association between the lipid profiles of egg yolks and hens’ diets, as well as the underlying mechanisms, require further investigation. These findings are of practical significance for the food industry. Full article
(This article belongs to the Section Animal Metabolism)
Show Figures

Figure 1

11 pages, 4235 KiB  
Article
Egg Yolk Fat Deposition Is Regulated by Diacylglycerol and Ceramide Enriched by Adipocytokine Signaling Pathway in Laying Hens
by Qianyun Ji, Penghui Chang, Yuhao Dou, Yutong Zhao and Xingyong Chen
Animals 2023, 13(4), 607; https://doi.org/10.3390/ani13040607 - 9 Feb 2023
Cited by 1 | Viewed by 2166
Abstract
The mechanism which regulates differential fat deposition in egg yolk from the indigenous breeds and commercial laying hens is still unclear. In this research, Chinese indigenous Huainan Partridge chickens and Nongda III commercial laying hens were used for egg collection and liver sampling. [...] Read more.
The mechanism which regulates differential fat deposition in egg yolk from the indigenous breeds and commercial laying hens is still unclear. In this research, Chinese indigenous Huainan Partridge chickens and Nongda III commercial laying hens were used for egg collection and liver sampling. The weight of eggs and yolk were recorded. Yolk fatty acids were determined by gas chromatography-mass spectrometry. Lipid metabolites in the liver were detected by liquid chromatography-mass spectrometry. Yolk weight, yolk ratio and yolk fat ratio exhibited higher in the Huainan Partridge chicken than that of the Nongda III. Compared to the Nongda III, the content of total saturated fatty acid was lower, while the unsaturated fatty acid was higher in the yolk of the Huainan Partridge chicken. Metabolites of phosphatidylinositol and phosphatidylserine from glycerolphospholipids, and metabolites of diacylglycerol from glycerolipids showed higher enrichment in the Huainan Partridge chicken than that of the Nongda III, which promoted the activation of the adipocytokine signaling pathway. However, metabolites of phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine and lysophosphatidylcholine from glycerol phospholipids, and metabolites of triacylglycerol from glycerolipids showed lower enrichment in the Huainan Partridge chicken than that of the Nongda III. The high level of yolk fat deposition in the Huainan Partridge chicken is regulated by the activation of the adipocytokine signaling pathway which can promote the accumulation of diacylglycerol and ceramide in the liver. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

9 pages, 2284 KiB  
Article
Protective Effects of Phosphatidylcholine against Hepatic and Renal Cell Injury from Advanced Glycation End Products
by Jihye Choi, Inbong Song, Sangmin Lee, Myungjo You and Jungkee Kwon
Medicina 2022, 58(11), 1519; https://doi.org/10.3390/medicina58111519 - 25 Oct 2022
Cited by 6 | Viewed by 2666
Abstract
Background and Objectives: Receptors of the advanced glycation products (RAGE) are activated to promote cell death and contributes to chronic diseases such as diabetes and inflammation. Advanced glycation end products (AGEs), which interact with RAGE are complex compounds synthesized during diabetes development and [...] Read more.
Background and Objectives: Receptors of the advanced glycation products (RAGE) are activated to promote cell death and contributes to chronic diseases such as diabetes and inflammation. Advanced glycation end products (AGEs), which interact with RAGE are complex compounds synthesized during diabetes development and are presumed to play a significant role in pathogenesis of diabetes. Phosphatidylcholine (PC), a polyunsaturated fatty acid found in egg yolk, mustard, and soybean, is thought to exert anti-inflammatory activity. We investigated the effects of PC on AGEs-induced hepatic and renal cell injury. Materials and Methods: In this study, we evaluated cytokine and NF-κB/MAPK signal pathway activity in AGEs induced human liver (HepG2) cells and human kidney (HK2) cells with and without PC treatment. Results: PC reduced RAGE expression and attenuated levels of inflammatory cytokines and NF-kB/MAPK signaling. Moreover, cells treated with PC exhibited a significant reduction in cytotoxicity, oxidative stress, and inflammatory factor levels. Conclusions: These findings suggest that PC could be an effective functional material for hepatic and renal injury involving with oxidative stress caused by AGEs during diabetic conditions. Full article
Show Figures

Figure 1

13 pages, 2308 KiB  
Article
Enzymatic Production of Biologically Active 3-Methoxycinnamoylated Lysophosphatidylcholine via Regioselctive Lipase-Catalyzed Acidolysis
by Marta Okulus, Magdalena Rychlicka and Anna Gliszczyńska
Foods 2022, 11(1), 7; https://doi.org/10.3390/foods11010007 - 21 Dec 2021
Cited by 4 | Viewed by 2780
Abstract
Enzymatic acidolysis of egg-yolk phosphatidylcholine (PC) with 3-methoxycinnamic acid (3-OMe-CA) was investigated to produce biologically active 3-methoxycinnamoylated phospholipids. Four commercially available lipases were screened for their ability to incorporate 3-OMe-CA into PC. The results showed that Novozym 435 is the most effective biocatalyst [...] Read more.
Enzymatic acidolysis of egg-yolk phosphatidylcholine (PC) with 3-methoxycinnamic acid (3-OMe-CA) was investigated to produce biologically active 3-methoxycinnamoylated phospholipids. Four commercially available lipases were screened for their ability to incorporate 3-OMe-CA into PC. The results showed that Novozym 435 is the most effective biocatalyst for this process, while during the examination of organic solvents, heptane was found propriate reaction medium. The other reaction parameters including the substrate molar ratio, enzyme load and reaction time were designed using an experimental factorial design method. According to three-level-3-factor Box-Behnken model it was shown that all of studied parameters are crucial variables for the maximization of the synthesis of structured PLs. The optimum conditions derived via response surface methodology (RSM) were: 30% of lipase of the total weight of substrates, 1:15 molar ration of PC/3-OMe-CA and reaction time 4 days. The process of acidolysis performed on the increased scale at optimized parameters afforded two products. The major product, 3-methoxycinnamoylated lysophosphatidylcholine (3-OMe-CA-LPC) was isolated in high 48% yield, while 3-methoxycinnamoylated phosphatidylcholine (3-OMe-CA-PC) was produced in trace amount only in 1.2% yield. Obtained results indicate that presented biotechnological method of synthesis of 3-methoxycinnamoylated lysophosphatidylcholine is competitive to the previously reported chemical one. Full article
Show Figures

Figure 1

15 pages, 2036 KiB  
Article
Towards Oxidatively Stable Emulsions Containing Iron-Loaded Liposomes: The Key Role of Phospholipid-to-Iron Ratio
by Alime Cengiz, Karin Schroën and Claire Berton-Carabin
Foods 2021, 10(6), 1293; https://doi.org/10.3390/foods10061293 - 4 Jun 2021
Cited by 14 | Viewed by 3880
Abstract
To encapsulate soluble iron, liposomes were prepared using unsaturated phospholipids (phosphatidylcholine from egg yolk), leading to high encapsulation efficiencies (82–99%). The iron concentration affected their oxidative stability: at 0.2 and 1 mM ferrous sulfate, the liposomes were stable, whereas at higher concentrations (10 [...] Read more.
To encapsulate soluble iron, liposomes were prepared using unsaturated phospholipids (phosphatidylcholine from egg yolk), leading to high encapsulation efficiencies (82–99%). The iron concentration affected their oxidative stability: at 0.2 and 1 mM ferrous sulfate, the liposomes were stable, whereas at higher concentrations (10 and 48 mM), phospholipid oxidation was considerably higher. When applied in oil-in-water (O/W) emulsions, emulsions with liposomes containing low iron concentrations were much more stable to lipid oxidation than those added with liposomes containing higher iron concentrations, even though the overall iron concentration was similar (0.1 M). Iron-loaded liposomes thus have an antioxidant effect at high phospholipid-to-iron ratio, but act as pro-oxidants when this ratio is too low, most likely as a result of oxidation of the phospholipids themselves. This non-monotonic effect can be of crucial importance in the design of iron-fortified foods. Full article
(This article belongs to the Special Issue Study on Stability and Lipid Oxidation Inhibition in Emulsified Food)
Show Figures

Graphical abstract

17 pages, 2042 KiB  
Article
Interesterification of Egg-Yolk Phosphatidylcholine with p-Methoxycinnamic Acid Catalyzed by Immobilized Lipase B from Candida Antarctica
by Magdalena Rychlicka and Anna Gliszczyńska
Catalysts 2020, 10(10), 1181; https://doi.org/10.3390/catal10101181 - 14 Oct 2020
Cited by 7 | Viewed by 3070
Abstract
The p-methoxycinnamic acid (p-MCA) is one of the most popular phenylpropanoids, the beneficial impact of which on the human health is well documented in the literature. This compound has shown many valuable activities including anticancer, antidiabetic, and neuro- and hepatoprotective. [...] Read more.
The p-methoxycinnamic acid (p-MCA) is one of the most popular phenylpropanoids, the beneficial impact of which on the human health is well documented in the literature. This compound has shown many valuable activities including anticancer, antidiabetic, and neuro- and hepatoprotective. However, its practical application is limited by its low bioavailability resulting from rapid metabolism in the human body. The latest strategy, aimed at overcoming these limitations, is based on the production of more stability in systemic circulation bioconjugates with phospholipids. Therefore, the aim of this research was to develop the biotechnological method for the synthesis of phospholipid derivatives of p-methoxycinnamic acid, which can play a role of new nutraceuticals. We developed and optimized enzymatic interesterification of phosphatidylcholine (PC) with ethyl p-methoxycinnamate (Ep-MCA). Novozym 435 and a binary solvent system of toluene/chloroform 9:1 (v/v) were found to be the effective biocatalyst and reaction medium for the synthesis of structured p-MCA phospholipids, respectively. The effects of the other reaction parameters, such as substrate molar ratio, enzyme dosage, and reaction time, on the degree of incorporation of p-MCA into PC were evaluated by use of an experimental factorial design method. The results showed that substrate molar ratio and biocatalyst load have significant effects on the synthesis of p-methoxycinnamoylated phospholipids. The optimum conditions were: Reaction time of three days, 30% (w/w) of Novozym 435, and 1/10 substrate molar ratio PC/Ep-MCA. Under these parameters, p-methoxycinnamoylated lysophosphatidylcholine (p-MCA-LPC) and p-methoxycinnamoylated phosphatidylcholine (p-MCA-PC) were obtained in isolated yields of 32% and 3% (w/w), respectively. Full article
(This article belongs to the Special Issue Application of Immobilized Enzyme as Catalysts in Chemical Synthesis)
Show Figures

Figure 1

14 pages, 1487 KiB  
Article
Development and Optimization of Lipase-Catalyzed Synthesis of Phospholipids Containing 3,4-Dimethoxycinnamic Acid by Response Surface Methodology
by Magdalena Rychlicka, Natalia Niezgoda and Anna Gliszczyńska
Catalysts 2020, 10(5), 588; https://doi.org/10.3390/catal10050588 - 24 May 2020
Cited by 13 | Viewed by 3435
Abstract
The interesterification reaction of egg-yolk phosphatidylcholine (PC) with ethyl ester of 3,4-dimethoxycinnamic acid (E3,4DMCA) catalyzed by Novozym 435 in hexane as a reaction medium was shown to be an effective method for the synthesis of corresponding structured O-methylated phenophospholipids. The effects of [...] Read more.
The interesterification reaction of egg-yolk phosphatidylcholine (PC) with ethyl ester of 3,4-dimethoxycinnamic acid (E3,4DMCA) catalyzed by Novozym 435 in hexane as a reaction medium was shown to be an effective method for the synthesis of corresponding structured O-methylated phenophospholipids. The effects of substrate molar ratios, time of the reaction and enzyme load on the process of incorporation of 3,4DMCA into PC were evaluated by using the experimental factorial design of three factors and three levels. The results showed that a substrate molar ratio is a crucial variable for the maximization of the synthesis of 3,4-dimethoxycinnamoylated phospholipids. Under optimized parameters of 1/10 substrate molar ratio PC/E3,4DMCA, enzyme load 30% (w/w), hexane as a medium and incubation time of 3 days, the incorporation of aromatic acid into phospholipid fraction reached 21 mol%. The modified phosphatidylcholine (3,4DMCA-PC) and modified lysophosphatidylcholine (3,4DMCA-LPC) were obtained in isolated yields of 3.5% and 27.5% (w/w), respectively. The developed method of phosphatidylcholine interesterification is the first described in the literature dealing with 3,4DMCA and allows us to obtain new O-methylated phenophospholipids with potential applications as food additives or nutraceuticals with pro-health activity. Full article
(This article belongs to the Special Issue Biocatalytic Process Optimization)
Show Figures

Figure 1

14 pages, 2463 KiB  
Article
Enzymatic Synthesis of O-Methylated Phenophospholipids by Lipase-Catalyzed Acidolysis of Egg-Yolk Phosphatidylcholine with Anisic and Veratric Acids
by Marta Okulus and Anna Gliszczyńska
Catalysts 2020, 10(5), 538; https://doi.org/10.3390/catal10050538 - 13 May 2020
Cited by 12 | Viewed by 3124
Abstract
Lipase-catalyzed acidolysis reactions of egg-yolk phosphatidylcholine (PC) with anisic (ANISA) and veratric (VERA) acids were investigated to develop a biotechnological method for the production of corresponding biologically active O-methylated phenophospholipids. Screening experiments with four commercially available immobilized lipases indicated that the most [...] Read more.
Lipase-catalyzed acidolysis reactions of egg-yolk phosphatidylcholine (PC) with anisic (ANISA) and veratric (VERA) acids were investigated to develop a biotechnological method for the production of corresponding biologically active O-methylated phenophospholipids. Screening experiments with four commercially available immobilized lipases indicated that the most effective biocatalyst for the incorporation of ANISA into phospholipids was Novozym 435. None of the tested enzymes were able to catalyze the synthesis of PC structured with VERA. The effects of different solvents, substrate molar ratios, temperature, enzyme loading, and time of the reaction on the process of incorporation of ANISA into the phospholipids were evaluated in the next step of the study. The mixture of toluene/chloroform in the ratio 9:1 (v/v) significantly increased the incorporation of ANISA into PC. The acidolysis reaction was carried out using the selected binary solvent system, 1/15 substrate molar ratio PC/ANISA, 30% (w/w) enzyme load, and temperature of 50 °C afforded after 72 h anisoylated lysophosphatidylcholine (ANISA-LPC) and anisoylated phosphatidylcholine (ANISA-PC) in isolated yields of 28.5% and 2.5% (w/w), respectively. This is the first study reporting the production of ANISA-LPC and ANISA-PC via a one-step enzymatic method, which is an environmentally friendly alternative to the chemical synthesis of these biologically active compounds. Full article
(This article belongs to the Special Issue Enzyme-Catalyzed Biotransformations)
Show Figures

Figure 1

13 pages, 2453 KiB  
Article
Structural Modification of Nanomicelles through Phosphatidylcholine: The Enhanced Drug-Loading Capacity and Anticancer Activity of Celecoxib-Casein Nanoparticles for the Intravenous Delivery of Celecoxib
by Liuli Xv, Xinxin Qian, Yan Wang, Chenghuan Yu, Dingkui Qin, Yahui Zhang, Peng Jin and Qizhen Du
Nanomaterials 2020, 10(3), 451; https://doi.org/10.3390/nano10030451 - 2 Mar 2020
Cited by 22 | Viewed by 3863
Abstract
This study aims to stabilize loaded celecoxib (CX) by modifying the structure of casein nanoparticles through phosphatidylcholine. The results show that Egg yolk phosphatidylcholine PC98T (PC) significantly increased the stability of CX-PC-casein nanoparticles (NPs) (192.6 nm) from 5 min (CX-β-casein-NPs) to 2.5 [...] Read more.
This study aims to stabilize loaded celecoxib (CX) by modifying the structure of casein nanoparticles through phosphatidylcholine. The results show that Egg yolk phosphatidylcholine PC98T (PC) significantly increased the stability of CX-PC-casein nanoparticles (NPs) (192.6 nm) from 5 min (CX-β-casein-NPs) to 2.5 h at 37 °C. In addition, the resuspended freeze-dried NPs (202.4 nm) remained stable for 2.5 h. Scanning electron microscopy indicated that PC may block the micropore structures in nanoparticles by ultrasonic treatment and hence improve the physicochemical stability of CX-PC-casein-NPs. The stability of the NPs was positively correlated with their inhibiting ability for human malignant melanoma A375 cells. The structural modification of CX-PC-casein-NPs resulted in an increased intracellular uptake of CX by 2.4 times than that of the unmodified ones. The pharmacokinetic study showed that the Area Under Curve (AUC) of the CX-PC-casein-NPs was 2.9-fold higher in rats than that of the original casein nanoparticles. When CX-PC-casein-NPs were intravenously administrated to mice implanted with A375 tumors (CX dose = 16 mg/kg bodyweight), the tumor inhibition rate reached 56.2%, which was comparable to that of paclitaxel (57.3%) at a dose of 4 mg/kg bodyweight. Our results confirm that the structural modification of CX-PC-casein-NPs can effectively prolong the remaining time of specific drugs, and may provide a potential strategy for cancer treatment. Full article
(This article belongs to the Special Issue Nanoscale Surface Engineering)
Show Figures

Graphical abstract

Back to TopTop