Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,326)

Search Parameters:
Keywords = effective antibiotic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 806 KiB  
Proceeding Paper
Enterococcus faecalis Biofilm: A Clinical and Environmental Hazard
by Bindu Sadanandan and Kavyasree Marabanahalli Yogendraiah
Med. Sci. Forum 2025, 35(1), 5; https://doi.org/10.3390/msf2025035005 - 5 Aug 2025
Abstract
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange [...] Read more.
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange and waste removal. Exopolysaccharides, proteins, lipids, and extracellular DNA create a protective matrix. Persister cells within the biofilm contribute to antibiotic resistance and survival. The heterogeneous architecture of the E. faecalis biofilm contains both dense clusters and loosely packed regions that vary in thickness, ranging from 10 to 100 µm, depending on the environmental conditions. The pathogenicity of the E. faecalis biofilm is mediated through complex interactions between genes and virulence factors such as DNA release, cytolysin, pili, secreted antigen A, and microbial surface components that recognize adhesive matrix molecules, often involving a key protein called enterococcal surface protein (Esp). Clinically, it is implicated in a range of nosocomial infections, including urinary tract infections, endocarditis, and surgical wound infections. The biofilm serves as a nidus for bacterial dissemination and as a reservoir for antimicrobial resistance. The effectiveness of first-line antibiotics (ampicillin, vancomycin, and aminoglycosides) is diminished due to reduced penetration, altered metabolism, increased tolerance, and intrinsic and acquired resistance. Alternative strategies for biofilm disruption, such as combination therapy (ampicillin with aminoglycosides), as well as newer approaches, including antimicrobial peptides, quorum-sensing inhibitors, and biofilm-disrupting agents (DNase or dispersin B), are also being explored to improve treatment outcomes. Environmentally, E. faecalis biofilms contribute to contamination in water systems, food production facilities, and healthcare environments. They persist in harsh conditions, facilitating the spread of multidrug-resistant strains and increasing the risk of transmission to humans and animals. Therefore, understanding the biofilm architecture and drug resistance is essential for developing effective strategies to mitigate their clinical and environmental impact. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Antibiotics)
Show Figures

Figure 1

18 pages, 3140 KiB  
Article
Spatial and Temporal Distribution of Conversational and Emerging Pollutants in Fecal Sludge from Rural Toilets, China
by Lin Lin, Yilin Shen, Guoji Ding, Shakib Alghashm, Seinn Lei Aye and Xiaowei Li
Sustainability 2025, 17(15), 7088; https://doi.org/10.3390/su17157088 - 5 Aug 2025
Abstract
Effective management of fecal pollutants in rural sanitation is crucial for environmental health and public safety, especially in developing regions. In this study, temporal and regional variations in nutrient elements, heavy metals, pathogenic microorganisms (PMs), and antibiotic resistance genes (ARGs) of fecal samples [...] Read more.
Effective management of fecal pollutants in rural sanitation is crucial for environmental health and public safety, especially in developing regions. In this study, temporal and regional variations in nutrient elements, heavy metals, pathogenic microorganisms (PMs), and antibiotic resistance genes (ARGs) of fecal samples from rural toilets in China were investigated. The moisture contents of the fecal samples average 92.7%, decreasing seasonally from 97.4% in summer to 90.6% in winter. The samples’ pH values range from 6.5 to 7.5, with a slight decrease in winter (6.8), while their electrical conductivity varies from 128.1 to 2150 μs/cm, influenced by regional diets. Chromium (9.0–49.7 mg/kg) and copper (31.9–784.4 mg/kg) levels vary regionally, with higher concentrations in Anhui and Guangxi Provinces due to dietary and industrial factors. Zinc contents range from 108.5 to 1648.9 mg/kg, with higher levels in autumn and winter, resulting from agricultural practices and Zn-containing fungicides, posing potential health and phytotoxicity risks. Seasonal and regional variations in PMs and ARGs were observed. Guangxi Province shows the high PM diversity in summer samples, while Jiangsu Province exhibits the high ARGs types in autumn samples. These findings highlight the need for improved waste management and sanitation solutions in rural areas to mitigate environmental risks and protect public health. Continued research in these regions is essential to inform effective sanitation strategies. Full article
Show Figures

Graphical abstract

23 pages, 2663 KiB  
Article
Antimicrobial and Anticancer Activities of Lactiplantibacillus plantarum Probio87 Isolated from Human Breast Milk
by Pei Xu, Mageswaran Uma Mageswary, Azka Ainun Nisaa, Xiang Li, Yi-Jer Tan, Chern-Ein Oon, Cheng-Siang Tan, Wen Luo and Min-Tze Liong
Nutrients 2025, 17(15), 2554; https://doi.org/10.3390/nu17152554 - 5 Aug 2025
Abstract
Background/Objectives: This study evaluated the in vitro probiotic potential of Lactiplantibacillus plantarum Probio87 (Probio87), focusing on its physiological robustness, safety, antimicrobial properties, and anticancer activity, with relevance to vaginal and cervical health. Methods: Tests included acid and bile salt tolerance, mucin adhesion, and [...] Read more.
Background/Objectives: This study evaluated the in vitro probiotic potential of Lactiplantibacillus plantarum Probio87 (Probio87), focusing on its physiological robustness, safety, antimicrobial properties, and anticancer activity, with relevance to vaginal and cervical health. Methods: Tests included acid and bile salt tolerance, mucin adhesion, and carbohydrate utilization. Prebiotic preferences were assessed using FOS, GOS, and inulin. Antibiotic susceptibility was evaluated per EFSA standards. Antimicrobial activity of the cell-free supernatant (CFS) was tested against Staphylococcus aureus, Escherichia coli, and Candida species. Effects on Lactobacillus iners and L. crispatus were analyzed. Anticancer properties were assessed in HeLa, CaSki (HPV-positive), and C-33A (HPV-negative) cervical cancer cell lines through proliferation, apoptosis, angiogenesis, and cell cycle assays. Results: Probio87 showed strong acid and bile tolerance, efficient mucin adhesion, and broad carbohydrate utilization, favoring short-chain prebiotics like FOS and GOS over inulin. It met EFSA antibiotic safety standards. The CFS exhibited potent antimicrobial activity, including complete inhibition of Candida albicans. Probio87 selectively inhibited L. iners without affecting L. crispatus, indicating positive modulation of vaginal microbiota. In cervical cancer cells, the CFS significantly reduced proliferation and angiogenesis markers (p < 0.05), and induced apoptosis and cell cycle arrest in HPV-positive cells, with minimal effects on HPV-negative C-33A cells. Conclusions: Probio87 demonstrates strong probiotic potential, with safe, selective antimicrobial and anticancer effects. Its ability to modulate key microbial and cancer-related pathways supports its application in functional foods or therapeutic strategies for vaginal and cervical health. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

18 pages, 1942 KiB  
Article
Surveillance and Characterization of Vancomycin-Resistant and Vancomycin-Variable Enterococci in a Hospital Setting
by Claudia Rotondo, Valentina Antonelli, Alberto Rossi, Silvia D’Arezzo, Marina Selleri, Michele Properzi, Silvia Turco, Giovanni Chillemi, Valentina Dimartino, Carolina Venditti, Sara Guerci, Paola Gallì, Carla Nisii, Alessia Arcangeli, Emanuela Caraffa, Stefania Cicalini and Carla Fontana
Antibiotics 2025, 14(8), 795; https://doi.org/10.3390/antibiotics14080795 (registering DOI) - 4 Aug 2025
Abstract
Background/Objectives: Enterococci, particularly Enterococcus faecalis and Enterococcus faecium, are Gram-positive cocci that can cause severe infections in hospitalized patients. The rise of vancomycin-resistant enterococci (VRE) and vancomycin-variable enterococci (VVE) poses significant challenges in healthcare settings due to their resistance to multiple [...] Read more.
Background/Objectives: Enterococci, particularly Enterococcus faecalis and Enterococcus faecium, are Gram-positive cocci that can cause severe infections in hospitalized patients. The rise of vancomycin-resistant enterococci (VRE) and vancomycin-variable enterococci (VVE) poses significant challenges in healthcare settings due to their resistance to multiple antibiotics. Methods: We conducted a point prevalence survey (PPS) to assess the prevalence of VRE and VVE colonization in hospitalized patients. Rectal swabs were collected from 160 patients and analyzed using molecular assays (MAs) and culture. Whole-genome sequencing (WGS) and core-genome multilocus sequence typing (cgMLST) were performed to identify the genetic diversity. Results: Of the 160 rectal swabs collected, 54 (33.7%) tested positive for the vanA and/or vanB genes. Culture-based methods identified 47 positive samples (29.3%); of these, 44 isolates were identified as E. faecium and 3 as E. faecalis. Based on the resistance profiles, 35 isolates (74.5%) were classified as VRE, while 12 (25.5%) were classified as VVE. WGS and cgMLST analyses identified seven clusters of E. faecium, with sequence type (ST) 80 being the most prevalent. Various resistance genes and virulence factors were identified, and this study also highlighted intra- and inter-ward transmission of VRE strains. Conclusions: Our findings underscore the potential for virulence and resistance of both the VRE and VVE strains, and they highlight the importance of effective infection control measures to prevent their spread. VVE in particular should be carefully monitored as they often escape detection. Integrating molecular data with clinical information will hopefully enhance our ability to predict and prevent future VRE infections. Full article
(This article belongs to the Special Issue Hospital-Associated Infectious Diseases and Antibiotic Therapy)
Show Figures

Figure 1

35 pages, 1022 KiB  
Review
Mechanistic Role of Heavy Metals in Driving Antimicrobial Resistance: From Rhizosphere to Phyllosphere
by Rahul Kumar, Tanja P. Vasić, Sanja P. Živković, Periyasamy Panneerselvam, Gustavo Santoyo, Sergio de los Santos Villalobos, Adeyemi Nurudeen Olatunbosun, Aditi Pandit, Leonard Koolman, Debasis Mitra and Pankaj Gautam
Appl. Microbiol. 2025, 5(3), 79; https://doi.org/10.3390/applmicrobiol5030079 (registering DOI) - 4 Aug 2025
Abstract
Heavy metal pollution represents a pervasive environmental challenge that significantly exacerbates the ever-increasing crisis of antimicrobial resistance and the capacity of microorganisms to endure and proliferate despite antibiotic interventions. This review examines the intricate relationship between heavy metals and AMR, with an emphasis [...] Read more.
Heavy metal pollution represents a pervasive environmental challenge that significantly exacerbates the ever-increasing crisis of antimicrobial resistance and the capacity of microorganisms to endure and proliferate despite antibiotic interventions. This review examines the intricate relationship between heavy metals and AMR, with an emphasis on the underlying molecular mechanisms and ecological ramifications. Common environmental metals, including arsenic, mercury, cadmium, and lead, exert substantial selective pressures on microbial communities. These induce oxidative stress and DNA damage, potentially leading to mutations that enhance antibiotic resistance. Key microbial responses include the overexpression of efflux pumps that expel both metals and antibiotics, production of detoxifying enzymes, and formation of protective biofilms, all of which contribute to the emergence of multidrug-resistant strains. In the soil environment, particularly the rhizosphere, heavy metals disrupt plant–microbe interactions by inhibiting beneficial organisms, such as rhizobacteria, mycorrhizal fungi, and actinomycetes, thereby impairing nutrient cycling and plant health. Nonetheless, certain microbial consortia can tolerate and detoxify heavy metals through sequestration and biotransformation, rendering them valuable for bioremediation. Advances in biotechnology, including gene editing and the development of engineered metal-resistant microbes, offer promising solutions for mitigating the spread of metal-driven AMR and restoring ecological balance. By understanding the interplay between metal pollution and microbial resistance, we can more effectively devise strategies for environmental protection and public health. Full article
18 pages, 2835 KiB  
Article
Numerical Modeling of Gentamicin Transport in Agricultural Soils: Implications for Environmental Pollution
by Nami Morales-Durán, Sebastián Fuentes, Jesús García-Gallego, José Treviño-Reséndez, Josué D. García-Espinoza, Rubén Morones-Ramírez and Carlos Chávez
Antibiotics 2025, 14(8), 786; https://doi.org/10.3390/antibiotics14080786 (registering DOI) - 2 Aug 2025
Viewed by 131
Abstract
Background/Objectives: In recent years, the discharge of antibiotics into rivers and irrigation canals has increased. However, few studies have addressed the impact of these compounds on agricultural fields that use such water to meet crop demands. Methods: In this study, the transport of [...] Read more.
Background/Objectives: In recent years, the discharge of antibiotics into rivers and irrigation canals has increased. However, few studies have addressed the impact of these compounds on agricultural fields that use such water to meet crop demands. Methods: In this study, the transport of two types of gentamicin (pure gentamicin and gentamicin sulfate) was modeled at concentrations of 150 and 300 μL/L, respectively, in a soil with more than 60 years of agricultural use. Infiltration tests under constant head conditions and gentamicin transport experiments were conducted in acrylic columns measuring 14 cm in length and 12.7 cm in diameter. The scaling parameters for the Richards equation were obtained from experimental data, while those for the advection–dispersion equation were estimated using inverse methods through a nonlinear optimization algorithm. In addition, a fractal-based model for saturated hydraulic conductivity was employed. Results: It was found that the dispersivity of gentamicin sulfate is 3.1 times higher than that of pure gentamicin. Based on the estimated parameters, two simulation scenarios were conducted: continuous application of gentamicin and soil flushing after antibiotic discharge. The results show that the transport velocity of gentamicin sulfate in the soil may have short-term consequences for the emergence of resistant microorganisms due to the destination of wastewater containing antibiotic residues. Conclusions: Finally, further research is needed to evaluate the impact of antibiotics on soil physical properties, as well as their effects on irrigated crops, animals that consume such water, and the soil microbiota. Full article
(This article belongs to the Special Issue Impact of Antibiotic Residues in Wastewater)
Show Figures

Figure 1

20 pages, 4612 KiB  
Article
Effect of a Gluten-Free Diet on the Intestinal Microbiota of Women with Celiac Disease
by M. Mar Morcillo Serrano, Paloma Reche-Sainz, Daniel González-Reguero, Marina Robas-Mora, Rocío de la Iglesia, Natalia Úbeda, Elena Alonso-Aperte, Javier Arranz-Herrero and Pedro A. Jiménez-Gómez
Antibiotics 2025, 14(8), 785; https://doi.org/10.3390/antibiotics14080785 (registering DOI) - 2 Aug 2025
Viewed by 173
Abstract
Background/Objectives: Celiac disease (CD) is an autoimmune disorder characterized by small intestinal enteropathy triggered by gluten ingestion, often associated with gut dysbiosis. The most effective treatment is strict adherence to a gluten-free diet (GFD), which alleviates symptoms. This study uniquely integrates taxonomic, [...] Read more.
Background/Objectives: Celiac disease (CD) is an autoimmune disorder characterized by small intestinal enteropathy triggered by gluten ingestion, often associated with gut dysbiosis. The most effective treatment is strict adherence to a gluten-free diet (GFD), which alleviates symptoms. This study uniquely integrates taxonomic, functional, and resistance profiling to evaluate the gut microbiota of women with CD on a GFD. Methods: To evaluate the long-term impact of a GFD, this study analyzed the gut microbiota of 10 women with CD on a GFD for over a year compared to 10 healthy controls with unrestricted diets. Taxonomic diversity (16S rRNA gene sequencing and the analysis of α and β-diversity), metabolic functionality (Biolog EcoPlates®), and antibiotic resistance profiles (Cenoantibiogram) were assessed. Results: Metagenomic analysis revealed no significant differences in taxonomic diversity but highlighted variations in the abundance of specific bacterial genera. Women with CD showed increased proportions of Bacteroides, Streptococcus, and Clostridium, associated with inflammation, but also elevated levels of beneficial genera such as Roseburia, Oxalobacter, and Paraprevotella. Despite no significant differences in metabolic diversity, higher minimum inhibitory concentrations (MICs) in women in the healthy control group suggest that dietary substrates in unrestricted diets may promote the proliferation of fast-growing bacteria capable of rapidly developing and disseminating antibiotic resistance mechanisms. Conclusions: These findings indicate that prolonged adherence to a GFD in CD supports remission of gut dysbiosis, enhances microbiota functionality, and may reduce the risk of antibiotic resistance, emphasizing the importance of dietary management in CD. Full article
(This article belongs to the Special Issue Antibiotic Resistance: A One-Health Approach, 2nd Edition)
Show Figures

Graphical abstract

16 pages, 2239 KiB  
Article
Synthesis of Silver Nanoparticles from Bitter Melon (Momordica charantia) Extracts and Their Antibacterial Effect
by Nanh Lovanh, Getahun Agga, Graciela Ruiz-Aguilar, John Loughrin and Karamat Sistani
Microorganisms 2025, 13(8), 1809; https://doi.org/10.3390/microorganisms13081809 - 2 Aug 2025
Viewed by 163
Abstract
We utilized silver nanoparticles synthesized from bitter melon (Momordica charantia) extracts for testing against the common agricultural pathogen Escherichia coli. The synthesized nanoparticles were characterized and confirmed as silver nanoparticles by using ultraviolet spectroscopy, Fourier transform infrared spectroscopy, and scanning [...] Read more.
We utilized silver nanoparticles synthesized from bitter melon (Momordica charantia) extracts for testing against the common agricultural pathogen Escherichia coli. The synthesized nanoparticles were characterized and confirmed as silver nanoparticles by using ultraviolet spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy analysis. The results show that AgNPs were effective against E. coli ATCC25922 strain. The AgNPs had an increased potency against the E. coli strain in optimum culture media compared to silver ions alone. AgNP-treated cultures achieved a kill percentage of 100% in less incubation time and at a lower dosage than those treated with silver ions alone. The powder form of the AgNPs also showed remarkable potency against E. coli in solution. Based on these findings, the current method is suitable for the industrial-scale production of AgNPs from a commonly available edible plant with known medicinal benefits in the fight against foodborne pathogens, including antibiotic-resistant strains. Full article
Show Figures

Figure 1

48 pages, 3314 KiB  
Review
Applied Microbiology for Sustainable Agricultural Development
by Barbara Sawicka, Piotr Barbaś, Viola Vambol, Dominika Skiba, Piotr Pszczółkowski, Parwiz Niazi and Bernadetta Bienia
Appl. Microbiol. 2025, 5(3), 78; https://doi.org/10.3390/applmicrobiol5030078 (registering DOI) - 1 Aug 2025
Viewed by 72
Abstract
Background: Developments in biology, genetics, soil science, plant breeding, engineering, and agricultural microbiology are driving advances in soil microbiology and microbial biotechnology. Material and methods: The literature for this review was collected by searching leading scientific databases such as Embase, Medline/PubMed, Scopus, and [...] Read more.
Background: Developments in biology, genetics, soil science, plant breeding, engineering, and agricultural microbiology are driving advances in soil microbiology and microbial biotechnology. Material and methods: The literature for this review was collected by searching leading scientific databases such as Embase, Medline/PubMed, Scopus, and Web of Science. Results: Recent advances in soil microbiology and biotechnology are discussed, emphasizing the role of microorganisms in sustainable agriculture. It has been shown that soil and plant microbiomes significantly contribute to improving soil fertility and plant and soil health. Microbes promote plant growth through various mechanisms, including potassium, phosphorus, and zinc solubilization, biological nitrogen fixation, production of ammonia, HCN, siderophores, and other secondary metabolites with antagonistic effects. The diversity of microbiomes related to crops, plant protection, and the environment is analyzed, as well as their role in improving food quality, especially under stress conditions. Particular attention was paid to the diversity of microbiomes and their mechanisms supporting plant growth and soil fertility. Conclusions: The key role of soil microorganisms in sustainable agriculture was highlighted. They can support the production of natural substances used as plant protection products, as well as biopesticides, bioregulators, or biofertilizers. Microbial biotechnology also offers potential in the production of sustainable chemicals, such as biofuels or biodegradable plastics (PHA) from plant sugars, and in the production of pharmaceuticals, including antibiotics, hormones, or enzymes. Full article
Show Figures

Figure 1

18 pages, 2312 KiB  
Review
Macromycete Edible Fungi as a Functional Poultry Feed Additive: Influence on Health, Welfare, Eggs, and Meat Quality—Review
by Damian Duda, Klaudia Jaszcza and Emilia Bernaś
Molecules 2025, 30(15), 3241; https://doi.org/10.3390/molecules30153241 - 1 Aug 2025
Viewed by 130
Abstract
Over the years, macromycete fungi have been used as a source of food, part of religious rites and rituals, and as a medicinal remedy. Species with strong health-promoting potential include Hericium erinaceus, Cordyceps militaris, Ganoderma lucidum, Pleurotus ostreatus, Flammulina [...] Read more.
Over the years, macromycete fungi have been used as a source of food, part of religious rites and rituals, and as a medicinal remedy. Species with strong health-promoting potential include Hericium erinaceus, Cordyceps militaris, Ganoderma lucidum, Pleurotus ostreatus, Flammulina velutipes, and Inonotus obliquus. These species contain many bioactive compounds, including β-glucans, endo- and exogenous amino acids, polyphenols, terpenoids, sterols, B vitamins, minerals, and lovastatin. The level of some biologically active substances is species-specific, e.g., hericenones and erinacines, which have neuroprotective properties, and supporting the production of nerve growth factor in the brain for Hericium erinaceus. Due to their high health-promoting potential, mushrooms and substances isolated from them have found applications in livestock nutrition, improving their welfare and productivity. This phenomenon may be of particular importance in the nutrition of laying hens and broiler chickens, where an increase in pathogen resistance to antibiotics has been observed in recent years. Gallus gallus domesticus is a key farm animal for meat and egg production, so the search for new compounds to support bird health is important for food safety. Studies conducted to date indicate that feed supplementation with mushrooms has a beneficial effect on, among other things, bird weight gain; bone mineralisation; and meat and egg quality, including the lipid profile and protein content and shell thickness, and promotes the development of beneficial microbiota, thereby increasing immunity. Full article
Show Figures

Figure 1

12 pages, 1739 KiB  
Article
Tailored Levofloxacin Incorporated Extracellular Matrix Nanoparticles for Pulmonary Infections
by Raahi Patel, Ignacio Moyano, Masahiro Sakagami, Jason D. Kang, Phillip B. Hylemon, Judith A. Voynow and Rebecca L. Heise
Int. J. Mol. Sci. 2025, 26(15), 7453; https://doi.org/10.3390/ijms26157453 - 1 Aug 2025
Viewed by 167
Abstract
Cystic fibrosis produces viscous mucus in the lung that increases bacterial invasion, causing persistent infections and subsequent inflammation. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most common infections in cystic fibrosis patients that are resistant to antibiotics. One antibiotic approved to [...] Read more.
Cystic fibrosis produces viscous mucus in the lung that increases bacterial invasion, causing persistent infections and subsequent inflammation. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most common infections in cystic fibrosis patients that are resistant to antibiotics. One antibiotic approved to treat these infections is levofloxacin (LVX), which functions to inhibit bacterial replication but can be further developed into tailorable particles. Nanoparticles are an emerging inhaled therapy due to enhanced targeting and delivery. The extracellular matrix (ECM) has been shown to possess pro-regenerative and non-toxic properties in vitro, making it a promising delivery agent. The combination of LVX and ECM formed into nanoparticles may overcome barriers to lung delivery to effectively treat cystic fibrosis bacterial infections. Our goal is to advance CF care by providing a combined treatment option that has the potential to address both bacterial infections and lung damage. Two hybrid formulations of a 10:1 and 1:1 ratio of LVX to ECM have shown neutral surface charges and an average size of ~525 nm and ~300 nm, respectively. The neutral charge and size of the particles may suggest their ability to attract toward and penetrate through the mucus barrier in order to target the bacteria. The NPs have also been shown to slow the drug dissolution, are non-toxic to human airway epithelial cells, and are effective in inhibiting Pseudomonas aeruginosa and Staphylococcus aureus. LVX-ECM NPs may be an effective treatment for pulmonary CF bacterial treatments. Full article
(This article belongs to the Special Issue The Advances in Antimicrobial Biomaterials)
Show Figures

Figure 1

16 pages, 3511 KiB  
Article
Phlogacanthus pulcherrimus Leaf Extract as a Functional Feed Additive: Influences on Growth Indices, Bacterial Challenge Survival, and Expression of Immune-, Growth-, and Antioxidant-Related Genes in Labeo chrysophekadion (Bleeker, 1849)
by Sontaya Sookying, Panitnart Auputinan, Dutrudi Panprommin and Paiboon Panase
Life 2025, 15(8), 1220; https://doi.org/10.3390/life15081220 - 1 Aug 2025
Viewed by 198
Abstract
This research examined the impact of dietary supplementation with Phlogacanthus pulcherrimus extract (PPE) on the growth, disease resistance, and expression of immune-, growth-, and antioxidant-related genes in Labeo chrysophekadion. Over 150 days, 90 fish from each group were fed diets with 0 [...] Read more.
This research examined the impact of dietary supplementation with Phlogacanthus pulcherrimus extract (PPE) on the growth, disease resistance, and expression of immune-, growth-, and antioxidant-related genes in Labeo chrysophekadion. Over 150 days, 90 fish from each group were fed diets with 0 (control), 0.25, 0.50, or 0.75 g/kg of PPE. Phytochemical analysis revealed phenolics (96.00 mg GAE/g), flavonoids (17.55 mg QE/g), anthraquinones, and triterpenoids, along with moderate antioxidant activity (IC50 = 1314.08 μg/mL). One-way ANOVA of growth indices, including weight gain, specific growth rate, feed conversion ratio, and survival rate, revealed no significant differences (p > 0.05); however, PPE supplementation significantly enhanced immune and antioxidant gene expression. IL-1β was significantly (p < 0.05) upregulated at all doses, with the highest expression observed at 0.50 g/kg, showing a fivefold increase compared to the control. In addition, the highest relative expressions of IGF-1 and CAT were found at 0.75 g/kg, with 4.5-fold and 3.5-fold increases compared to the control, respectively. PPE at 0.75 g/kg decreased the cumulative mortality rate (CMR) by 20% compared to the control group, which had a CMR of 50% following exposure to Aeromonas hydrophila. PPE acted as an effective immunostimulant and antioxidant, supporting reduced antibiotic reliance in aquaculture. Full article
(This article belongs to the Special Issue Nutrition–Physiology Interactions in Aquatic Species)
Show Figures

Figure 1

19 pages, 1070 KiB  
Review
Nasal Irrigations: A 360-Degree View in Clinical Practice
by Luca Pecoraro, Elisabetta Di Muri, Gianluca Lezzi, Silvia Picciolo, Marta De Musso, Michele Piazza, Mariangela Bosoni and Flavia Indrio
Medicina 2025, 61(8), 1402; https://doi.org/10.3390/medicina61081402 - 1 Aug 2025
Viewed by 310
Abstract
Nasal irrigation (NI) is an effective, safe, low-cost strategy for treating and preventing upper respiratory tract diseases. High-volume, low-pressure saline irrigations are the most efficient method for removing infectious agents, allergens, and inflammatory mediators. This article reviews clinical evidence supporting NI use in [...] Read more.
Nasal irrigation (NI) is an effective, safe, low-cost strategy for treating and preventing upper respiratory tract diseases. High-volume, low-pressure saline irrigations are the most efficient method for removing infectious agents, allergens, and inflammatory mediators. This article reviews clinical evidence supporting NI use in various conditions: nasal congestion in infants, recurrent respiratory infections, acute and chronic rhinosinusitis, allergic and gestational rhinitis, empty nose syndrome, and post-endoscopic sinus surgery care. NI improves symptoms, reduces recurrence, enhances the efficacy of topical drugs, and decreases the need for antibiotics and decongestants. During the COVID-19 pandemic, NI has also been explored as a complementary measure to reduce viral load. Due to the safe profile and mechanical cleansing action on inflammatory mucus, nasal irrigations represent a valuable adjunctive treatment across a wide range of sinonasal conditions. Full article
Show Figures

Figure 1

19 pages, 3251 KiB  
Article
Effects of Dietary Cinnamaldehyde Supplementation on Growth Performance, Serum Antioxidant Capacity, Intestinal Digestive Enzyme Activities, Morphology, and Caecal Microbiota in Meat Rabbits
by Dongjin Chen, Yuxiang Lan, Yuqin He, Chengfang Gao, Bin Jiang and Xiping Xie
Animals 2025, 15(15), 2262; https://doi.org/10.3390/ani15152262 - 1 Aug 2025
Viewed by 157
Abstract
Cinnamaldehyde (CA) is a potential substitute for antibiotic growth promoters in animal breeding. In this study, we investigated its effects as a dietary supplement on growth performance, serum antioxidant capacity, intestinal digestive enzyme activities, intestinal morphology, and caecal microbiota in meat rabbits. Weaned [...] Read more.
Cinnamaldehyde (CA) is a potential substitute for antibiotic growth promoters in animal breeding. In this study, we investigated its effects as a dietary supplement on growth performance, serum antioxidant capacity, intestinal digestive enzyme activities, intestinal morphology, and caecal microbiota in meat rabbits. Weaned meat rabbits (n = 450) were randomly assigned to five groups, Groups A, B, C, D, and E, and fed 0, 50, 100, 150, and 200 mg/kg CA diets, respectively, for 47 days. Biological samples including serum (antioxidants), duodenal/caecal content (enzymes), intestinal tissue (morphology), and caecal digesta (microbiota) were collected at day 47 postweaning for analysis. Groups C and D showed significantly higher final body weights than Group A, with Group D (150 mg/kg CA) demonstrating superior growth performance including 11.73% longer duodenal villi (p < 0.05), 28.6% higher microbial diversity (p < 0.01), and 62% lower diarrhoea rate versus controls. Digestive enzyme activity as well as serum antioxidant capacity increased with increasing CA dose, Microbiota analysis revealed CA increased fibre-fermenting Oscillospiraceae (+38%, p < 0.01) while reducing Ruminococcaceae (−27%, p < 0.05). Thus, dietary CA supplementation at 150 mg/kg was identified as the optimal CA dose for improving meat rabbit production. These findings highlight CA as a functional feed additive for promoting sustainable rabbit production. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

13 pages, 295 KiB  
Article
Benefits and Harms of Antibiotic Use in End-of-Life Patients: Retrospective Study in Palliative Care
by Rita Faustino Silva, Joana Brandão Silva, António Pereira Neves, Daniel Canelas, João Rocha Neves, José Paulo Andrade, Marília Dourado and Hugo Ribeiro
Antibiotics 2025, 14(8), 782; https://doi.org/10.3390/antibiotics14080782 (registering DOI) - 1 Aug 2025
Viewed by 237
Abstract
Context: Many patients at the end of life receive antibiotics to alleviate symptoms and improve quality of life; however, clear guidelines supporting decision making about the use of antibiotics are still lacking. Objectives: This study aimed to evaluate the benefits and harms of [...] Read more.
Context: Many patients at the end of life receive antibiotics to alleviate symptoms and improve quality of life; however, clear guidelines supporting decision making about the use of antibiotics are still lacking. Objectives: This study aimed to evaluate the benefits and harms of antibiotic use among patients under a palliative care community support team in Portugal. Methods: An observational, cross-sectional, retrospective study was conducted on 249 patients who died over a two-year period, having been followed for at least 30 days prior to their death. Data included patient demographics, clinical diagnoses, antibiotic prescriptions, and symptomatic outcomes. The effects of commonly prescribed antibiotics—amoxicillin + clavulanic acid, cefixime, ciprofloxacin, and levofloxacin—were compared using statistical analyses to assess survival, symptom intensity, and functional scales. Results: Adverse events, primarily infections and secretions, occurred in 57.8% of cases, with 33.7% receiving antibiotics. No significant difference in survival was observed across the antibiotic groups (p = 0.990). Symptom intensity significantly reduced after 72 h of treatment (p < 0.05), with ciprofloxacin demonstrating the greatest symptom control. The Palliative Outcome Scale decreased uniformly, with higher scores associated with amoxicillin + clavulanic acid (p = 0.004). The Palliative Performance Scale declined post-treatment, with significant changes noted for cefixime and ciprofloxacin (p < 0.05). Conclusions: Antibiotics may improve symptom control and quality of life in the end-of-life stage. While second-line antibiotics may offer additional benefits, the heterogeneity of the sample and limited adverse effect data underscore the need for further research to guide appropriate prescription practices in palliative care. Full article
Back to TopTop