Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (216)

Search Parameters:
Keywords = edible films and coatings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
58 pages, 1897 KiB  
Review
Fabrication and Application of Bio-Based Natural Polymer Coating/Film for Food Preservation: A Review
by Nosipho P. Mbonambi, Jerry O. Adeyemi, Faith Seke and Olaniyi A. Fawole
Processes 2025, 13(8), 2436; https://doi.org/10.3390/pr13082436 - 1 Aug 2025
Viewed by 489
Abstract
Food waste has emerged as a critical worldwide concern, resulting in environmental deterioration and economic detriment. Bio-based natural polymer coatings and films have emerged as a sustainable solution to food preservation challenges, particularly in reducing postharvest losses and extending shelf life. Compared to [...] Read more.
Food waste has emerged as a critical worldwide concern, resulting in environmental deterioration and economic detriment. Bio-based natural polymer coatings and films have emerged as a sustainable solution to food preservation challenges, particularly in reducing postharvest losses and extending shelf life. Compared to their synthetic counterparts, these polymers, such as chitosan, starch, cellulose, proteins, and alginate, are derived from renewable sources that are biodegradable, safe, and functional. Within this context, this review examines the various bio-based natural polymer coatings and films as biodegradable, edible alternatives to conventional packaging solutions. It examines the different fabrication methods, like solution casting, electrospinning, and spray coating, and incorporates antimicrobial agents to enhance performance. Emphasis is placed on their mechanical, barrier, and antimicrobial properties, their application in preserving fresh produce, how they promote food safety and environmental sustainability, and accompanying limitations. This review highlights the importance of bio-based natural polymer coatings and films as a promising, eco-friendly solution to enhancing food quality, safety, and shelf life while addressing global sustainability challenges. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

16 pages, 2047 KiB  
Article
Caseinate–Carboxymethyl Chitosan Composite Edible Coating with Soybean Oil for Extending the Shelf Life of Blueberry Fruit
by Amal M. A. Mohamed and Hosahalli S. Ramaswamy
Foods 2025, 14(15), 2598; https://doi.org/10.3390/foods14152598 - 24 Jul 2025
Viewed by 373
Abstract
Utilizing edible films/coatings promises to extend the shelf life of fruits by controlling various physiological parameters (e.g., respiration and transpiration rates), maintaining firmness, and delaying fruit senescence. The influence of composite-based edible coatings made from sodium or calcium caseinate: carboxymethyl chitosan (75:25) on [...] Read more.
Utilizing edible films/coatings promises to extend the shelf life of fruits by controlling various physiological parameters (e.g., respiration and transpiration rates), maintaining firmness, and delaying fruit senescence. The influence of composite-based edible coatings made from sodium or calcium caseinate: carboxymethyl chitosan (75:25) on the postharvest quality of fresh blueberries was assessed over a 28-day storage period, on the basis of weight loss and changes in pH, firmness, color, titratable acidity, soluble solids content, mold and yeast count, and respiration rate. The pH of the blueberries increased over the period of storage, with significant differences observed between uncoated and coated (e.g., pH was 3.89, 3.17, and 3.62 at the end of the storage time for uncoated, Ca 75-1% SO, and Na 75-1% SO, respectively. Desirable lower pH values at the end of storage were obtained with the calcium caseinate formulations. Over the duration of storage, other quality parameters (e.g., firmness) were better retained in coated fruits compared to the uncoated (control) one. At the last storage day, the firmness of the uncoated sample was 0.67 N·mm−1 while the sodium and calcium caseinate was 0.63 and 0.81 N.mm−1, respectively. Moreover, the microbial growth was reduced in coated fruits, indicating the effectiveness of coatings in preserving fruit quality. The mold /yeast count was 1.4 and 2.3 log CFU/g for CaCa 75-1% SO and NaCa 75-1% SO compared with uncoated with 4.2 log CFU/g. Adding soybean oil to the caseinate–carboxymethyl chitosan composite edible coating has the potential to positively influence retention of various quality parameters of blueberries, thereby extending their shelf life and maintaining overall quality. Further research could explore the optimization of coating formulations and application methods to enhance their effectiveness in preserving fruit quality during storage. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

30 pages, 866 KiB  
Review
Natural Polymer-Based Coatings for Animal-Derived Products: A Review of Applications, Functionality, Characterization, and Challenges
by Márcio Vargas-Ramella, Noemí Echegaray, Paulo Cezar Bastianello Campagnol and José Manuel Lorenzo
Foods 2025, 14(13), 2255; https://doi.org/10.3390/foods14132255 - 26 Jun 2025
Viewed by 525
Abstract
The global demand for sustainable packaging and animal-derived products’ perishability emphasizes the urgent need for biodegradable alternatives to petroleum-based materials (i.e., synthetic polymers or plastic). This narrative review explores the recent advancements in natural polymer-based coatings, comprising ingredients such as polysaccharides, proteins, and [...] Read more.
The global demand for sustainable packaging and animal-derived products’ perishability emphasizes the urgent need for biodegradable alternatives to petroleum-based materials (i.e., synthetic polymers or plastic). This narrative review explores the recent advancements in natural polymer-based coatings, comprising ingredients such as polysaccharides, proteins, and lipids, as well as their combination as multifunctional strategies for preserving meat, dairy, seafood, and eggs. These coatings act as physical barriers and can carry bioactive compounds, enhancing oxidative and microbial stability. Particular attention is placed on the structure-function relationships of biopolymers, their characterization through advanced techniques (e.g., Fourier Transform Infrared spectroscopy—FTIR, Scanning Electron Microscope—SEM, Differential Scanning Calorimetry—DSC, and Thermogravimetric analysis—TGA), and their functional properties (e.g., antimicrobial and antioxidant efficacy). Notably, food matrix compatibility is pivotal in determining coating performance, as interactions with surface moisture, pH, and lipids can modulate preservation outcomes. While several formulations have demonstrated promising results in shelf-life extension and sensory quality preservation, challenges remain regarding coating uniformity, regulatory compliance, and scalability. This narrative review highlights current limitations and future directions for the industrial application of these sustainable materials, aiming to link the gap between laboratory success and commercial feasibility. Full article
(This article belongs to the Special Issue Application of Edible Coating in Food Preservation)
Show Figures

Graphical abstract

27 pages, 2897 KiB  
Article
Blackseed Oil Supplemented Caseinate–Carboxymethyl Chitosan Film Membrane for Improving Shelf Life of Grape Tomato
by Amal M. A. Mohamed and Hosahalli S. Ramaswamy
Materials 2025, 18(11), 2653; https://doi.org/10.3390/ma18112653 - 5 Jun 2025
Viewed by 553
Abstract
Blackseed oil supplemented with caseinate (CA)–carboxymethyl chitosan (CMCH) composite membranes were evaluated for their functional properties and as edible coating for extending the shelf life of grape tomatoes. Composite films were prepared from equal parts of (CaCa or NaCa) and (CMCH) with or [...] Read more.
Blackseed oil supplemented with caseinate (CA)–carboxymethyl chitosan (CMCH) composite membranes were evaluated for their functional properties and as edible coating for extending the shelf life of grape tomatoes. Composite films were prepared from equal parts of (CaCa or NaCa) and (CMCH) with or without supplemented 3% blackseed oil (BO) and evaluated for their functional properties. Subsequently, the edible membrane coating was evaluated to extend the shelf life of grape tomatoes (Solanum lycopersicum L.). The water vapor permeability (WVP) of the films was the lowest for the calcium caseinate–carboxymethyl chitosan–blackseed oil (CaCa-CMCH-BO) film (3.01 g kPa−1 h−1 m−2). Adding blackseed oil to the edible film matrix also led to a significant increase in its mechanical properties, resulting in tensile strength values of 12.5 MPa and 10.2 MPa and elongation at break values of 90.5% and 100% for NaCa-CMCH-BO and CaCa-CMCH-BO, respectively. The composite films also exhibited good compatibility through hydrogen bonding and hydrophobic interactions, as confirmed by FTIR spectroscopy. The particle size and zeta potential of CaCa-CMCM-BO were 117 nm and −40.73 mV, respectively, while for NaCa-CMCH-BO, they were 294.70 nm and −25.10 mV, respectively. The incorporation of BO into the films resulted in greater antioxidant activity. When applied as an edible film membrane on grape tomatoes, the coating effectively delayed the deterioration of tomatoes by reducing weight loss, microbial spoilage, and oxidative degradation. Compared to the control, the coated fruits had delayed ripening, with a shelf life of up to 30 days, and reduced microbial growth over the entire storage period. Full article
Show Figures

Figure 1

15 pages, 1752 KiB  
Review
Sodium Alginate: A Green Biopolymer Resource-Based Antimicrobial Edible Coating to Enhance Fruit Shelf-Life: A Review
by Anshika Sharma and Arun K. Singh
Colloids Interfaces 2025, 9(3), 32; https://doi.org/10.3390/colloids9030032 - 19 May 2025
Viewed by 1463
Abstract
Fruits are a significant source of natural nutrition for human health. However, the perishable nature and short shelf life of fruits lead to spoilage, nutrition safety challenges, and other substantial postharvest losses. Edible coatings have emerged as a novel approach in order to [...] Read more.
Fruits are a significant source of natural nutrition for human health. However, the perishable nature and short shelf life of fruits lead to spoilage, nutrition safety challenges, and other substantial postharvest losses. Edible coatings have emerged as a novel approach in order to enhance the shelf life of perishable fruits by forming a protective barrier against adverse environmental conditions and microbial infections. Sodium alginate is recognized as an excellent polysaccharide (derived from algae, seaweed, etc.) in the food industry for edible fruit coatings because of its non-allergic, biodegradable, non-toxic (safe for human health), inexpensive, and efficient gel/film-forming properties. However, the hydrophilicity of the polysaccharides is a significant concern to prevent the growth of mold and yeast. In recent years, various plant extracts (containing multiple bioactive compounds, including polyphenolic acids) and nanoparticles have been applied in sodium alginate-based edible films and fruit coatings to enhance antimicrobial activity. This review study summarized recent advancements in fabricating plant extracts incorporating sodium alginate-based films and coatings to enhance fruit shelf life. In addition, approaches to preparing edible films and the basic mechanism behind the role of coating materials in enhancing fruit shelf life are discussed. Moreover, the limitations associated with sodium alginate-based fruit coatings and films have been highlighted. Full article
(This article belongs to the Special Issue Food Colloids: 3rd Edition)
Show Figures

Graphical abstract

33 pages, 1262 KiB  
Systematic Review
Antimicrobial Activity of Clove (Syzygium aromaticum) Essential Oil in Meat and Meat Products: A Systematic Review
by Eduardo Valarezo, Guicela Ledesma-Monteros, Ximena Jaramillo-Fierro, Matteo Radice and Miguel Angel Meneses
Antibiotics 2025, 14(5), 494; https://doi.org/10.3390/antibiotics14050494 - 11 May 2025
Viewed by 1396
Abstract
Background: Clove (Syzygium aromaticum) essential oil is widely recognized for its potent antimicrobial properties, making it a valuable natural preservative in food products, particularly in meat and meat derivatives, where it helps extend shelf life and enhance food safety. Methods: This [...] Read more.
Background: Clove (Syzygium aromaticum) essential oil is widely recognized for its potent antimicrobial properties, making it a valuable natural preservative in food products, particularly in meat and meat derivatives, where it helps extend shelf life and enhance food safety. Methods: This systematic review aims to evaluate the application of clove essential oil in meat and meat products, following the PRISMA 2020 methodology, to analyze its antimicrobial efficacy and its impact on the preservation of these products. The information search was carried out in the PubMed, ScienceDirect, SCOPUS, and Web of Science databases and included research articles in English published between 1999 and 2024, and 37 studies were confirmed as eligible. Results: Due to the heterogeneity of methodologies and concentrations evaluated, a narrative analysis was chosen, organizing the studies into three categories according to the application of the essential oil: direct addition, use in edible films and coatings, and encapsulation. The analysis included the main components of the essential oil, the activity analysis method, a concentration evaluation, storage conditions, the activities obtained, and a sensory evaluation. However, variability in methodologies and concentrations made direct comparison between studies difficult. Conclusions: Overall, this review confirms the effectiveness of clove essential oil in preserving meat and meat products but highlights the need to standardize its concentration and application conditions to optimize its use in the food industry. Full article
Show Figures

Figure 1

18 pages, 8139 KiB  
Article
The Effect of Phenolic Acids on the Sorption and Wetting Properties of Apple Pectin-Based Packaging Films
by Magdalena Mikus and Sabina Galus
Molecules 2025, 30(9), 1960; https://doi.org/10.3390/molecules30091960 - 28 Apr 2025
Viewed by 461
Abstract
In this article, the effects of different phenolic acids, such as ferulic, gallic, caffeic, coumaric, protocatechuic, and sinapic, as active compounds on the sorption and wetting properties of apple pectin-based edible films were evaluated. The control pectin films and those with added phenolic [...] Read more.
In this article, the effects of different phenolic acids, such as ferulic, gallic, caffeic, coumaric, protocatechuic, and sinapic, as active compounds on the sorption and wetting properties of apple pectin-based edible films were evaluated. The control pectin films and those with added phenolic acids differed in appearance and physical properties. The water content of the films was reduced and ranged from 8.91 ± 0.01% to 13.44 ± 0.01% for films containing phenolic acids compared to the control films (14.31 ± 0.01%). The swelling index value of the films ranged from 86.63% for films with protocatechuic acid to 88.33% for films with the addition of caffeic acid. It was observed that the sorption isotherms had a similar shape for all the obtained films, while scanning electron microscopy (SEM) allowed for the observation of changes in the structure resulting from the film composition. It was shown that the lowest water contact angle values at the initial time (0 s) were observed for pectin films with ferulic acid (47.00° ± 4.47) and the highest for the control films (58.44° ± 5.62). After 60 s, the highest water contact angle value was recorded for the film with caffeic acid (66.39° ± 5.18) and the lowest for the film with ferulic acid (14.72° ± 5.70). Films containing gallic acid and protocatechuic acids showed the lowest water vapour permeability values among active films. The edible films developed in this study showed desirable features that could be used as bioactive packaging for food industry applications, both as protective edible coatings and active packaging films. Full article
Show Figures

Graphical abstract

21 pages, 9184 KiB  
Article
Preparation and Application of Edible Chitosan Coating Incorporating Natamycin
by Jianming Sun, Tiantian Wang, Lei Liu, Qian Li, Hui Liu, Xiaofang Wang, Mengrui Liu and Han Zhang
Polymers 2025, 17(8), 1062; https://doi.org/10.3390/polym17081062 - 15 Apr 2025
Cited by 2 | Viewed by 1151
Abstract
In this paper, edible composite coatings, which used chitosan (CTS) as the matrix material, glycerol as the plasticizer, and natamycin as the antibacterial material, were prepared and composite films were prepared by a casting method. Taking cherry tomatoes as the research models, the [...] Read more.
In this paper, edible composite coatings, which used chitosan (CTS) as the matrix material, glycerol as the plasticizer, and natamycin as the antibacterial material, were prepared and composite films were prepared by a casting method. Taking cherry tomatoes as the research models, the optimal preservation effect of the composite coating was achieved using 10 g/L CTS, 2.5 g/L glycerol, and 125 mg/L natamycin under conditions of 25 °C and 50% RH. The thickness, transparency, water vapor transmittance (WVT), tensile strength (TS), and elongation at break (EB) of composite film were measured and the results showed the film prepared using 10 g/L CTS, 2.5 g/L glycerol and 125 mg/L natamycin was the best. The direct application of the optimal coating to cherry tomatoes kept the cherry tomatoes valuable for 20 days. The weight loss rate and hardness loss rate were reduced by 22.13% and 12.55%, respectively. The total soluble solid (TSS) content and vitamin c (Vc) content were increased by 2.54% and 20.35%, respectively. The malondialdehyde (MDA) content and peroxidase (POD) activity were decreased by 19.38% and 28.03%, respectively. Based on the significant preservation effect of the composite coating, it is expected to be widely used in the preservation of fruits and vegetables with skin morphologies similar to cherry tomatoes. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

19 pages, 7829 KiB  
Article
Development of Bioactive Edible Film and Coating Obtained from Spirogyra sp. Extract Applied for Enhancing Shelf Life of Fresh Products
by Siriwan Soiklom, Wipada Siri-anusornsak, Krittaya Petchpoung, Sumpan Soiklom and Thanapoom Maneeboon
Foods 2025, 14(5), 804; https://doi.org/10.3390/foods14050804 - 26 Feb 2025
Cited by 1 | Viewed by 1685
Abstract
The growing interest in environmentally friendly food packaging has led to the development of bio-edible alternatives. This study developed novel, edible, active films and coatings to enhance the shelf life of fresh products. Crude bioactive algal extract (CBAE) was obtained from the ethanol [...] Read more.
The growing interest in environmentally friendly food packaging has led to the development of bio-edible alternatives. This study developed novel, edible, active films and coatings to enhance the shelf life of fresh products. Crude bioactive algal extract (CBAE) was obtained from the ethanol extraction of Spirogyra sp. and incorporated into chitosan-based films and coatings at varying concentrations. The CBAE was rich in phenolic compounds and had antioxidant activity and potential antibacterial properties. The films were prepared using a solvent-casting method and characterized for their biochemical and physical properties. The incorporation of CBAE enhanced the antioxidant activity and improved the tensile strength of the films by 80%. Additionally, film transparency and water vapor permeability were reduced by 13% and 50%, respectively, compared to the control. The developed CBAE coating solution exhibited biocompatibility with human colon adenocarcinoma (HT-29) and mouse subcutaneous connective tissue (L929) fibroblast cells. A shelf-life evaluation using a coating-dipping method on okra showed that the CBAE-coated samples maintained better weight retention and firmness than the uncoated samples over 5 days of storage at ambient temperature. Based on these findings, the CBAE-based edible films and coatings could serve as sustainable alternatives for extending the shelf life of fresh products. Full article
(This article belongs to the Special Issue Bioactive Packaging for Preventing Food Spoilage)
Show Figures

Graphical abstract

40 pages, 3321 KiB  
Review
Sustainability in Bio-Based Edible Films, Coatings, and Packaging for Small Fruits
by Ivo Oliveira, Teresa Pinto, Sílvia Afonso, Monika Karaś, Urszula Szymanowska, Berta Gonçalves and Alice Vilela
Appl. Sci. 2025, 15(3), 1462; https://doi.org/10.3390/app15031462 - 31 Jan 2025
Cited by 8 | Viewed by 4997
Abstract
Sustainability in bio-based edible films, coatings, and packaging integrates environmental, economic, and social sustainability using renewable resources. These materials offer an eco-friendly alternative to traditional petroleum-based plastics and can extend the shelf life of fruits. The wine industry’s by-products, rich in bioactive compounds, [...] Read more.
Sustainability in bio-based edible films, coatings, and packaging integrates environmental, economic, and social sustainability using renewable resources. These materials offer an eco-friendly alternative to traditional petroleum-based plastics and can extend the shelf life of fruits. The wine industry’s by-products, rich in bioactive compounds, can create bio-based films and coatings. However, some challenges and limitations may occur. Producing bio-based films and coatings on a commercial scale can be challenging, requiring significant investment in research and development. While bio-based materials offer many benefits, they may not always match synthetic plastics’ mechanical strength and barrier properties. However, ongoing research is actively working to improve the functionality and durability of these materials, offering hope for the future. Bio-based materials can be more expensive to produce than conventional plastics, which may limit their widespread adoption without economic incentives or subsidies. Therefore, this review, which aims to provide a literature review about the benefits, challenges, and prospects of the sustainability offered using bio-based edible films, coatings, and packaging, particularly in small fruits and grapevine by-products, is important in the field. Full article
Show Figures

Figure 1

34 pages, 1738 KiB  
Review
Extending the Shelf Life of Apples After Harvest Using Edible Coatings as Active Packaging—A Review
by Magdalena Mikus and Sabina Galus
Appl. Sci. 2025, 15(2), 767; https://doi.org/10.3390/app15020767 - 14 Jan 2025
Cited by 5 | Viewed by 3677
Abstract
Extending the shelf life of perishable food, such as apples, and storing them in cold conditions and/or controlled atmospheres have been of great interest in the last decades. Apples are very valuable fruits with many health benefits, but during storage at ambient conditions, [...] Read more.
Extending the shelf life of perishable food, such as apples, and storing them in cold conditions and/or controlled atmospheres have been of great interest in the last decades. Apples are very valuable fruits with many health benefits, but during storage at ambient conditions, they ripen quickly and lose moisture, causing lower crispness or other negative effects, resulting in waste problems. There has been growing attention to protective edible coatings or active packaging films based on biopolymers and natural bioactive substances. Edible coatings and films allow for combination with functional ingredients or compounds, affecting the maintenance of the postharvest quality of fruits and vegetables. They also ensure the preservation of the sensory characteristics of food, and they can have antimicrobial or antioxidant properties. All these aspects play a significant role in the storage of apples, which can also help prevent waste, which is in line with the circular economy approach. The functionality of coatings and films is closely related to the type, content, and composition of active compounds, as well as their interaction with biopolymers. Active coatings with the addition of different functional compounds, such as plant extracts, phenolic acids, and nanoparticles, can be an alternative solution affecting the postharvest quality of apples during storage, maintaining the fruit’s stability, and thus minimising their waste. The most important issues related to the latest reports on improving the postharvest quality of apples using edible coatings incorporated with various active substances were evaluated. Agricultural conditions and factors that affect the postharvest quality of apples were described. The requirements for protective coatings for apples should be focused on low-cost materials, including waste-based resources, good miscibility, and compatibility of components. Those factors combined with the storage conditions may result in shelf life extension or retention of the postharvest quality of apples, regardless of the variety or cultivation techniques. Full article
(This article belongs to the Special Issue Feature Review Papers in Section ‘Food Science and Technology')
Show Figures

Figure 1

15 pages, 435 KiB  
Article
New Composite Packaging Material from Edible Oil By-Product Coated with Paraffin Wax for Dry Apricot Slice Packing Under a Modified Atmosphere
by Nevena Hromiš, Sanja Ostojić, Lato Pezo, Senka Popović, Zdravko Šumić, Anita Milić, Sunčica Kocić-Tanackov and Danijela Šuput
Polymers 2024, 16(24), 3583; https://doi.org/10.3390/polym16243583 - 21 Dec 2024
Cited by 1 | Viewed by 892
Abstract
Composite biopolymer hydrogel as food packaging material, apart from being environmentally favorable, faces high standards set upon food packaging materials. The feature that favors biopolymer film application is their low gas permeability under room conditions and lower relative humidity conditions. However, most biopolymer-based [...] Read more.
Composite biopolymer hydrogel as food packaging material, apart from being environmentally favorable, faces high standards set upon food packaging materials. The feature that favors biopolymer film application is their low gas permeability under room conditions and lower relative humidity conditions. However, most biopolymer-based materials show high moisture sensitiveness and limited water vapor permeability, which limits their application for food packaging. In this paper, a new packaging material derived from an edible oil industry byproduct (pumpkin oil cake) coated with a thin layer of paraffin wax was obtained. Compared to the film without wax coating, the new material showed reduced water sensitivity and significantly reduced water vapor transmission rate (56.98 ± 7.42 g/m2 24 h). The new material was tested for packing dry apricot slices under a modified atmosphere (100% N2). Gas composition in PuOC/wax pouches’ headspace was minimally changed during 105 days of storage. The low moisture content (6.76–10.60%) of dried apricot slices was preserved throughout the storage period (p > 0.05), as well as high rehydration power (65–75%). Changes in sensorial properties during storage were minimal. Total phenol content was minimally reduced during storage, followed by antioxidant activity (FRAP and ABTS trial). The microbial profile of dried apricot slices showed that a safe product was obtained throughout the storage. Considering the results, the functionality of new material for packing dry apricots under a modified atmosphere was proven. Full article
(This article belongs to the Special Issue Polymer Hydrogels: Synthesis, Properties and Applications)
Show Figures

Graphical abstract

19 pages, 7683 KiB  
Article
Effect of Sheep’s Whey Edible Coatings with a Bioprotective Culture, Kombucha Tea or Oregano Essential Oil on Cheese Characteristics
by Carlos D. Pereira, Hanna Varytskaya, Oliwia Łydzińska, Katarzyna Szkolnicka, David Gomes and Arona Pires
Foods 2024, 13(24), 4132; https://doi.org/10.3390/foods13244132 - 20 Dec 2024
Cited by 2 | Viewed by 958
Abstract
Films and coatings based on biopolymers have been extensively studied in recent years since they have less impact on the environment, can be obtained from renewable sources, have good coating and film-forming capacity, are biodegradable and can have interesting nutritional properties. In the [...] Read more.
Films and coatings based on biopolymers have been extensively studied in recent years since they have less impact on the environment, can be obtained from renewable sources, have good coating and film-forming capacity, are biodegradable and can have interesting nutritional properties. In the present study, sheep’s cheese whey powder (SCWP) was used to produce edible cheese coatings. Six types of cheese samples were produced: without coating (CON); treated with natamycin (NAT); with SCWP coating without antimicrobials (WCO); with SCWP coating with a commercial bioprotective culture (WFQ); with SCWP coating with kombucha tea (WKO); and with SCWP coating with oregano essential oil (WEO). At the end of the ripening period, all the cheeses were classified as full-fat and semihard, according to the Portuguese standard. The higher hardness and adhesiveness values of samples CON, WFQ and WKO were in line with the lower moisture in defatted cheese observed in these samples, indicating that future work should address the improvement of water vapor barrier properties of the whey-based coating. The samples treated with natamycin and with oregano essential oil presented significantly lower values for hardness. Differences were also observed on titratable acidity and aw, both between samples and because of ripening time. The color parameters of cheese samples also presented differences, chiefly in the rind, but the highest differences observed resulted from ripening time rather than between samples. In all cases, the counts of lactobacilli and lactococci surpassed log 7 CFU/g by the end of ripening. Regarding yeast and mold counts, the samples CON and WCO presented the highest values by the end of the ripening period (>log 4 CFU/g), while sample NAT presented the lowest value (ca. log 3 CFU/g). Samples WFQ, WKO and WEO presented values which were ca. 0.5 log cycles lower than samples CON and WCO. Hence, the use of SCWP alongside bioprotective culture, kombucha tea or oregano essential oil had a positive impact in the reduction of mold counts on cheese surfaces. Future work should also evaluate the joint use of different antimicrobials. Full article
(This article belongs to the Special Issue Probiotics in the Dairy Product: Trends, Advances and Opportunities)
Show Figures

Figure 1

32 pages, 6769 KiB  
Review
Strategies and Methodologies for Improving Toughness of Starch Films
by Yiwen Yang, Jun Fu, Qingfei Duan, Huifang Xie, Xinyi Dong and Long Yu
Foods 2024, 13(24), 4036; https://doi.org/10.3390/foods13244036 - 13 Dec 2024
Cited by 5 | Viewed by 3673
Abstract
Starch films have attracted increasing attention due to their biodegradability, edibility, and potential use as animal feed from post-products. Applications of starch-based films include food packaging, coating, and medicine capsules. However, a major drawback of starch-based films is their brittleness, particularly under dry [...] Read more.
Starch films have attracted increasing attention due to their biodegradability, edibility, and potential use as animal feed from post-products. Applications of starch-based films include food packaging, coating, and medicine capsules. However, a major drawback of starch-based films is their brittleness, particularly under dry conditions, caused by starch retrogradation and the instability of plasticizers. To address this challenge, various strategies and methodologies have been developed, including plasticization, chemical modification, and physical reinforcement. This review covers fundamental aspects, such as the microstructures, phase transitions, and compatibility of starch, as well as application-oriented techniques, including processing methods, plasticizer selection, and chemical modifications. Plasticizers play a crucial role in developing starch-based materials, as they mitigate brittleness and improve processability. Given the abundance of hydroxyl groups in starch, the plasticizers used must also contain hydroxyl or polar groups for compatibility. Chemical modification, such as esterification and etherification, effectively prevents starch recrystallization. Reinforcements, particularly with nanocellulose, significantly improved the mechanical properties of starch film. Drawing upon both the literature and our expertise, this review not only summarizes the advancements in this field but also identifies the limitations of current technologies and outlines promising research directions for future development. Full article
(This article belongs to the Special Issue Natural Polymer-Based Films and Coatings for Food Packaging)
Show Figures

Figure 1

17 pages, 475 KiB  
Review
Strategies to Extend the Shelf Life of Fresh and Minimally Processed Fruit and Vegetables with Edible Coatings and Modified Atmosphere Packaging
by Jan Aleksander Zdulski, Krzysztof P. Rutkowski and Dorota Konopacka
Appl. Sci. 2024, 14(23), 11074; https://doi.org/10.3390/app142311074 - 28 Nov 2024
Cited by 8 | Viewed by 4505
Abstract
Edible coatings are an innovative solution for food producers and suppliers looking for healthy alternatives that would be appealing to consumers seeking for ready-made products in fresh form. Low-processed horticulture products are expected to appear in more and more convenient form, ready to [...] Read more.
Edible coatings are an innovative solution for food producers and suppliers looking for healthy alternatives that would be appealing to consumers seeking for ready-made products in fresh form. Low-processed horticulture products are expected to appear in more and more convenient form, ready to eat and completely safe. The application of edible surface films contributes to the extension of shelf life while maintaining strict hygiene standards. Properly selected coating components are not only able to slow down the decomposition processes but also inhibit microbial growth, thus preventing quality losses and eliminating any potential threats to health. The additional use of modified atmosphere packaging (MAP) can significantly increase the shelf life of fruit and vegetables both fresh and minimally processed. However, single treatments (edible coatings and MAP) are limited in maintaining the quality and shelf life of fresh and fresh-cut fruit and vegetables. Little is known about the synergistic effect of MAP and edible coatings, and more research is necessary. The synergic action means combined action—first applying the edible coating, then packing in MAP. Full article
(This article belongs to the Special Issue Advanced Technologies for Food Packaging and Preservation)
Show Figures

Figure 1

Back to TopTop