Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (626)

Search Parameters:
Keywords = edge expanding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 62899 KiB  
Essay
Monitoring and Historical Spatio-Temporal Analysis of Arable Land Non-Agriculturalization in Dachang County, Eastern China Based on Time-Series Remote Sensing Imagery
by Boyuan Li, Na Lin, Xian Zhang, Chun Wang, Kai Yang, Kai Ding and Bin Wang
Earth 2025, 6(3), 91; https://doi.org/10.3390/earth6030091 (registering DOI) - 6 Aug 2025
Abstract
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of [...] Read more.
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of the Beijing–Tianjin–Hebei metropolitan cluster. In recent years, the area has undergone accelerated urbanization and industrial transfer, resulting in drastic land use changes and a pronounced contradiction between arable land protection and the expansion of construction land. The study period is 2016–2023, which covers the key period of the Beijing–Tianjin–Hebei synergistic development strategy and the strengthening of the national arable land protection policy, and is able to comprehensively reflect the dynamic changes of arable land non-agriculturalization under the policy and urbanization process. Multi-temporal Sentinel-2 imagery was utilized to construct a multi-dimensional feature set, and machine learning classifiers were applied to identify arable land non-agriculturalization with optimized performance. GIS-based analysis and the geographic detector model were employed to reveal the spatio-temporal dynamics and driving mechanisms. The results demonstrate that the XGBoost model, optimized using Bayesian parameter tuning, achieved the highest classification accuracy (overall accuracy = 0.94) among the four classifiers, indicating its superior suitability for identifying arable land non-agriculturalization using multi-temporal remote sensing imagery. Spatio-temporal analysis revealed that non-agriculturalization expanded rapidly between 2016 and 2020, followed by a deceleration after 2020, exhibiting a pattern of “rapid growth–slowing down–partial regression”. Further analysis using the geographic detector revealed that socioeconomic factors are the primary drivers of arable land non-agriculturalization in Dachang Hui Autonomous County, while natural factors exerted relatively weaker effects. These findings provide technical support and scientific evidence for dynamic monitoring and policy formulation regarding arable land under urbanization, offering significant theoretical and practical implications. Full article
Show Figures

Figure 1

24 pages, 6924 KiB  
Article
Long-Term Time Series Estimation of Impervious Surface Coverage Rate in Beijing–Tianjin–Hebei Urbanization and Vulnerability Assessment of Ecological Environment Response
by Yuyang Cui, Yaxue Zhao and Xuecao Li
Land 2025, 14(8), 1599; https://doi.org/10.3390/land14081599 - 6 Aug 2025
Abstract
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation [...] Read more.
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation methods to convert thirty years of 30 m resolution data into 1 km resolution spatiotemporal impervious surface coverage data, constructing a long-term time series annual impervious surface coverage dataset for the Beijing–Tianjin–Hebei region. Based on this dataset, we analyzed urban expansion processes and landscape pattern indices in the Beijing–Tianjin–Hebei region, exploring the spatiotemporal response relationships of ecological environment changes. Results revealed that the impervious surface area increased dramatically from 7579.3 km2 in 1985 to 37,484.0 km2 in 2020, representing a year-on-year growth of 88.5%. Urban expansion rates showed two distinct peaks: 800 km2/year around 1990 and approximately 1700 km2/year during 2010–2015. In high-density urbanized areas with impervious surfaces, the average forest area significantly increased from approximately 2500 km2 to 7000 km2 during 1985–2005 before rapidly declining, grassland patch fragmentation intensified, while in low-density areas, grassland area showed fluctuating decline with poor ecosystem stability. Furthermore, by incorporating natural and social factors such as Fractional Vegetation Coverage (FVC), Habitat Quality Index (HQI), Land Surface Temperature (LST), slope, and population density, we assessed the vulnerability of urbanization development in the Beijing–Tianjin–Hebei region. Results showed that high vulnerability areas (EVI > 0.5) in the Beijing–Tianjin core region continue to expand, while the proportion of low vulnerability areas (EVI < 0.25) in the northern mountainous regions decreased by 4.2% in 2020 compared to 2005. This study provides scientific support for the sustainable development of the Beijing–Tianjin–Hebei urban agglomeration, suggesting location-specific and differentiated regulation of urbanization processes to reduce ecological risks. Full article
Show Figures

Figure 1

15 pages, 1835 KiB  
Article
Stress Development in Droplet Impact Analysis of Rain Erosion Damage on Wind Turbine Blades: A Review of Liquid-to-Solid Contact Conditions
by Quentin Laplace Oddo, Quaiyum M. Ansari, Fernando Sánchez, Leon Mishnaevsky and Trevor M. Young
Appl. Sci. 2025, 15(15), 8682; https://doi.org/10.3390/app15158682 (registering DOI) - 6 Aug 2025
Abstract
The wind energy sector is experiencing substantial growth, with global wind turbine capacity increasing and projected to expand further in the coming years. However, rain erosion on the leading edges of turbine blades remains a significant challenge, affecting both aerodynamic efficiency and structural [...] Read more.
The wind energy sector is experiencing substantial growth, with global wind turbine capacity increasing and projected to expand further in the coming years. However, rain erosion on the leading edges of turbine blades remains a significant challenge, affecting both aerodynamic efficiency and structural longevity. The associated degradation reduces annual energy production and leads to high maintenance costs due to frequent inspections and repairs. To address this issue, researchers have developed numerical models to predict blade erosion caused by water droplet impacts. This study presents a finite element analysis model in Abaqus to simulate the interaction between a single water droplet and wind turbine blade material. The novelty of this model lies in evaluating the influence of several parameters on von Mises and S33 peak stresses in the leading-edge protection, such as friction coefficient, type of contact, impact velocity, and droplet diameter. The findings provide insights into optimising LEP numerical models to simulate rain erosion as closely as possible to real-world scenarios. Full article
Show Figures

Figure 1

36 pages, 1832 KiB  
Review
Enabling Intelligent Industrial Automation: A Review of Machine Learning Applications with Digital Twin and Edge AI Integration
by Mohammad Abidur Rahman, Md Farhan Shahrior, Kamran Iqbal and Ali A. Abushaiba
Automation 2025, 6(3), 37; https://doi.org/10.3390/automation6030037 - 5 Aug 2025
Abstract
The integration of machine learning (ML) into industrial automation is fundamentally reshaping how manufacturing systems are monitored, inspected, and optimized. By applying machine learning to real-time sensor data and operational histories, advanced models enable proactive fault prediction, intelligent inspection, and dynamic process control—directly [...] Read more.
The integration of machine learning (ML) into industrial automation is fundamentally reshaping how manufacturing systems are monitored, inspected, and optimized. By applying machine learning to real-time sensor data and operational histories, advanced models enable proactive fault prediction, intelligent inspection, and dynamic process control—directly enhancing system reliability, product quality, and efficiency. This review explores the transformative role of ML across three key domains: Predictive Maintenance (PdM), Quality Control (QC), and Process Optimization (PO). It also analyzes how Digital Twin (DT) and Edge AI technologies are expanding the practical impact of ML in these areas. Our analysis reveals a marked rise in deep learning, especially convolutional and recurrent architectures, with a growing shift toward real-time, edge-based deployment. The paper also catalogs the datasets used, the tools and sensors employed for data collection, and the industrial software platforms supporting ML deployment in practice. This review not only maps the current research terrain but also highlights emerging opportunities in self-learning systems, federated architectures, explainable AI, and themes such as self-adaptive control, collaborative intelligence, and autonomous defect diagnosis—indicating that ML is poised to become deeply embedded across the full spectrum of industrial operations in the coming years. Full article
(This article belongs to the Section Industrial Automation and Process Control)
Show Figures

Figure 1

13 pages, 3292 KiB  
Article
Topological Large-Area Waveguide States Based on THz Photonic Crystals
by Yulin Zhao, Feng Liang, Jingsen Li, Jianfei Han, Jiangyu Chen, Haihua Hu, Ke Zhang and Yuanjie Yang
Photonics 2025, 12(8), 791; https://doi.org/10.3390/photonics12080791 - 5 Aug 2025
Abstract
Terahertz (THz) has attracted substantial attention owing to its unique advantages in high-speed communications. However, conventional THz waveguide systems are inherently constrained by high transmission losses, stringent fabrication precision requirements, and extreme sensitivity to structural defects. Topological edge states with topological protection have [...] Read more.
Terahertz (THz) has attracted substantial attention owing to its unique advantages in high-speed communications. However, conventional THz waveguide systems are inherently constrained by high transmission losses, stringent fabrication precision requirements, and extreme sensitivity to structural defects. Topological edge states with topological protection have driven significant advancements in THz wave manipulation. Nevertheless, the width of the topological waveguide based on edge states remains restricted. In this work, we put forward a type of spin photonic crystal with three-layer heterostructures, where large-area topological waveguide states are demonstrated. The results show that these topological waveguide states are localized within the region of Dirac photonic crystals. They also display spin-momentum-locking characteristics and maintain strong robustness against defects and sharp bends. Furthermore, a THz beam splitter and a topological beam modulator are implemented. The designed heterostructures expand the applications of multi-functional topological devices and provide a prospective pathway for overcoming the waveguide bottleneck in THz applications. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

22 pages, 3270 KiB  
Article
Deep Point Cloud Facet Segmentation and Applications in Downsampling and Crop Organ Extraction
by Yixuan Wang, Chuang Huang and Dawei Li
Appl. Sci. 2025, 15(15), 8638; https://doi.org/10.3390/app15158638 (registering DOI) - 4 Aug 2025
Abstract
To address the issues in existing 3D point cloud facet generation networks, specifically, the tendency to produce a large number of empty facets and the uncertainty in facet count, this paper proposes a novel deep learning framework for robust facet segmentation. Based on [...] Read more.
To address the issues in existing 3D point cloud facet generation networks, specifically, the tendency to produce a large number of empty facets and the uncertainty in facet count, this paper proposes a novel deep learning framework for robust facet segmentation. Based on the generated facet set, two exploratory applications are further developed. First, to overcome the bottleneck where inaccurate empty-facet detection impairs the downsampling performance, a facet-abstracted downsampling method is introduced. By using a learned facet classifier to filter out and discard empty facets, retaining only non-empty surface facets, and fusing point coordinates and local features within each facet, the method achieves significant compression of point cloud data while preserving essential geometric information. Second, to solve the insufficient precision in organ segmentation within crop point clouds, a facet growth-based segmentation algorithm is designed. The network first predicts the edge scores for the facets to determine the seed facets. The facets are then iteratively expanded according to adjacent-facet similarity until a complete organ region is enclosed, thereby enhancing the accuracy of segmentation across semantic boundaries. Finally, the proposed facet segmentation network is trained and validated using a synthetic dataset. Experiments show that, compared with traditional methods, the proposed approach significantly outperforms both downsampling accuracy and instance segmentation performance. In various crop scenarios, it demonstrates excellent geometric fidelity and semantic consistency, as well as strong generalization ability and practical application potential, providing new ideas for in-depth applications of facet-level features in 3D point cloud analysis. Full article
Show Figures

Figure 1

28 pages, 10224 KiB  
Article
A Vulnerability Identification Method for Distribution Networks Integrating Fuzzy Local Dimension and Topological Structure
by Kangzheng Huang, Weichuan Zhang, Yongsheng Xu, Chenkai Wu and Weibo Li
Processes 2025, 13(8), 2438; https://doi.org/10.3390/pr13082438 - 1 Aug 2025
Viewed by 216
Abstract
As the scale of shipboard power systems expands, their vulnerability becomes increasingly prominent. Identifying vulnerable points in ship power grids is essential for enhancing system stability, optimizing overall performance, and ensuring safe navigation. To address this issue, this paper proposes an algorithm based [...] Read more.
As the scale of shipboard power systems expands, their vulnerability becomes increasingly prominent. Identifying vulnerable points in ship power grids is essential for enhancing system stability, optimizing overall performance, and ensuring safe navigation. To address this issue, this paper proposes an algorithm based on fuzzy local dimension and topology (FLDT). The algorithm distinguishes contributions from nodes at different radii and within the same radius to a central node using fuzzy sets, and then derives the final importance value of each node by combining the local dimension and topology. Experimental results on nine datasets demonstrate that the FLDT algorithm outperforms degree centrality (DC), closeness centrality (CC), local dimension (LD), fuzzy local dimension (FLD), local link similarity (LLS), and mixed degree decomposition (MDD) algorithms in three metrics: network efficiency (NE), largest connected component (LCC), and monotonicity. Furthermore, in a ship power grid experiment, when 40% of the most important nodes were removed, FLDT caused a network efficiency drop of 99.78% and reduced the LCC to 2.17%, significantly outperforming traditional methods. Additional experiments under topological perturbations—including edge addition, removal, and rewiring—also show that FLDT maintains superior performance, highlighting its robustness to structural changes. This indicates that the FLDT algorithm is more effective in identifying and evaluating vulnerable points and distinguishing nodes with varying levels of importance. Full article
Show Figures

Figure 1

13 pages, 1879 KiB  
Article
Dynamic Graph Convolutional Network with Dilated Convolution for Epilepsy Seizure Detection
by Xiaoxiao Zhang, Chenyun Dai and Yao Guo
Bioengineering 2025, 12(8), 832; https://doi.org/10.3390/bioengineering12080832 (registering DOI) - 31 Jul 2025
Viewed by 202
Abstract
The electroencephalogram (EEG), widely used for measuring the brain’s electrophysiological activity, has been extensively applied in the automatic detection of epileptic seizures. However, several challenges remain unaddressed in prior studies on automated seizure detection: (1) Methods based on CNN and LSTM assume that [...] Read more.
The electroencephalogram (EEG), widely used for measuring the brain’s electrophysiological activity, has been extensively applied in the automatic detection of epileptic seizures. However, several challenges remain unaddressed in prior studies on automated seizure detection: (1) Methods based on CNN and LSTM assume that EEG signals follow a Euclidean structure; (2) Algorithms leveraging graph convolutional networks rely on adjacency matrices constructed with fixed edge weights or predefined connection rules. To address these limitations, we propose a novel algorithm: Dynamic Graph Convolutional Network with Dilated Convolution (DGDCN). By leveraging a spatiotemporal attention mechanism, the proposed model dynamically constructs a task-specific adjacency matrix, which guides the graph convolutional network (GCN) in capturing localized spatial and temporal dependencies among adjacent nodes. Furthermore, a dilated convolutional module is incorporated to expand the receptive field, thereby enabling the model to capture long-range temporal dependencies more effectively. The proposed seizure detection system is evaluated on the TUSZ dataset, achieving AUC values of 88.7% and 90.4% on 12-s and 60-s segments, respectively, demonstrating competitive performance compared to current state-of-the-art methods. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Figure 1

19 pages, 3130 KiB  
Article
Deep Learning-Based Instance Segmentation of Galloping High-Speed Railway Overhead Contact System Conductors in Video Images
by Xiaotong Yao, Huayu Yuan, Shanpeng Zhao, Wei Tian, Dongzhao Han, Xiaoping Li, Feng Wang and Sihua Wang
Sensors 2025, 25(15), 4714; https://doi.org/10.3390/s25154714 - 30 Jul 2025
Viewed by 224
Abstract
The conductors of high-speed railway OCSs (Overhead Contact Systems) are susceptible to conductor galloping due to the impact of natural elements such as strong winds, rain, and snow, resulting in conductor fatigue damage and significantly compromising train operational safety. Consequently, monitoring the galloping [...] Read more.
The conductors of high-speed railway OCSs (Overhead Contact Systems) are susceptible to conductor galloping due to the impact of natural elements such as strong winds, rain, and snow, resulting in conductor fatigue damage and significantly compromising train operational safety. Consequently, monitoring the galloping status of conductors is crucial, and instance segmentation techniques, by delineating the pixel-level contours of each conductor, can significantly aid in the identification and study of galloping phenomena. This work expands upon the YOLO11-seg model and introduces an instance segmentation approach for galloping video and image sensor data of OCS conductors. The algorithm, designed for the stripe-like distribution of OCS conductors in the data, employs four-direction Sobel filters to extract edge features in horizontal, vertical, and diagonal orientations. These features are subsequently integrated with the original convolutional branch to form the FDSE (Four Direction Sobel Enhancement) module. It integrates the ECA (Efficient Channel Attention) mechanism for the adaptive augmentation of conductor characteristics and utilizes the FL (Focal Loss) function to mitigate the class-imbalance issue between positive and negative samples, hence enhancing the model’s sensitivity to conductors. Consequently, segmentation outcomes from neighboring frames are utilized, and mask-difference analysis is performed to autonomously detect conductor galloping locations, emphasizing their contours for the clear depiction of galloping characteristics. Experimental results demonstrate that the enhanced YOLO11-seg model achieves 85.38% precision, 77.30% recall, 84.25% AP@0.5, 81.14% F1-score, and a real-time processing speed of 44.78 FPS. When combined with the galloping visualization module, it can issue real-time alerts of conductor galloping anomalies, providing robust technical support for railway OCS safety monitoring. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

26 pages, 5946 KiB  
Article
Flexural Strength of Cold-Formed Steel Unstiffened and Edge-Stiffened Hexagonal Perforated Channel Sections
by G. Beulah Gnana Ananthi, Dinesh Lakshmanan Chandramohan, Dhananjoy Mandal and Asraf Uzzaman
Buildings 2025, 15(15), 2679; https://doi.org/10.3390/buildings15152679 - 29 Jul 2025
Viewed by 196
Abstract
Cold-formed steel (CFS) channel beams are increasingly used as primary structural elements in modern construction due to their lightweight and high-strength characteristics. To accommodate building services, these members often feature perforations—typically circular and unstiffened—produced by punching. Recent studies indicate that adding edge stiffeners, [...] Read more.
Cold-formed steel (CFS) channel beams are increasingly used as primary structural elements in modern construction due to their lightweight and high-strength characteristics. To accommodate building services, these members often feature perforations—typically circular and unstiffened—produced by punching. Recent studies indicate that adding edge stiffeners, particularly around circular web openings, can improve flexural strength. Extending this idea, attention has shifted to hexagonal web perforations; however, limited research exists on the bending performance of hexagonal cold-formed steel channel beams (HCFSBs). This study presents a detailed nonlinear finite element (FE) analysis to evaluate and compare the flexural behaviour of HCFSBs with unstiffened (HUH) and edge-stiffened (HEH) hexagonal openings. The FE models were validated against experimental results and expanded to include a comprehensive parametric study with 810 simulations. Results show that HEH beams achieve, on average, a 10% increase in moment capacity compared to HUH beams. However, when evaluated using current Direct Strength Method (DSM) provisions, moment capacities were underestimated by up to 47%, particularly in cases governed by lateral–torsional or distortional buckling. A reliability analysis confirmed that the proposed design equations yield accurate and dependable strength predictions. Full article
(This article belongs to the Special Issue Cold-Formed Steel Structures)
Show Figures

Figure 1

24 pages, 10342 KiB  
Article
Land-Use Evolution and Driving Forces in Urban Fringe Archaeological Sites: A Case Study of the Western Han Imperial Mausoleums
by Huihui Liu, Boxiang Zhao, Junmin Liu and Yingning Shen
Land 2025, 14(8), 1554; https://doi.org/10.3390/land14081554 - 29 Jul 2025
Viewed by 337
Abstract
Archaeological sites located on the edge of growing cities often struggle to reconcile heritage protection with rapid development. To understand this tension, we examined a 50.83 km2 zone around the Western Han Imperial Mausoleums in the Qin-Han New District. Using Landsat images [...] Read more.
Archaeological sites located on the edge of growing cities often struggle to reconcile heritage protection with rapid development. To understand this tension, we examined a 50.83 km2 zone around the Western Han Imperial Mausoleums in the Qin-Han New District. Using Landsat images from 1992, 2002, 2012, and 2022, this study applied supervised classification, land-use transfer matrices, and dynamic-degree analysis to trace three decades of land-use change. From 1992 to 2022, built-up land expanded by 29.85 percentage points, largely replacing farmland, which shrank by 35.64 percentage points and became fragmented. Forest cover gained a modest 5.78 percentage points and migrated eastward toward the mausoleums. Overall, urban growth followed a “spread–integrate–connect” pattern along major roads. This study interprets these trends through five interrelated drivers, including policy, planning, economy, population, and heritage protection, and proposes an integrated management model. The model links archaeological pre-assessment with land-use compatibility zoning and active community participation. Together, these measures offer a practical roadmap for balancing conservation and sustainable land management at imperial burial complexes and similar urban fringe heritage sites. Full article
Show Figures

Figure 1

17 pages, 7301 KiB  
Article
Environmental Analysis for the Implementation of Underwater Paths on Sepultura Beach, Southern Brazil: The Case of Palythoa caribaeorum Bleaching Events at the Global Southern Limit of Species Distribution
by Rafael Schroeder, Lucas Gavazzoni, Carlos E. N. de Oliveira, Pedro H. M. L. Marques and Ewerton Wegner
Coasts 2025, 5(3), 26; https://doi.org/10.3390/coasts5030026 - 28 Jul 2025
Viewed by 205
Abstract
Recreational diving depends on healthy marine ecosystems, yet it can harm biodiversity through species displacement and habitat damage. Bombinhas, a biodiverse diving hotspot in southern Brazil, faces growing threats from human activity and climate change. This study assessed the ecological structure of Sepultura [...] Read more.
Recreational diving depends on healthy marine ecosystems, yet it can harm biodiversity through species displacement and habitat damage. Bombinhas, a biodiverse diving hotspot in southern Brazil, faces growing threats from human activity and climate change. This study assessed the ecological structure of Sepultura Beach (2018) for potential diving trails, comparing it with historical data from Porto Belo Island. Using visual censuses, transects, and photo-quadrats across six sampling campaigns, researchers documented 2419 organisms from five zoological groups, identifying 14 dominant species, including Haemulon aurolineatum and Diplodus argenteus. Cluster analysis revealed three ecological zones, with higher biodiversity at the site’s edges (Groups 1 and 3), but these areas also hosted endangered species like Epinephelus marginatus, complicating trail planning. A major concern was the widespread bleaching of the zoanthid Palythoa caribaeorum, a key ecosystem engineer, likely due to rising sea temperatures (+1.68 °C from 1961–2018) and declining chlorophyll-a levels post-2015. Comparisons with past data showed a 0.33 °C increase in species’ thermal preferences over 17 years, alongside lower trophic levels and greater ecological vulnerability, indicating tropicalization from the expanding Brazil Current. While Sepultura Beach’s biodiversity supports diving tourism, conservation efforts must address coral bleaching and endangered species protection. Long-term monitoring is crucial to track warming impacts, and adaptive management is needed for sustainable trail development. The study highlights the urgent need to balance ecotourism with climate resilience in subtropical marine ecosystems. Full article
Show Figures

Figure 1

17 pages, 3604 KiB  
Article
Binary-Weighted Neural Networks Using FeRAM Array for Low-Power AI Computing
by Seung-Myeong Cho, Jaesung Lee, Hyejin Jo, Dai Yun, Jihwan Moon and Kyeong-Sik Min
Nanomaterials 2025, 15(15), 1166; https://doi.org/10.3390/nano15151166 - 28 Jul 2025
Viewed by 185
Abstract
Artificial intelligence (AI) has become ubiquitous in modern computing systems, from high-performance data centers to resource-constrained edge devices. As AI applications continue to expand into mobile and IoT domains, the need for energy-efficient neural network implementations has become increasingly critical. To meet this [...] Read more.
Artificial intelligence (AI) has become ubiquitous in modern computing systems, from high-performance data centers to resource-constrained edge devices. As AI applications continue to expand into mobile and IoT domains, the need for energy-efficient neural network implementations has become increasingly critical. To meet this requirement of energy-efficient computing, this work presents a BWNN (binary-weighted neural network) architecture implemented using FeRAM (Ferroelectric RAM)-based synaptic arrays. By leveraging the non-volatile nature and low-power computing of FeRAM-based CIM (computing in memory), the proposed CIM architecture indicates significant reductions in both dynamic and standby power consumption. Simulation results in this paper demonstrate that scaling the ferroelectric capacitor size can reduce dynamic power by up to 6.5%, while eliminating DRAM-like refresh cycles allows standby power to drop by over 258× under typical conditions. Furthermore, the combination of binary weight quantization and in-memory computing enables energy-efficient inference without significant loss in recognition accuracy, as validated using MNIST datasets. Compared to prior CIM architectures of SRAM-CIM, DRAM-CIM, and STT-MRAM-CIM, the proposed FeRAM-CIM exhibits superior energy efficiency, achieving 230–580 TOPS/W in a 45 nm process. These results highlight the potential of FeRAM-based BWNNs as a compelling solution for edge-AI and IoT applications where energy constraints are critical. Full article
(This article belongs to the Special Issue Neuromorphic Devices: Materials, Structures and Bionic Applications)
Show Figures

Figure 1

16 pages, 3807 KiB  
Article
Optimization of Machining Efficiency of Aluminum Honeycomb Structures by Hybrid Milling Assisted by Longitudinal Ultrasonic Vibrations
by Oussama Beldi, Tarik Zarrouk, Ahmed Abbadi, Mohammed Nouari, Mohammed Abbadi, Jamal-Eddine Salhi and Mohammed Barboucha
Processes 2025, 13(8), 2348; https://doi.org/10.3390/pr13082348 - 23 Jul 2025
Viewed by 318
Abstract
The use of aluminum honeycomb structures is fast expanding in advanced sectors such as the aeronautics, aerospace, marine, and automotive industries. However, processing these structures represents a major challenge for producing parts that meet the strict standards. To address this issue, an innovative [...] Read more.
The use of aluminum honeycomb structures is fast expanding in advanced sectors such as the aeronautics, aerospace, marine, and automotive industries. However, processing these structures represents a major challenge for producing parts that meet the strict standards. To address this issue, an innovative manufacturing method using longitudinal ultrasonic vibration-assisted cutting, combined with a CDZ10 hybrid cutting tool, was developed to optimize the efficiency of traditional machining processes. To this end, a 3D numerical model was developed using the finite element method and Abaqus/Explicit 2017 software to simulate the complex interactions among the cutting tool and the thin walls of the structures. This model was validated by experimental tests, allowing the study of the influence of milling conditions such as feed rate, cutting angle, and vibration amplitude. The numerical results revealed that the hybrid technology significantly reduces the cutting force components, with a decrease ranging from 10% to 42%. In addition, it improves cutting quality by reducing plastic deformation and cell wall tearing, which prevents the formation of chips clumps on the tool edges, thus avoiding early wear of the tool. These outcomes offer new insights into optimizing industrial processes, particularly in fields with stringent precision and performance demands, like the aerospace sector. Full article
Show Figures

Figure 1

26 pages, 736 KiB  
Review
Review of Advances in Renewable Energy-Based Microgrid Systems: Control Strategies, Emerging Trends, and Future Possibilities
by Kayode Ebenezer Ojo, Akshay Kumar Saha and Viranjay Mohan Srivastava
Energies 2025, 18(14), 3704; https://doi.org/10.3390/en18143704 - 14 Jul 2025
Viewed by 457
Abstract
This paper gives a thorough overview of the technological advancements in microgrid systems, focusing on the Internet of Things (IoT), predictive analytics, real-time monitoring, architectures, control strategies, benefits, and drawbacks. It highlights their importance in boosting system security, guaranteeing real-time control, and increasing [...] Read more.
This paper gives a thorough overview of the technological advancements in microgrid systems, focusing on the Internet of Things (IoT), predictive analytics, real-time monitoring, architectures, control strategies, benefits, and drawbacks. It highlights their importance in boosting system security, guaranteeing real-time control, and increasing energy efficiency. Accordingly, researchers have embraced the involvement of many control capacities through voltage and frequency stability, optimal power sharing, and system optimization in response to the progressively complex and expanding power systems in recent years. Advanced control techniques have garnered significant interest among these management strategies because of their high accuracy and efficiency, flexibility and adaptability, scalability, and real-time predictive skills to manage non-linear systems. This study provides insight into various facets of microgrids (MGs), literature review, and research gaps, particularly concerning their control layers. Additionally, the study discusses new developments like Supervisory Control and Data Acquisition (SCADA), blockchain-based cybersecurity, smart monitoring systems, and AI-driven control for MGs optimization. The study concludes with recommendations for future research, emphasizing the necessity of stronger control systems, cutting-edge storage systems, and improved cybersecurity to guarantee that MGs continue to be essential to the shift to a decentralized, low-carbon energy future. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

Back to TopTop