Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (262)

Search Parameters:
Keywords = edge-cloud collaboration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2671 KB  
Article
Sustainable and Reliable Smart Grids: An Abnormal Condition Diagnosis Method for Low-Voltage Distribution Nodes via Multi-Source Domain Deep Transfer Learning and Cloud-Edge Collaboration
by Dongli Jia, Tianyuan Kang, Xueshun Ye, Jun Zhou and Zhenyu Zhang
Sustainability 2026, 18(3), 1550; https://doi.org/10.3390/su18031550 - 3 Feb 2026
Abstract
The transition toward sustainable and resilient new-type power systems requires robust diagnostic frameworks for terminal power supply units to ensure continuous grid stability. To ensure the resilience of modern power systems, this paper proposes a multi-source domain deep Transfer Learning method for the [...] Read more.
The transition toward sustainable and resilient new-type power systems requires robust diagnostic frameworks for terminal power supply units to ensure continuous grid stability. To ensure the resilience of modern power systems, this paper proposes a multi-source domain deep Transfer Learning method for the abnormal condition diagnosis of low-voltage distribution nodes within a cloud-edge collaborative framework. This approach integrates feature selection based on the Categorical Boosting (CatBoost) algorithm with a hybrid architecture combining a Convolutional Neural Network (CNN) and a Residual Network (ResNet). Additionally, it utilizes a multi-loss adaptation strategy consisting of Multi-Kernel Maximum Mean Difference (MK-MMD), Local Maximum Mean Difference (LMMD), and Mean Squared Error (MSE) to effectively bridge domain gaps and ensure diagnostic consistency. By balancing global commonality with local adaptation, the framework optimizes resource efficiency, reducing collaborative training time by 19.3%. Experimental results confirm that the method effectively prevents equipment failure, achieving diagnostic accuracies of 98.29% for low-voltage anomalies and 88.96% for three-phase imbalance conditions. Full article
(This article belongs to the Special Issue Microgrids, Electrical Power and Sustainable Energy Systems)
39 pages, 2492 KB  
Systematic Review
Cloud, Edge, and Digital Twin Architectures for Condition Monitoring of Computer Numerical Control Machine Tools: A Systematic Review
by Mukhtar Fatihu Hamza
Information 2026, 17(2), 153; https://doi.org/10.3390/info17020153 - 3 Feb 2026
Abstract
Condition monitoring has come to the forefront of intelligent manufacturing and is particularly important in Computer Numerical Control (CNC) machining processes, where reliability, precision, and productivity are crucial. The traditional methods of monitoring, which are mostly premised on single sensors, the localized capture [...] Read more.
Condition monitoring has come to the forefront of intelligent manufacturing and is particularly important in Computer Numerical Control (CNC) machining processes, where reliability, precision, and productivity are crucial. The traditional methods of monitoring, which are mostly premised on single sensors, the localized capture of data, and offline interpretation, are proving too small to handle current machining processes. Being limited in their scale, having limited computational power, and not being responsive in real-time, they do not fit well in a dynamic and data-intensive production environment. Recent progress in the Industrial Internet of Things (IIoT), cloud computing, and edge intelligence has led to a push into distributed monitoring architectures capable of obtaining, processing, and interpreting large amounts of heterogeneous machining data. Such innovations have facilitated more adaptive decision-making approaches, which have helped in supporting predictive maintenance, enhancing machining stability, tool lifespan, and data-driven optimization in manufacturing businesses. A structured literature search was conducted across major scientific databases, and eligible studies were synthesized qualitatively. This systematic review synthesizes over 180 peer-reviewed studies found in major scientific databases, using specific inclusion criteria and a PRISMA-guided screening process. It provides a comprehensive look at sensor technologies, data acquisition systems, cloud–edge–IoT frameworks, and digital twin implementations from an architectural perspective. At the same time, it identifies ongoing challenges related to industrial scalability, standardization, and the maturity of deployment. The combination of cloud platforms and edge intelligence is of particular interest, with emphasis placed on how the two ensure a balance in the computational load and latency, and improve system reliability. The review is a synthesis of the major advances associated with sensor technologies, data collection approaches, machine operations, machine learning, deep learning methods, and digital twins. The paper concludes with what can and cannot be performed to date by providing a comparative analysis of what is known about this topic and the reported industrial case applications. The main issues, such as the inconsistency of data, the lack of standardization, cyber threats, and old system integration, are critically analyzed. Lastly, new research directions are touched upon, including hybrid cloud–edge intelligence, advanced AI models, and adaptive multisensory fusion, which is oriented to autonomous and self-evolving CNC monitoring systems in line with the Industry 4.0 and Industry 5.0 paradigms. The review process was made transparent and repeatable by using a PRISMA-guided approach to qualitative synthesis and literature screening. Full article
Show Figures

Figure 1

20 pages, 3392 KB  
Article
HBA-VSG Joint Optimization of Distribution Network Voltage Control Under Cloud-Edge Collaboration Architecture
by Dongli Jia, Tianyuan Kang, Shuai Wang and Xueshun Ye
Sustainability 2026, 18(3), 1286; https://doi.org/10.3390/su18031286 - 27 Jan 2026
Viewed by 116
Abstract
High-penetration integration of distributed photovoltaics (PV) into distribution networks introduces significant challenges regarding voltage limit violations and fluctuations. To address these issues, this manuscript proposes a hierarchical coordinated voltage control strategy for medium- and low-voltage distribution networks utilizing a cloud-edge collaboration architecture. The [...] Read more.
High-penetration integration of distributed photovoltaics (PV) into distribution networks introduces significant challenges regarding voltage limit violations and fluctuations. To address these issues, this manuscript proposes a hierarchical coordinated voltage control strategy for medium- and low-voltage distribution networks utilizing a cloud-edge collaboration architecture. The research methodology involves constructing a multi-objective optimization model at the cloud layer to minimize network losses and voltage deviations, solved via an improved Honey Badger Algorithm (HBA). Simultaneously, at the edge layer, a multi-mode coordinated control strategy incorporating Virtual Synchronous Generator (VSG) technology is developed to provide fast reactive power support and inertial response. Through simulation analysis on an IEEE 33-node test system, the findings demonstrate that the proposed strategy significantly mitigates voltage fluctuations and enhances the hosting capacity of distributed energy resources. The study concludes that the cloud-edge framework effectively decouples control time-scales, ensuring both global economic operation and local transient stability. These results are significant for advancing the resilient operation of active distribution networks with high renewable penetration. Full article
(This article belongs to the Special Issue Microgrids, Electrical Power and Sustainable Energy Systems)
Show Figures

Figure 1

28 pages, 1714 KB  
Article
Cross-Modal Semantic Communication for Text-to-Video Retrieval in Internet of Vehicles
by Zhanping Liu, Chao Wu, Chengjun Feng, Zixiao Zhu and Puning Zhang
Electronics 2026, 15(2), 457; https://doi.org/10.3390/electronics15020457 - 21 Jan 2026
Viewed by 120
Abstract
Text-to-video retrieval offers an intelligent solution for Internet of Vehicles (IoV) users to access desired content on demand. However, the constrained communication channels in IoV, characterized by low signal-to-noise ratios (SNR), pose significant obstacles to retrieval performance. To tackle these issues, this study [...] Read more.
Text-to-video retrieval offers an intelligent solution for Internet of Vehicles (IoV) users to access desired content on demand. However, the constrained communication channels in IoV, characterized by low signal-to-noise ratios (SNR), pose significant obstacles to retrieval performance. To tackle these issues, this study presents SemTVR, a semantic communication framework dedicated to achieving superior robustness in text-to-video retrieval tasks in low-SNR IoV environments. By integrating the semantic communication paradigm with edge–cloud collaboration, our architecture leverages roadside unit (RSU) features and cloud resources to enable collaborative retrieval. We introduce a multi-semantic interactive reliable transmission mechanism that utilizes historical search records to enhance semantic recovery accuracy under adverse channel conditions. Furthermore, we devise a cross-modal fine-grained matching strategy assigning differentiated weights to video content and query sentences. Experimental results conducted on authoritative datasets demonstrate that SemTVR significantly outperforms baseline methods in terms of search accuracy, particularly in low SNR scenarios, validating its effectiveness for future IoV applications. Full article
(This article belongs to the Special Issue Challenges and Opportunities in the Internet of Vehicles)
Show Figures

Figure 1

25 pages, 7167 KB  
Article
Edge-Enhanced YOLOV8 for Spacecraft Instance Segmentation in Cloud-Edge IoT Environments
by Ming Chen, Wenjie Chen, Yanfei Niu, Ping Qi and Fucheng Wang
Future Internet 2026, 18(1), 59; https://doi.org/10.3390/fi18010059 - 20 Jan 2026
Viewed by 132
Abstract
The proliferation of smart devices and the Internet of Things (IoT) has led to massive data generation, particularly in complex domains such as aerospace. Cloud computing provides essential scalability and advanced analytics for processing these vast datasets. However, relying solely on the cloud [...] Read more.
The proliferation of smart devices and the Internet of Things (IoT) has led to massive data generation, particularly in complex domains such as aerospace. Cloud computing provides essential scalability and advanced analytics for processing these vast datasets. However, relying solely on the cloud introduces significant challenges, including high latency, network congestion, and substantial bandwidth costs, which are critical for real-time on-orbit spacecraft services. Cloud-edge Internet of Things (cloud-edge IoT) computing emerges as a promising architecture to mitigate these issues by pushing computation closer to the data source. This paper proposes an improved YOLOV8-based model specifically designed for edge computing scenarios within a cloud-edge IoT framework. By integrating the Cross Stage Partial Spatial Pyramid Pooling Fast (CSPPF) module and the WDIOU loss function, the model achieves enhanced feature extraction and localization accuracy without significantly increasing computational cost, making it suitable for deployment on resource-constrained edge devices. Meanwhile, by processing image data locally at the edge and transmitting only the compact segmentation results to the cloud, the system effectively reduces bandwidth usage and supports efficient cloud-edge collaboration in IoT-based spacecraft monitoring systems. Experimental results show that, compared to the original YOLOV8 and other mainstream models, the proposed model demonstrates superior accuracy and instance segmentation performance at the edge, validating its practicality in cloud-edge IoT environments. Full article
(This article belongs to the Special Issue Convergence of IoT, Edge and Cloud Systems)
Show Figures

Figure 1

42 pages, 3816 KB  
Article
Dynamic Decision-Making for Resource Collaboration in Complex Computing Networks: A Differential Game and Intelligent Optimization Approach
by Cai Qi and Zibin Zhang
Mathematics 2026, 14(2), 320; https://doi.org/10.3390/math14020320 - 17 Jan 2026
Viewed by 237
Abstract
End–edge–cloud collaboration enables significant improvements in system resource utilization by integrating heterogeneous resources while ensuring application-level quality of service (QoS). However, achieving efficient collaborative decision-making in such architectures poses critical challenges within dynamic and complex computing network environments, including dynamic resource allocation, incentive [...] Read more.
End–edge–cloud collaboration enables significant improvements in system resource utilization by integrating heterogeneous resources while ensuring application-level quality of service (QoS). However, achieving efficient collaborative decision-making in such architectures poses critical challenges within dynamic and complex computing network environments, including dynamic resource allocation, incentive alignment between cloud and edge entities, and multi-objective optimization. To address these issues, this paper proposes a dynamic resource optimization framework for complex cloud–edge collaborative networks, decomposing the problem into two hierarchical decision schemes: cloud-level coordination and edge-side coordination, thereby achieving adaptive resource orchestration across the End–edge–cloud continuum. Furthermore, leveraging differential game theory, we model the dynamic resource allocation and cooperation incentives between cloud and edge nodes, and derive a feedback Nash equilibrium to maximize the overall system utility, effectively resolving the inherent conflicts of interest in cloud–edge collaboration. Additionally, we formulate a joint optimization model for energy consumption and latency, and propose an Improved Discrete Artificial Hummingbird Algorithm (IDAHA) to achieve an optimal trade-off between these competing objectives, addressing the challenge of multi-objective coordination from the user perspective. Extensive simulation results demonstrate that the proposed methods exhibit superior performance in multi-objective optimization, incentive alignment, and dynamic resource decision-making, significantly enhancing the adaptability and collaborative efficiency of complex cloud–edge networks. Full article
(This article belongs to the Special Issue Dynamic Analysis and Decision-Making in Complex Networks)
Show Figures

Figure 1

25 pages, 3269 KB  
Article
Dynamic Carbon-Aware Scheduling for Electric Vehicle Fleets Using VMD-BSLO-CTL Forecasting and Multi-Objective MPC
by Hongyu Wang, Zhiyu Zhao, Kai Cui, Zixuan Meng, Bin Li, Wei Zhang and Wenwen Li
Energies 2026, 19(2), 456; https://doi.org/10.3390/en19020456 - 16 Jan 2026
Viewed by 154
Abstract
Accurate perception of dynamic carbon intensity is a prerequisite for low-carbon demand-side response. However, traditional grid-average carbon factors lack the spatio-temporal granularity required for real-time regulation. To address this, this paper proposes a “Prediction-Optimization” closed-loop framework for electric vehicle (EV) fleets. First, a [...] Read more.
Accurate perception of dynamic carbon intensity is a prerequisite for low-carbon demand-side response. However, traditional grid-average carbon factors lack the spatio-temporal granularity required for real-time regulation. To address this, this paper proposes a “Prediction-Optimization” closed-loop framework for electric vehicle (EV) fleets. First, a hybrid forecasting model (VMD-BSLO-CTL) is constructed. By integrating Variational Mode Decomposition (VMD) with a CNN-Transformer-LSTM network optimized by the Blood-Sucking Leech Optimizer (BSLO), the model effectively captures multi-scale features. Validation on the UK National Grid dataset demonstrates its superior robustness against prediction horizon extension compared to state-of-the-art baselines. Second, a multi-objective Model Predictive Control (MPC) strategy is developed to guide EV charging. Applied to a real-world station-level scenario, the strategy navigates the trade-offs between user economy and grid stability. Simulation results show that the proposed framework simultaneously reduces economic costs by 4.17% and carbon emissions by 8.82%, while lowering the peak-valley difference by 6.46% and load variance by 11.34%. Finally, a cloud-edge collaborative deployment scheme indicates the engineering potential of the proposed approach for next-generation low-carbon energy management. Full article
Show Figures

Figure 1

23 pages, 16288 KB  
Article
End-Edge-Cloud Collaborative Monitoring System with an Intelligent Multi-Parameter Sensor for Impact Anomaly Detection in GIL Pipelines
by Qi Li, Kun Zeng, Yaojun Zhou, Xiongyao Xie and Genji Tang
Sensors 2026, 26(2), 606; https://doi.org/10.3390/s26020606 - 16 Jan 2026
Viewed by 155
Abstract
Gas-insulated transmission lines (GILs) are increasingly deployed in dense urban power networks, where complex construction activities may introduce external mechanical impacts and pose risks to pipeline structural integrity. However, existing GIL monitoring approaches mainly emphasize electrical and gas-state parameters, while lightweight solutions capable [...] Read more.
Gas-insulated transmission lines (GILs) are increasingly deployed in dense urban power networks, where complex construction activities may introduce external mechanical impacts and pose risks to pipeline structural integrity. However, existing GIL monitoring approaches mainly emphasize electrical and gas-state parameters, while lightweight solutions capable of rapidly detecting and localizing impact-induced structural anomalies remain limited. To address this gap, this paper proposes an intelligent end-edge-cloud monitoring system for impact anomaly detection in GIL pipelines. Numerical simulations are first conducted to analyze the dynamic response characteristics of the pipeline under impacts of varying magnitudes, orientations, and locations, revealing the relationship between impact scenarios and vibration mode evolution. An end-tier multi-parameter intelligent sensor is then developed, integrating triaxial acceleration and angular velocity measurement with embedded lightweight computing. Laboratory impact experiments are performed to acquire sensor data, which are used to train and validate a multi-class extreme gradient boosting (XGBoost) model deployed at the edge tier for accurate impact-location identification. Results show that, even with a single sensor positioned at the pipeline midpoint, fusing acceleration and angular velocity features enables reliable discrimination of impact regions. Finally, a lightweight cloud platform is implemented for visualizing structural responses and environmental parameters with downsampled edge-side data. The proposed system achieves rapid sensor-level anomaly detection, precise edge-level localization, and unified cloud-level monitoring, offering a low-cost and easily deployable solution for GIL structural health assessment. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

42 pages, 824 KB  
Article
Leveraging the DAO for Edge-to-Cloud Data Sharing and Availability
by Adnan Imeri, Uwe Roth, Michail Alexandros Kourtis, Andreas Oikonomakis, Achilleas Economopoulos, Lorenzo Fogli, Antonella Cadeddu, Alessandro Bianchini, Daniel Iglesias and Wouter Tavernier
Future Internet 2026, 18(1), 37; https://doi.org/10.3390/fi18010037 - 8 Jan 2026
Viewed by 347
Abstract
Reliable data availability and transparent governance are fundamental requirements for distributed edge-to-cloud systems that must operate across multiple administrative domains. Conventional cloud-centric architectures centralize control and storage, creating bottlenecks and limiting autonomous collaboration at the network edge. This paper introduces a decentralized governance [...] Read more.
Reliable data availability and transparent governance are fundamental requirements for distributed edge-to-cloud systems that must operate across multiple administrative domains. Conventional cloud-centric architectures centralize control and storage, creating bottlenecks and limiting autonomous collaboration at the network edge. This paper introduces a decentralized governance and service-management framework that leverages Decentralized Autonomous Organizations (DAOs) and Decentralized Applications (DApps) to to govern and orchestrate verifiable, tamper-resistant, and continuously accessible data exchange between heterogeneous edge and cloud components. By embedding blockchain-based smart contracts within swarm-enabled edge infrastructures, the approach enables automated decision-making, auditable coordination, and fault-tolerant data sharing without relying on trusted intermediaries. The proposed OASEES framework demonstrates how DAO-driven orchestration can enhance data availability and accountability in real-world scenarios, including energy grid balancing, structural safety monitoring, and predictive maintenance of wind turbines. Results highlight that decentralized governance mechanisms enhance transparency, resilience, and trust, offering a scalable foundation for next-generation edge-to-cloud data ecosystems. Full article
Show Figures

Figure 1

22 pages, 3874 KB  
Article
Cloud-Edge Collaboration-Based Data Processing Method for Distribution Terminal Unit Edge Clusters
by Ruijiang Zeng, Zhiyong Li, Sifeng Li, Jiahao Zhang and Xiaomei Chen
Energies 2026, 19(1), 269; https://doi.org/10.3390/en19010269 - 4 Jan 2026
Viewed by 231
Abstract
Distribution terminal units (DTUs) play critical roles in smart grid for supporting data acquisition, remote monitoring, and fault management. A single DTU generates continuous data streams, imposing new challenges on data processing. To tackle these issues, a cloud-edge collaboration-based data processing method is [...] Read more.
Distribution terminal units (DTUs) play critical roles in smart grid for supporting data acquisition, remote monitoring, and fault management. A single DTU generates continuous data streams, imposing new challenges on data processing. To tackle these issues, a cloud-edge collaboration-based data processing method is introduced for DTU edge clusters. First, considering the load imbalance degree of DTU data queues, a cloud-edge integrated data processing architecture is designed. It optimizes edge server selection, the offloading splitting ratio, and edge-cloud computing resource allocation in a collaboration mechanism. Second, an optimization problem is formulated to maximize the weighted difference between the total data processing volume and the load imbalance degree. Next, a cloud-edge collaboration-based data processing method is proposed. In the first stage, cloud-edge collaborative data offloading based on the load imbalance degree, and a data volume-aware deep Q-network (DQN) is developed. A penalty function based on load fluctuations and the data volume deficit is incorporated. It drives the DQN to evolve toward suppressing the fluctuation of load imbalance degree while ensuring differentiated long-term data volume constraints. In the second stage, cloud-edge computing resource allocation based on adaptive differential evolution is designed. An adaptive mutation scaling factor is introduced to overcome the gene overlapping issues of traditional heuristic approaches, enabling deeper exploration of the solution space and accelerating global optimum identification. Finally, the simulation results demonstrate that the proposed method effectively improves the data processing efficiency of DTUs while reducing the load imbalance degree. Full article
Show Figures

Figure 1

17 pages, 3550 KB  
Article
Edge Intelligence-Based Rail Transit Equipment Inspection System
by Lijia Tian, Hongli Zhao, Li Zhu, Hailin Jiang and Xinjun Gao
Sensors 2026, 26(1), 236; https://doi.org/10.3390/s26010236 - 30 Dec 2025
Viewed by 427
Abstract
The safe operation of rail transit systems relies heavily on the efficient and reliable maintenance of their equipment, as any malfunction or abnormal operation may pose serious risks to transportation safety. Traditional manual inspection methods are often characterized by high costs, low efficiency, [...] Read more.
The safe operation of rail transit systems relies heavily on the efficient and reliable maintenance of their equipment, as any malfunction or abnormal operation may pose serious risks to transportation safety. Traditional manual inspection methods are often characterized by high costs, low efficiency, and susceptibility to human error. To address these limitations, this paper presents a rail transit equipment inspection system based on Edge Intelligence (EI) and 5G technology. The proposed system adopts a cloud–edge–end collaborative architecture that integrates Computer Vision (CV) techniques to automate inspection tasks; specifically, a fine-tuned YOLOv8 model is employed for object detection of personnel and equipment, while a ResNet-18 network is utilized for equipment status classification. By implementing an ETSI MEC-compliant framework on edge servers (NVIDIA Jetson AGX Orin), the system enhances data processing efficiency and network performance, while further strengthening security through the use of a 5G private network that isolates critical infrastructure data from the public internet, and improving robustness via distributed edge nodes that eliminate single points of failure. The proposed solution has been deployed and evaluated in real-world scenarios on Beijing Metro Line 6. Experimental results demonstrate that the YOLOv8 model achieves a mean Average Precision (mAP@0.5) of 92.7% ± 0.4% for equipment detection, and the ResNet-18 classifier attains 95.8% ± 0.3% accuracy in distinguishing normal and abnormal statuses. Compared with a cloud-centric architecture, the EI-based system reduces the average end-to-end latency for anomaly detection tasks by 45% (28.5 ms vs. 52.1 ms) and significantly lowers daily bandwidth consumption by approximately 98.1% (from 40.0 GB to 0.76 GB) through an event-triggered evidence upload strategy involving images and short video clips, highlighting its superior real-time performance, security, robustness, and bandwidth efficiency. Full article
Show Figures

Figure 1

24 pages, 2429 KB  
Article
Secure Streaming Data Encryption and Query Scheme with Electric Vehicle Key Management
by Zhicheng Li, Jian Xu, Fan Wu, Cen Sun, Xiaomin Wu and Xiangliang Fang
Information 2026, 17(1), 18; https://doi.org/10.3390/info17010018 - 25 Dec 2025
Viewed by 340
Abstract
The rapid proliferation of Electric Vehicle (EV) infrastructures has led to the massive generation of high-frequency streaming data uploaded to cloud platforms for real-time analysis, while such data supports intelligent energy management and behavioral analytics, it also encapsulates sensitive user information, the disclosure [...] Read more.
The rapid proliferation of Electric Vehicle (EV) infrastructures has led to the massive generation of high-frequency streaming data uploaded to cloud platforms for real-time analysis, while such data supports intelligent energy management and behavioral analytics, it also encapsulates sensitive user information, the disclosure or misuse of which can lead to significant privacy and security threats. This work addresses these challenges by developing a secure and scalable scheme for protecting and verifying streaming data during storage and collaborative analysis. The proposed scheme ensures end-to-end confidentiality, forward security, and integrity verification while supporting efficient encrypted aggregation and fine-grained, time-based authorization. It introduces a lightweight mechanism that hierarchically organizes cryptographic keys and ciphertexts over time, enabling privacy-preserving queries without decrypting individual data points. Building on this foundation, an electric vehicle key management and query system is further designed to integrate the proposed encryption and verification scheme into practical V2X environments. The system supports privacy-preserving data sharing, verifiable statistical analytics, and flexible access control across heterogeneous cloud and edge infrastructures. Analytical and experimental evidence show that the designed system attains rigorous security guarantees alongside excellent efficiency and scalability, rendering it ideal for large-scale electric vehicle data protection and analysis tasks. Full article
(This article belongs to the Special Issue Privacy-Preserving Data Analytics and Secure Computation)
Show Figures

Graphical abstract

25 pages, 3345 KB  
Article
Edge-Side Electricity-Carbon Coordinated Hybrid Trading Mechanism for Microgrid Cluster Flexibility
by Hualei Zou, Qiang Xing, Bitao Xiao, Xilong Xing, Andrew Yang Wu and Jiaqi Liu
Processes 2026, 14(1), 83; https://doi.org/10.3390/pr14010083 - 25 Dec 2025
Viewed by 306
Abstract
High penetration of renewable energy sources (RES) in power systems introduces substantial source-load uncertainty and flexibility challenges, leading to misalignments between economic optimization and environmental sustainability. An edge-side electricity-carbon coordinated hybrid trading mechanism was proposed to enhance flexibility in microgrid clusters. A three-layer [...] Read more.
High penetration of renewable energy sources (RES) in power systems introduces substantial source-load uncertainty and flexibility challenges, leading to misalignments between economic optimization and environmental sustainability. An edge-side electricity-carbon coordinated hybrid trading mechanism was proposed to enhance flexibility in microgrid clusters. A three-layer time-varying carbon emission factor (CEF) model is developed to quantify negative emissions as tradable Chinese Certified Emission Reductions (CCERs). An endogenous economic equilibrium point enables dynamic switching between Incentive-Based Demand Response during high-carbon periods and Price-Based Demand Response during low-carbon periods, based on marginal profit comparisons. A Wasserstein distance-based distributionally robust CVaR (WDR-CVaR) strategy constructs a data-driven ambiguity set to optimize decisions under worst-case distributional shifts in edge-side data. Simulations on a modified IEEE 33-bus system show that the mechanism increases the Multi-Energy Aggregator’s (MEA) expected profit by 12.3%, reduces carbon emissions by 17.6%, with WDR-CVaR demonstrating superior out-of-sample performance compared to sample average approximation methods. The approach internalizes environmental values through carbon-electricity coupling and edge intelligence, providing a resilient framework for low-carbon distribution network operations. Full article
Show Figures

Figure 1

28 pages, 1728 KB  
Article
A Lightweight Learning-Based Approach for Online Edge-to-Cloud Service Placement
by Mohammadsadeq Garshasbi Herabad, Javid Taheri, Bestoun S. Ahmed and Calin Curescu
Electronics 2026, 15(1), 65; https://doi.org/10.3390/electronics15010065 - 23 Dec 2025
Viewed by 233
Abstract
The integration of edge and cloud computing is critical for resource-intensive applications which require low-latency communication, high reliability, and efficient resource utilisation. The service placement problem in these environments poses significant challenges owing to dynamic network conditions, heterogeneous resource availability, and the necessity [...] Read more.
The integration of edge and cloud computing is critical for resource-intensive applications which require low-latency communication, high reliability, and efficient resource utilisation. The service placement problem in these environments poses significant challenges owing to dynamic network conditions, heterogeneous resource availability, and the necessity for real-time decision-making. Because determining an optimal service placement in such networks is an NP-complete problem, the existing solutions rely on fast but suboptimal heuristics or computationally intensive metaheuristics. Neither approach meets the real-time demands of online scenarios, owing to its inefficiency or high computational overhead. In this study, we propose a lightweight learning-based approach for the online placement of services with multi-version components in edge-to-cloud computing. The proposed approach utilises a Shallow Neural Network (SNN) with both weight and power coefficients optimised using a Genetic Algorithm (GA). The use of an SNN ensures low computational overhead during the training phase and almost instant inference when deployed, making it well suited for real-time and online service placement in edge-to-cloud environments where rapid decision-making is crucial. The proposed method (SNN-GA) is specifically evaluated in AR/VR-based remote repair and maintenance scenarios, developed in collaboration with our industrial partner, and demonstrated robust performance and scalability across a wide range of problem sizes. The experimental results show that SNN-GA reduces the service response time by up to 27% compared to metaheuristics and 55% compared to heuristics at larger scales. It also achieves over 95% platform reliability, outperforming heuristics (which remain below 85%) and metaheuristics (which decrease to 90% at larger scales). Full article
Show Figures

Figure 1

47 pages, 6988 KB  
Article
A Hierarchical Predictive-Adaptive Control Framework for State-of-Charge Balancing in Mini-Grids Using Deep Reinforcement Learning
by Iacovos Ioannou, Saher Javaid, Yasuo Tan and Vasos Vassiliou
Electronics 2026, 15(1), 61; https://doi.org/10.3390/electronics15010061 - 23 Dec 2025
Viewed by 351
Abstract
State-of-charge (SoC) balancing across multiple battery energy storage systems (BESS) is a central challenge in renewable-rich mini-grids. Heterogeneous battery capacities, differing states of health, stochastic renewable generation, and variable loads create a high-dimensional uncertain control problem. Conventional droop-based SoC balancing strategies are decentralized [...] Read more.
State-of-charge (SoC) balancing across multiple battery energy storage systems (BESS) is a central challenge in renewable-rich mini-grids. Heterogeneous battery capacities, differing states of health, stochastic renewable generation, and variable loads create a high-dimensional uncertain control problem. Conventional droop-based SoC balancing strategies are decentralized and computationally light but fundamentally reactive and limited, whereas model predictive control (MPC) is insightful but computationally intensive and prone to modeling errors. This paper proposes a Hierarchical Predictive–Adaptive Control (HPAC) framework for SoC balancing in mini-grids using deep reinforcement learning. The framework consists of two synergistic layers operating on different time scales. A long-horizon Predictive Engine, implemented as a federated Transformer network, provides multi-horizon probabilistic forecasts of net load, enabling multiple mini-grids to collaboratively train a high-capacity model without sharing raw data. A fast-timescale Adaptive Controller, implemented as a Soft Actor-Critic (SAC) agent, uses these forecasts to make real-time charge/discharge decisions for each BESS unit. The forecasts are used both to augment the agent’s state representation and to dynamically shape a multi-objective reward function that balances SoC, economic performance, degradation-aware operation, and voltage stability. The paper formulates SoC balancing as a Markov decision process, details the SAC-based control architecture, and presents a comprehensive evaluation using a MATLAB-(R2025a)-based digital-twin simulation environment. A rigorous benchmarking study compares HPAC against fourteen representative controllers spanning rule-based, MPC, and various DRL paradigms. Sensitivity analysis on reward weight selection and ablation studies isolating the contributions of forecasting and dynamic reward shaping are conducted. Stress-test scenarios, including high-volatility net-load conditions and communication impairments, demonstrate the robustness of the approach. Results show that HPAC achieves near-minimal operating cost with essentially zero SoC variance and the lowest voltage variance among all compared controllers, while maintaining moderate energy throughput that implicitly preserves battery lifetime. Finally, the paper discusses a pathway from simulation to hardware-in-the-loop testing and a cloud-edge deployment architecture for practical, real-time deployment in real-world mini-grids. Full article
(This article belongs to the Special Issue Smart Power System Optimization, Operation, and Control)
Show Figures

Figure 1

Back to TopTop