Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = edible oilseeds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4208 KiB  
Article
Transcriptome Analysis Reveals Metabolic Pathways and Key Genes Involved in Oleic Acid Formation of Sunflower (Helianthus annuus L.)
by Yingnan Mu, Ying Sun, Yang Wu, Liuxi Yi, Haifeng Yu and Shaoying Zhang
Int. J. Mol. Sci. 2025, 26(14), 6757; https://doi.org/10.3390/ijms26146757 - 15 Jul 2025
Viewed by 294
Abstract
Sunflower is one of the four most important oilseed crops in the world, and its edible oil is of high nutritional quality. However, the molecular regulatory mechanism of oil accumulation in sunflowers is still unclear. In this study, we selected two inbred lines [...] Read more.
Sunflower is one of the four most important oilseed crops in the world, and its edible oil is of high nutritional quality. However, the molecular regulatory mechanism of oil accumulation in sunflowers is still unclear. In this study, we selected two inbred lines with significant differences in oleic acid content and similar agronomic traits: the high oleic acid content (82.5%) inbred line 227 and the low oleic acid content (30.8%) inbred line 228. Sunflower seeds were selected for transcriptome experiments at 10, 20, and 30 days after full bloom (DAFB). There were 21, 225, and 632 differentially expressed genes (DEGs) identified at the three times, respectively. The Gene Ontology (GO) analysis showed that DEGs from two sunflower cultivars at three stages were significantly enriched in the activities of omega-6 fatty acid desaturase and glucosyltransferase. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that at 10, 20, and 30 DAFB, DEGs were significantly enriched in the unsaturated fatty acid synthesis pathway, glutathione metabolism pathway, and pyruvate metabolism pathway. Through mapping analysis of GO in the KEGG pathway, it was found that the omega-6 fatty acid desaturase gene FAD6/FAD2, diacylglyceroyltransferase gene DGAT, glycerol-3-phosphate acyltransferase gene GPAT, and long-chain acyl-CoA synthase gene LACS may play important roles in regulating sunflower oleic acid content. Our research provides candidate genes and a research basis for breeding high oleic sunflowers. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

19 pages, 301 KiB  
Review
Emerging Trends in Sustainable Biological Resources and Bioeconomy for Food Production
by Luis A. Trujillo-Cayado, Rosa M. Sánchez-García, Irene García-Domínguez, Azahara Rodríguez-Luna, Elena Hurtado-Fernández and Jenifer Santos
Appl. Sci. 2025, 15(12), 6555; https://doi.org/10.3390/app15126555 - 11 Jun 2025
Viewed by 750
Abstract
The mounting global population and the challenges posed by climate change underline the need for sustainable food production systems. This review synthesizes evidence for a dual-track bioeconomy, green (terrestrial plants and insects) and blue (aquatic algae), as complementary pathways toward sustainable nutrition. A [...] Read more.
The mounting global population and the challenges posed by climate change underline the need for sustainable food production systems. This review synthesizes evidence for a dual-track bioeconomy, green (terrestrial plants and insects) and blue (aquatic algae), as complementary pathways toward sustainable nutrition. A comprehensive review of the extant literature, technical reports, and policy documents published between 2015 and 2025 was conducted, with a particular focus on environmental, nutritional, and techno-economic metrics. In addition, precision agriculture datasets, gene-editing breakthroughs, and circular biorefinery case studies were extracted and compared. As demonstrated in this study, the use of green resources, such as legumes, oilseeds, and edible insects, results in a significant reduction in greenhouse gas emissions, land use, and water footprints compared with conventional livestock production. In addition, these alternative protein sources offer substantial benefits in terms of bioactive lipids. Blue resources, centered on micro- and macroalgae, furnish additional proteins, long-chain polyunsaturated fatty acids, and antioxidant pigments and sequester carbon on non-arable or wastewater substrates. The transition to bio-based resources is facilitated by technological innovations, such as gene editing and advanced extraction methods, which promote the efficient valorization of agricultural residues. In conclusion, the study strongly suggests that policy support be expedited and that research into bioeconomy technologies be increased to ensure the sustainable meeting of future food demands. Full article
(This article belongs to the Special Issue Application of Natural Components in Food Production)
17 pages, 1780 KiB  
Article
Comparative Transcriptomic Analysis Reveals the Potential Molecular Mechanism Underlying Squalene Biosynthesis in Developing Seeds of Oil-Tea (Camellia oleifera)
by Xu Gu, Anmin Yu, Ping Li, Meihong Zhang, Ya Lv, Debing Xu and Aizhong Liu
Int. J. Mol. Sci. 2025, 26(12), 5465; https://doi.org/10.3390/ijms26125465 - 7 Jun 2025
Viewed by 451
Abstract
Oil-tea (Camellia oleifera), a typical oilseed tree, produces high-quality edible vegetable oils that contain rich unsaturated fatty acids and diverse lipid-soluble active compounds such as squalene. Although squalene biosynthesis and its molecular regulation have been studied in several plants, the molecular [...] Read more.
Oil-tea (Camellia oleifera), a typical oilseed tree, produces high-quality edible vegetable oils that contain rich unsaturated fatty acids and diverse lipid-soluble active compounds such as squalene. Although squalene biosynthesis and its molecular regulation have been studied in several plants, the molecular mechanisms underlying squalene biosynthesis in oil-tea seeds remain uncertain. We investigated and determined squalene accumulation with seed development. We conducted comparative transcriptomic analyses using the RNA-seq technique at the early, fast biosynthesis, and late stages of squalene accumulation with oil-tea seed development and identified 13 squalene biosynthesis key enzyme genes (such as CoHMGR_4, CoAACT_2, CoFPS_1, and CoFPS_2) in developing oil-tea seeds. According to whether the expressions of key enzyme genes were associated with squalene accumulation we found that the precursor IPP of squalene biosynthesis obtained via the MVA pathway was dominant with oil-tea seed development. Based on the gene co-expression analyses, we identified multiple transcription factors potentially involved in regulating squalene biosynthesis such as CoMYC2, CoREM39, CobZIP5, CoERF and CoWRKY. Using yeast one-hybrid and dual-luciferase assay experiments we demonstrated that the transcription factor CoMYC2 could activate the expression of a key enzyme gene CoHMGR_4, suggesting that CoMYC2 might be a critical regulator during squalene biosynthesis in oil-tea seed development. This study gives not only insights into understanding the molecular basis of squalene biosynthesis in oil-tea developing seeds but also provides gene resources for developing genetically improved varieties with higher content of squalene in oil-tea. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

19 pages, 12418 KiB  
Article
Integration of UAV Multi-Source Data for Accurate Plant Height and SPAD Estimation in Peanut
by Ning He, Bo Chen, Xianju Lu, Bo Bai, Jiangchuan Fan, Yongjiang Zhang, Guowei Li and Xinyu Guo
Drones 2025, 9(4), 284; https://doi.org/10.3390/drones9040284 - 8 Apr 2025
Viewed by 459
Abstract
Plant height and SPAD values are critical indicators for evaluating peanut morphological development, photosynthetic efficiency, and yield optimization. Recent unmanned aerial vehicle (UAV) technology advancements have enabled high-throughput phenotyping at field scales. As a globally strategic oilseed crop, peanut plays a vital role [...] Read more.
Plant height and SPAD values are critical indicators for evaluating peanut morphological development, photosynthetic efficiency, and yield optimization. Recent unmanned aerial vehicle (UAV) technology advancements have enabled high-throughput phenotyping at field scales. As a globally strategic oilseed crop, peanut plays a vital role in ensuring food and edible oil security. This study aimed to develop an optimized estimation framework for peanut plant height and SPAD values through machine learning-driven integration of UAV multi-source data while evaluating model generalizability across temporal and spatial domains. Multispectral UAV and ground data were collected across four growth stages (2023–2024). Using spectral indices and Texture features, four models (PLSR, SVM, ANN, RFR) were trained on 2024 data and independently validated with 2023 datasets. The ensemble machine learning models (RFR) significantly enhanced estimation accuracy (R2 improvement: 3.1–34.5%) and robustness compared to the linear model (PLSR). Feature stability analysis revealed that combined spectral-textural features outperformed single-feature approaches. The SVM model achieved superior plant height prediction (R2 = 0.912, RMSE = 2.14 cm), while RFR optimally estimated SPAD values (R2 = 0.530, RMSE = 3.87) across heterogeneous field conditions. This UAV-based multi-modal integration framework demonstrates significant potential for temporal monitoring of peanut growth dynamics. Full article
(This article belongs to the Special Issue Advances of UAV in Precision Agriculture—2nd Edition)
Show Figures

Figure 1

19 pages, 3304 KiB  
Article
Compression Loading Behaviour of Anonna squamosa Seeds for Sustainable Biodiesel Synthesis
by Christopher Tunji Oloyede, Simeon Olatayo Jekayinfa, Christopher Chintua Enweremadu and Iyanuoluwa Oluborode
AgriEngineering 2025, 7(4), 104; https://doi.org/10.3390/agriengineering7040104 - 3 Apr 2025
Viewed by 411
Abstract
Due to the increasing demand for sustainable energy, non-edible oilseed crops are being explored as alternatives to traditional edible oils. Annona squamosa seeds are rich in oil content (24%/100 g) and often discarded as agricultural waste. Determination of mechanical properties of the seeds [...] Read more.
Due to the increasing demand for sustainable energy, non-edible oilseed crops are being explored as alternatives to traditional edible oils. Annona squamosa seeds are rich in oil content (24%/100 g) and often discarded as agricultural waste. Determination of mechanical properties of the seeds under compression loading is significant for designing machinery for its handling and processing. Thus, the present study assessed the effect of loading speeds, LS, (5.0–25 mm/min) and moisture contents, ms, (8.0–32.5%, db) on rupture force and energy, bioyield force and energy, deformation, and hardness at the seed’s horizontal and vertical orientations using a Testometric Universal Testing Machine. The results indicate that both LS and mc significantly (p<0.05) affect the mechanical properties of the seeds. Particularly, horizontal loading orientations consistently exhibited higher values for the selected compressive properties than vertical orientations, except for deformation at varying LS. The correlations between LS, mc, and the compressive parameters of the seed were mostly linear, at both orientations, with increasing mc from 8.0 to 32.5% (db). High correlation coefficients (R2) were obtained for the relationship between the studied parameters, LS, and mc. The data obtained would provide crucial insights into optimizing oil extraction processes by enabling the design of efficient machinery that accommodates the unique characteristics of the seeds. Thus, the findings contribute to the growing interest in alternative biodiesel feedstock, demonstrating that A. squamosa seeds can be repurposed for economic and environmental benefits. Full article
(This article belongs to the Section Pre and Post-Harvest Engineering in Agriculture)
Show Figures

Figure 1

16 pages, 2745 KiB  
Article
Untargeted Metabolomics Analysis Reveals Differential Accumulation of Flavonoids Between Yellow-Seeded and Black-Seeded Rapeseed Varieties
by Shulin Shen, Yunshan Tang, Daiqin Liu, Lulu Chen, Yi Zhang, Kaijie Ye, Fujun Sun, Xingzhi Wei, Hai Du, Huiyan Zhao, Jiana Li, Cunmin Qu and Nengwen Yin
Plants 2025, 14(5), 753; https://doi.org/10.3390/plants14050753 - 1 Mar 2025
Cited by 1 | Viewed by 839
Abstract
Rapeseed (Brassica napus) is an important oilseed crop and yellow-seeded and black-seeded varieties have different metabolite profiles, which determines the quality and edibility of their oil. In this study, we performed a non-targeted metabolomics analysis of seeds from four rapeseed varieties [...] Read more.
Rapeseed (Brassica napus) is an important oilseed crop and yellow-seeded and black-seeded varieties have different metabolite profiles, which determines the quality and edibility of their oil. In this study, we performed a non-targeted metabolomics analysis of seeds from four rapeseed varieties at eight developmental stages. This analysis identified 4540 features, of which 366 were annotated as known metabolites. The content of these metabolites was closely related to seed developmental stage, with the critical period for seed metabolite accumulation being between 10 and 20 days after pollination. Through a comparative analysis, we identified 18 differentially abundant flavonoid features between yellow-seeded and black-seeded rapeseed varieties. By combining the flavonoid data with transcriptome data, we constructed a gene regulatory network that may reflect the accumulation of differentially abundant flavonoid features. Finally, we predicted 38 unknown features as being flavonoid features through molecular networking. These results provide valuable metabolomics information for the breeding of yellow-seeded rapeseed varieties. Full article
Show Figures

Figure 1

18 pages, 4751 KiB  
Article
Genome-Wide Identification of the WD40 Gene Family in Walnut (Juglans regia L.) and Its Expression Profile in Different Colored Varieties
by Ruimin Xi, Jiayu Ma, Xinyi Qiao, Xinhao Wang, Hang Ye, Huijuan Zhou, Ming Yue and Peng Zhao
Int. J. Mol. Sci. 2025, 26(3), 1071; https://doi.org/10.3390/ijms26031071 - 26 Jan 2025
Cited by 1 | Viewed by 911
Abstract
The walnut (Juglans regia) is a woody oilseed crop with high economic and food value as its kernels are edible and its hulls can be widely used in oil extraction and plugging, chemical raw materials, and water purification. Currently, red walnut [...] Read more.
The walnut (Juglans regia) is a woody oilseed crop with high economic and food value as its kernels are edible and its hulls can be widely used in oil extraction and plugging, chemical raw materials, and water purification. Currently, red walnut varieties have emerged, attracting consumer interest due to their high nutritional values as they are rich in anthocyanins. WD40 is a widespread superfamily in eukaryotes that play roles in plant color regulation and resistance to stresses. In order to screen for JrWD40 associated with walnut color, we identified 265 JrWD40s in walnuts by genome-wide identification, which were unevenly distributed on 16 chromosomes. According to the phylogenetic tree, all JrWD40s were classified into six clades. WGD (Whole genome duplication) is the main reason for the expansion of the JrWD40 gene family. JrWD40s were relatively conserved during evolution, but their gene structures were highly varied; lower sequence similarity may be the main reason for the functional diversity of JrWD40s. Some JrWD40s were highly expressed only in red or green walnuts. In addition, we screened 16 unique JrWD40s to walnuts based on collinearity analysis. By qRT-PCR, we found that JrWD40-133, JrWD40-150, JrWD40-155, and JrWD40-206 may regulate anthocyanin synthesis through positive regulation, whereas JrWD40-65, JrWD40-172, JrWD40-191, JrWD40-224, and JrWD40-254 may inhibit anthocyanin synthesis, suggesting that these JrWD40s are key genes affecting walnut color variation. Full article
(This article belongs to the Special Issue Advances in Genetics and Phylogenomics of Tree)
Show Figures

Figure 1

9 pages, 1124 KiB  
Article
An Assessment of the Strength and Physical Properties of Edible Tableware from Flax Seed and Flaxseed Cake
by Dariusz Andrejko and Agata Blicharz-Kania
Materials 2024, 17(22), 5510; https://doi.org/10.3390/ma17225510 - 12 Nov 2024
Viewed by 1187
Abstract
Alternatives to traditional disposable plastic tableware are constantly sought. The aim of the study was to assess the possibility of using oilseeds and their press cakes for the production of edible tableware. Edible vegan plates (P) and bowls (B) were produced. The basic [...] Read more.
Alternatives to traditional disposable plastic tableware are constantly sought. The aim of the study was to assess the possibility of using oilseeds and their press cakes for the production of edible tableware. Edible vegan plates (P) and bowls (B) were produced. The basic ingredients used for production were flax seeds (S) or flax press cake (C). Plates made using press cakes under a pressure of 3 kg deformed to a lesser extent than those containing seeds. However, they were more susceptible to crumbling during shaking. The colour of the tableware made on the basis of flax press cakes was lighter and was characterised by a higher chromaticity in the yellow and red direction. Significantly higher water absorption was characteristic of the tableware in which flax press cakes were used instead of flax seeds. The lowest water absorption (17.14%) after 30 min of soaking was recorded for the PS sample. After the test simulating the use of the tableware, a significant reduction in strength was observed overall (except for the PS test). The panelists rated the consistency and palatability of the PS, BS and PC tests very similarly. The highest overall acceptability was noted for the BS and PC tests. In conclusion, the development of edible bowls and plates made from flax seeds or flaxseed cake is an alternative solution for the production of environmentally friendly tableware. Full article
Show Figures

Figure 1

30 pages, 11157 KiB  
Article
4-Hydroxybenzoic Acid-Based Hydrazide–Hydrazones as Potent Growth Inhibition Agents of Laccase-Producing Phytopathogenic Fungi That Are Useful in the Protection of Oilseed Crops
by Halina Maniak, Konrad Matyja, Elżbieta Pląskowska, Joanna Jarosz, Paulina Majewska, Joanna Wietrzyk, Hanna Gołębiowska, Anna Trusek and Mirosław Giurg
Molecules 2024, 29(10), 2212; https://doi.org/10.3390/molecules29102212 - 8 May 2024
Cited by 4 | Viewed by 3159
Abstract
The research on new compounds against plant pathogens is still socially and economically important. It results from the increasing resistance of pests to plant protection products and the need to maintain high yields of crops, particularly oilseed crops used to manufacture edible and [...] Read more.
The research on new compounds against plant pathogens is still socially and economically important. It results from the increasing resistance of pests to plant protection products and the need to maintain high yields of crops, particularly oilseed crops used to manufacture edible and industrial oils and biofuels. We tested thirty-five semi-synthetic hydrazide–hydrazones with aromatic fragments of natural origin against phytopathogenic laccase-producing fungi such as Botrytis cinerea, Sclerotinia sclerotiorum, and Cerrena unicolor. Among the investigated molecules previously identified as potent laccase inhibitors were also strong antifungal agents against the fungal species tested. The highest antifungal activity showed derivatives of 4-hydroxybenzoic acid and salicylic aldehydes with 3-tert-butyl, phenyl, or isopropyl substituents. S. sclerotiorum appeared to be the most susceptible to the tested compounds, with the lowest IC50 values between 0.5 and 1.8 µg/mL. We applied two variants of phytotoxicity tests for representative crop seeds and selected hydrazide–hydrazones. Most tested molecules show no or low phytotoxic effect for flax and sunflower seeds. Moreover, a positive impact on seed germination infected with fungi was observed. With the potential for application, the cytotoxicity of the hydrazide–hydrazones of choice toward MCF-10A and BALB/3T3 cell lines was lower than that of the azoxystrobin fungicide tested. Full article
Show Figures

Figure 1

4 pages, 207 KiB  
Editorial
Special Issue “Pretreatment and Bioconversion of Crop Residues II”—Introduction to the Collection
by Carlos Martín and Eulogio Castro
Agronomy 2024, 14(5), 962; https://doi.org/10.3390/agronomy14050962 - 3 May 2024
Cited by 2 | Viewed by 1571
Abstract
Bioconversion in biorefineries is a way to valorize residues from agriculture and food processing. Pretreatment is an important step in the bioconversion of lignocellulosic materials, including crop residues. This Special Issue includes nine articles on several pretreatment and bioconversion approaches applied to different [...] Read more.
Bioconversion in biorefineries is a way to valorize residues from agriculture and food processing. Pretreatment is an important step in the bioconversion of lignocellulosic materials, including crop residues. This Special Issue includes nine articles on several pretreatment and bioconversion approaches applied to different agricultural residues and food-processing by-products. The materials addressed in this collection cover straw from wheat, rye, and miscanthus, olive tree pruning residue, almond shells and husks, avocado waste, sweet sorghum bagasse, soybean meal, and residues of non-edible oilseeds. Full article
(This article belongs to the Special Issue Pretreatment and Bioconversion of Crop Residues II)
18 pages, 2972 KiB  
Article
Widely Targeted Metabolomics and Network Pharmacology Reveal the Nutritional Potential of Yellowhorn (Xanthoceras sorbifolium Bunge) Leaves and Flowers
by Haojie Sha, Shouke Li, Jiaxing Li, Junying Zhao and Dingding Su
Foods 2024, 13(8), 1274; https://doi.org/10.3390/foods13081274 - 21 Apr 2024
Cited by 7 | Viewed by 2269
Abstract
Yellowhorn (Xanthoceras sorbifolium Bunge) is a unique oilseed tree in China with high edible and medicinal value. However, the application potential of yellowhorn has not been adequately explored. In this study, widely targeted metabolomics (HPLC-MS/MS and GC-MS) and network pharmacology were applied [...] Read more.
Yellowhorn (Xanthoceras sorbifolium Bunge) is a unique oilseed tree in China with high edible and medicinal value. However, the application potential of yellowhorn has not been adequately explored. In this study, widely targeted metabolomics (HPLC-MS/MS and GC-MS) and network pharmacology were applied to investigate the nutritional potential of yellowhorn leaves and flowers. The widely targeted metabolomics results suggested that the yellowhorn leaf contains 948 non-volatile metabolites and 638 volatile metabolites, while the yellowhorn flower contains 976 and 636, respectively. A non-volatile metabolite analysis revealed that yellowhorn leaves and flowers contain a variety of functional components beneficial to the human body, such as terpenoids, flavonoids, alkaloids, lignans and coumarins, phenolic acids, amino acids, and nucleotides. An analysis of volatile metabolites indicated that the combined action of various volatile compounds, such as 2-furanmethanol, β-icon, and 2-methyl-3-furanthiol, provides the special flavor of yellowhorn leaves and flowers. A network pharmacology analysis showed that various components in the flowers and leaves of yellowhorn have a wide range of biological activities. This study deepens our understanding of the non-volatile and volatile metabolites in yellowhorn and provides a theoretical basis and data support for the whole resource application of yellowhorn. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

19 pages, 2843 KiB  
Article
Assessment of Mechanical Damage and Germinability in Flaxseeds Using Hyperspectral Imaging
by Mohammad Nadimi, L. G. Divyanth, Muhammad Mudassir Arif Chaudhry, Taranveer Singh, Georgia Loewen and Jitendra Paliwal
Foods 2024, 13(1), 120; https://doi.org/10.3390/foods13010120 - 29 Dec 2023
Cited by 5 | Viewed by 2137
Abstract
The high demand for flax as a nutritious edible oil source combined with increasingly restrictive import regulations for oilseeds mandates the exploration of novel quantity and quality assessment methods. One pervasive issue that compromises the viability of flaxseeds is the mechanical damage to [...] Read more.
The high demand for flax as a nutritious edible oil source combined with increasingly restrictive import regulations for oilseeds mandates the exploration of novel quantity and quality assessment methods. One pervasive issue that compromises the viability of flaxseeds is the mechanical damage to the seeds during harvest and post-harvest handling. Currently, mechanical damage in flax is assessed via visual inspection, a time-consuming, subjective, and insufficiently precise process. This study explores the potential of hyperspectral imaging (HSI) combined with chemometrics as a novel, rapid, and non-destructive method to characterize mechanical damage in flaxseeds and assess how mechanical stresses impact the germination of seeds. Flaxseed samples at three different moisture contents (MCs) (6%, 8%, and 11.5%) were subjected to four levels of mechanical stresses (0 mJ (i.e., control), 2 mJ, 4 mJ, and 6 mJ), followed by germination tests. Herein, we acquired hyperspectral images across visible to near-infrared (Vis-NIR) (450–1100 nm) and short-wave infrared (SWIR) (1000–2500 nm) ranges and used principal component analysis (PCA) for data exploration. Subsequently, mean spectra from the samples were used to develop partial least squares-discriminant analysis (PLS-DA) models utilizing key wavelengths to classify flaxseeds based on the extent of mechanical damage. The models developed using Vis-NIR and SWIR wavelengths demonstrated promising performance, achieving precision and recall rates >85% and overall accuracies of 90.70% and 93.18%, respectively. Partial least squares regression (PLSR) models were developed to predict germinability, resulting in R2-values of 0.78 and 0.82 for Vis-NIR and SWIR ranges, respectively. The study showed that HSI could be a potential alternative to conventional methods for fast, non-destructive, and reliable assessment of mechanical damage in flaxseeds. Full article
(This article belongs to the Special Issue Recent Applications of Near-Infrared Spectroscopy in Food Analysis)
Show Figures

Figure 1

22 pages, 5729 KiB  
Article
Genome-Wide Analysis of Glycerol-3-Phosphate Acyltransferase (GPAT) Family in Perilla frutescens and Functional Characterization of PfGPAT9 Crucial for Biosynthesis of Storage Oils Rich in High-Value Lipids
by Yali Zhou, Xusheng Huang, Ting Hu, Shuwei Chen, Yao Wang, Xianfei Shi, Miao Yin, Runzhi Li, Jiping Wang and Xiaoyun Jia
Int. J. Mol. Sci. 2023, 24(20), 15106; https://doi.org/10.3390/ijms242015106 - 12 Oct 2023
Cited by 9 | Viewed by 2490
Abstract
Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first step in triacylglycerol (TAG) biosynthesis. However, GPAT members and their functions remain poorly understood in Perilla frutescens, a special edible-medicinal plant with its seed oil rich in polyunsaturated fatty acids (mostly α-linolenic acid, ALA). Here, 14 [...] Read more.
Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first step in triacylglycerol (TAG) biosynthesis. However, GPAT members and their functions remain poorly understood in Perilla frutescens, a special edible-medicinal plant with its seed oil rich in polyunsaturated fatty acids (mostly α-linolenic acid, ALA). Here, 14 PfGPATs were identified from the P. frutescens genome and classified into three distinct groups according to their phylogenetic relationships. These 14 PfGPAT genes were distributed unevenly across 11 chromosomes. PfGPAT members within the same subfamily had highly conserved gene structures and four signature functional domains, despite considerable variations detected in these conserved motifs between groups. RNA-seq and RT-qPCR combined with dynamic analysis of oil and FA profiles during seed development indicated that PfGPAT9 may play a crucial role in the biosynthesis and accumulation of seed oil and PUFAs. Ex vivo enzymatic assay using the yeast expression system evidenced that PfGPAT9 had a strong GPAT enzyme activity crucial for TAG assembly and also a high substrate preference for oleic acid (OA, C18:1) and ALA (C18:3). Heterogeneous expression of PfGPAT9 significantly increased total oil and UFA (mostly C18:1 and C18:3) levels in both the seeds and leaves of the transgenic tobacco plants. Moreover, these transgenic tobacco lines exhibited no significant negative effect on other agronomic traits, including plant growth and seed germination rate, as well as other morphological and developmental properties. Collectively, our findings provide important insights into understanding PfGPAT functions, demonstrating that PfGPAT9 is the desirable target in metabolic engineering for increasing storage oil enriched with valuable FA profiles in oilseed crops. Full article
Show Figures

Figure 1

16 pages, 2341 KiB  
Article
Assessment of Quality and Efficiency of Cold-Pressed Oil from Selected Oilseeds
by Abraham Kabutey, David Herák and Čestmír Mizera
Foods 2023, 12(19), 3636; https://doi.org/10.3390/foods12193636 - 30 Sep 2023
Cited by 15 | Viewed by 5050
Abstract
In this present study, an oil press was used to process 200 g each of sesame, pumpkin, flax, milk thistle, hemp and cumin oilseeds in order to evaluate the amount of oil yield, seedcake, sediments and material losses (oil and sediments). Sesame produced [...] Read more.
In this present study, an oil press was used to process 200 g each of sesame, pumpkin, flax, milk thistle, hemp and cumin oilseeds in order to evaluate the amount of oil yield, seedcake, sediments and material losses (oil and sediments). Sesame produced the highest oil yield at 30.60 ± 1.69%, followed by flax (27.73 ± 0.52%), hemp (20.31 ± 0.11%), milk thistle (14.46 ± 0.51%) and pumpkin (13.37 ± 0.35%). Cumin seeds produced the lowest oil yield at 3.46 ± 0.15%. The percentage of sediments in the oil, seedcake and material losses for sesame were 5.15 ± 0.09%, 60.99 ± 0.04% and 3.27 ± 1.56%. Sediments in the oil decreased over longer storage periods, thereby increasing the percentage oil yield. Pumpkin oil had the highest peroxide value at 18.45 ± 0.53 meq O2/kg oil, an acid value of 11.21 ± 0.24 mg KOH/g oil, free fatty acid content of 5.60 ± 0.12 mg KOH/g oil and iodine value of 14.49 ± 0.16 g l/100 g. The univariate ANOVA of the quality parameters against the oilseed type was statistically significant (p-value < 0.05), except for the iodine value, which was not statistically significant (p-value > 0.05). Future studies should analyze the temperature generation, oil recovery efficiency, percentage of residual oil in the seedcake and specific energy consumption of different oilseeds processed using small-large scale presses. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

18 pages, 2770 KiB  
Article
Global Transcriptome and Co-Expression Network Analyses Revealed Hub Genes Controlling Seed Size/Weight and/or Oil Content in Peanut
by Lingli Yang, Li Yang, Yingbin Ding, Yuning Chen, Nian Liu, Xiaojing Zhou, Li Huang, Huaiyong Luo, Meili Xie, Boshou Liao and Huifang Jiang
Plants 2023, 12(17), 3144; https://doi.org/10.3390/plants12173144 - 31 Aug 2023
Cited by 7 | Viewed by 1964
Abstract
Cultivated peanut (Arachis hypogaea L.) is an important economic and oilseed crop worldwide, providing high-quality edible oil and high protein content. Seed size/weight and oil content are two important determinants of yield and quality in peanut breeding. To identify key regulators controlling [...] Read more.
Cultivated peanut (Arachis hypogaea L.) is an important economic and oilseed crop worldwide, providing high-quality edible oil and high protein content. Seed size/weight and oil content are two important determinants of yield and quality in peanut breeding. To identify key regulators controlling these two traits, two peanut cultivars with contrasting phenotypes were compared to each other, one having a larger seed size and higher oil content (Zhonghua16, ZH16 for short), while the second cultivar had smaller-sized seeds and lower oil content (Zhonghua6, ZH6). Whole transcriptome analyses were performed on these two cultivars at four stages of seed development. The results showed that ~40% of the expressed genes were stage-specific in each cultivar during seed development, especially at the early stage of development. In addition, we identified a total of 5356 differentially expressed genes (DEGs) between ZH16 and ZH6 across four development stages. Weighted gene co-expression network analysis (WGCNA) based on DEGs revealed multiple hub genes with potential roles in seed size/weight and/or oil content. These hub genes were mainly involved in transcription factors (TFs), phytohormones, the ubiquitin–proteasome pathway, and fatty acid synthesis. Overall, the candidate genes and co-expression networks detected in this study could be a valuable resource for genetic breeding to improve seed yield and quality traits in peanut. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

Back to TopTop