Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = edaphic sustainability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 1770 KiB  
Article
Regional Patterns in Weed Composition of Maize Fields in Eastern Hungary: The Balance of Environmental and Agricultural Factors
by Mihály Zalai, Erzsébet Tóth, János György Nagy and Zita Dorner
Agronomy 2025, 15(8), 1814; https://doi.org/10.3390/agronomy15081814 - 26 Jul 2025
Viewed by 460
Abstract
The primary aim of this study was to explore the influence of abiotic factors on weed development in maize fields, with the goal of informing more effective weed management practices. We focused on identifying key environmental, edaphic, and agricultural variables that contribute to [...] Read more.
The primary aim of this study was to explore the influence of abiotic factors on weed development in maize fields, with the goal of informing more effective weed management practices. We focused on identifying key environmental, edaphic, and agricultural variables that contribute to weed infestations, particularly before the application of spring herbicide treatments. Field investigations were conducted from 2018 to 2021 across selected maize-growing regions in Hungary. Over the four-year period, a total of 51 weed species were recorded, with Echinochloa crus-galli, Chenopodium album, Portulaca oleracea, and Hibiscus trionum emerging as the most prevalent taxa. Collectively, these four species accounted for more than half (52%) of the total weed cover. Altogether, the 20 most dominant species contributed 95% of the overall weed coverage. The analysis revealed that weed cover, species richness, and weed diversity were significantly affected by soil properties, nutrient levels, geographic location, and tillage systems. The results confirm that the composition of weed species was influenced by several environmental and management-related factors, including soil parameters, geographical location, annual precipitation, tillage method, and fertilizer application. Environmental factors collectively explained a slightly higher proportion of the variance (13.37%) than farming factors (12.66%) at a 90% significance level. Seasonal dynamics and crop rotation history also played a notable role in species distribution. Nutrient inputs, particularly nitrogen, phosphorus, and potassium, influenced both species diversity and floristic composition. Deep tillage practices favored the proliferation of perennial species, whereas shallow cultivation tended to promote annual weeds. Overall, the composition of weed vegetation proved to be a valuable indicator of site-specific soil conditions and agricultural practices. These findings underscore the need to tailor weed management strategies to local environmental and soil contexts for sustainable crop production. Full article
(This article belongs to the Special Issue State-of-the-Art Research on Weed Populations and Community Dynamics)
Show Figures

Figure 1

30 pages, 2124 KiB  
Review
A Review of Supporting Evidence, Limitations and Challenges of Using Cover Crops in Agricultural Systems
by Paul Cottney, Lisa Black, Ethel White and Paul N. Williams
Agriculture 2025, 15(11), 1194; https://doi.org/10.3390/agriculture15111194 - 30 May 2025
Viewed by 963
Abstract
Cover crops are becoming widely integrated into many farms as tools for improving sustainability. However, the decisions by growers for planting follow several objectives/criteria, many of which overlap. This review orders these sowing rationales into a practical framework for land management guidance. Prioritised [...] Read more.
Cover crops are becoming widely integrated into many farms as tools for improving sustainability. However, the decisions by growers for planting follow several objectives/criteria, many of which overlap. This review orders these sowing rationales into a practical framework for land management guidance. Prioritised by cover crop performance objectives, the optimal species and their environmental requirements are discussed. A key consideration of this review is that cover crops are used as part of a rotation strategy. Here, farmers’ primary objectives are to maintain or enhance biomass not of the cover plants themselves but for the following commercial crop. For example, a large cover crop biomass may be beneficial for reducing field-nutrient losses but are counterproductive if nutrient immobilisation or offtake then results in subsequent nutrition stresses and yield declines. Furthermore, species selection and management practices must be integrated if these negative impacts are to be mitigated. This review has found a strong research focus on cover crop nitrogen dynamics but limited research on nutrient recycling more broadly. Moreover, there is growing evidence that regionality plays a critical role in cover crop and land management partnering due to variations in edaphic and climatic influences, but there is a shortfall in research to inform strategies for many important agricultural centres such as Northern Ireland. Full article
(This article belongs to the Special Issue Benefits and Challenges of Cover Crops in Agricultural Systems)
Show Figures

Figure 1

16 pages, 3190 KiB  
Article
Transcriptomic Analysis for Key Periods of Radicle Development in Contrasting Soybean Varieties HN75 and HN76
by Fengli Yu, Liang Mi and Dawei Xin
Agronomy 2025, 15(5), 1186; https://doi.org/10.3390/agronomy15051186 - 14 May 2025
Viewed by 440
Abstract
The root conformation of soybean is critical to achieve physiological activities such as nodulation and nitrogen fixation; however, the molecular determinants behind genotypic differences in its early development remain poorly described. In this study, we compared the characteristics of the soybean varieties HN75 [...] Read more.
The root conformation of soybean is critical to achieve physiological activities such as nodulation and nitrogen fixation; however, the molecular determinants behind genotypic differences in its early development remain poorly described. In this study, we compared the characteristics of the soybean varieties HN75 and HN76 and examined developmental disparities in their root architectural characteristics and the transcriptomic profiles of radicles between them. The plant height and 100-grain weight of HN75, which had a longer growth cycle of 170 days, were slightly higher than those of HN76, which had a shorter growth cycle of 120 days. However, the numbers of pods and grains per plant were slightly lower. In terms of quality traits, HN75 had a higher oil content (23.40% versus 21.50%), whereas HN76 had a higher protein content (41.39% versus 35.71%). HN75 exhibited markedly superior root elongation (13.27 cm versus 10.15 cm), enhanced lateral root proliferation, and significantly greater nodule formation (19.53 versus 8.60 nodules per plant) relative to HN76 at 30 days post-germination, notwithstanding comparable nodule biomass. Chronobiological analysis (0–96 h post-germination) identified a pivotal developmental window of 48–72 h post-germination. Transcriptomic profiling of radicle tissues revealed 4792 differentially expressed genes (DEGs) in HN75 compared to 896 in HN76 during this critical interval, indicating substantially heightened transcriptional activity in HN75. Functional annotation enrichment demonstrated that HN75 DEGs were significantly enriched in phytohormone signalling cascades and isoprenoid biosynthetic pathways, whereas HN76 DEGs were predominantly associated with protein processing within the endoplasmic reticulum. We screened for eight genes (Glyma 10G071400, Glyma 13G057500, Glyma 08G016900, Glyma 09G028000, Glyma 18G265800, Glyma 03G032800, Glyma 02G064100, and Glyma 01G238600) that may play a role in the critical period of radicle development by performing network analyses and verified their dramatic changes in expression during this period by qRT-PCR. These results elucidate varietal-specific physiological and molecular mechanisms governing early radicle development in soybeans. These findings unravel mechanisms governing leguminous radicle development while establishing molecular blueprints for engineering cultivation protocols that would enhance soybean sustainability in edaphically constrained environments. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

14 pages, 3761 KiB  
Article
Different Influences of Soil and Climatic Factors on Shrubs and Herbaceous Plants in the Shrub-Encroached Grasslands of the Mongolian Plateau
by Yue Liu, Lei Dong, Jinrong Li, Shuaizhi Lu, Liqing Yi, Huimin Li, Shaoqi Chai and Jian Wang
Forests 2025, 16(4), 696; https://doi.org/10.3390/f16040696 - 17 Apr 2025
Viewed by 453
Abstract
Factors such as climate change, fire, and overgrazing have been commonly considered the main causes of the global expansion of shrub invasion in grasslands over the past 160 years. Nevertheless, the influence of soil substrates on the progression of shrub encroachment has been [...] Read more.
Factors such as climate change, fire, and overgrazing have been commonly considered the main causes of the global expansion of shrub invasion in grasslands over the past 160 years. Nevertheless, the influence of soil substrates on the progression of shrub encroachment has been insufficiently examined. This study examines the fundamental characteristics of the shrub-encroached desert steppe communities of Caragana tibetica in the Mongolian Plateau. Combining field surveys (field surveys and drone aerial photography) and laboratory experiments, using Spearman’s rank correlation analysis and structural equation modeling (SEM), this research systematically explores the impact of varying degrees of soil sandification on the survival of shrubs and herbaceous plants within these grassland communities. The findings indicate the following: (1) In the eight shrub-encroached grassland plots, the soil exhibited a significantly higher sand content compared to silt and clay, with the sand content generally exceeding 64%. (2) The coverage of shrub species is predominantly influenced by soil factors, particularly the soil sand content. (The path coefficient is 0.56, with p < 0.01). In contrast, herbaceous plants are more strongly influenced by climatic factors. (The path coefficient is 0.83, with p < 0.001). This study examines the response patterns of Caragana tibetica communities to edaphic and climatic factors, highlighting the pivotal role of soil sandification in the initiation and succession of shrub encroachment. The findings furnish a theoretical framework for forecasting future trends in grassland shrub encroachment and provide empirical evidence for the conservation and sustainable management of shrub-encroached grasslands. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

21 pages, 2716 KiB  
Article
Comparative Analysis of Soil Biological Activity and Macroinvertebrate Diversity in Amazonian Chakra Agroforestry and Tropical Rainforests in Ecuador
by Thony Huera-Lucero, Bolier Torres, Carlos Bravo-Medina, Beatriz García-Nogales, Luis Vicente and Antonio López-Piñeiro
Agriculture 2025, 15(8), 830; https://doi.org/10.3390/agriculture15080830 - 11 Apr 2025
Cited by 1 | Viewed by 672
Abstract
Soil biological activity and macroinvertebrate diversity are key indicators of ecosystem function in tropical landscapes. This study evaluates the effects of different land-use systems—Amazonian Chakra agroforestry (timber-based and fruit-based), cocoa monoculture, and tropical rainforest—on soil microbial respiration, enzymatic activity, and macroinvertebrate diversity in [...] Read more.
Soil biological activity and macroinvertebrate diversity are key indicators of ecosystem function in tropical landscapes. This study evaluates the effects of different land-use systems—Amazonian Chakra agroforestry (timber-based and fruit-based), cocoa monoculture, and tropical rainforest—on soil microbial respiration, enzymatic activity, and macroinvertebrate diversity in the Ecuadorian Amazon. Forest soils exhibited the highest edaphic respiration (240 ± 64.3 mg CO2 m2 ha−1, p = 0.034), while agroforestry systems maintained intermediate biological activity, surpassing monocultures in microbial diversity and enzymatic function. The soil organic matter (SOM) content at a 10 cm depth was significantly higher in monocultures (19.8 ± 3.88%) than in agroforestry and forest soils (p = 0.006); however, the enzymatic activity showed greater functional responses in agroforestry and forest systems. The relationship between recorded CO2 respiration (REC_CO2) and basal respiration (RBC_CO2) exhibited a non-linear trend, as revealed by LOWESS smoothing, suggesting that microbial respiration dynamics are influenced by substrate availability and enzymatic thresholds beyond simple linear predictions. These findings underscore the potential of agroforestry as a sustainable land-use strategy that enhances soil biodiversity, carbon sequestration and nutrient cycling. Implementing optimized agroforestry practices can contribute to long-term soil conservation and ecosystem resilience in tropical agroecosystems. Full article
Show Figures

Figure 1

18 pages, 1229 KiB  
Article
Tillage System as a Practice Affecting the Quality of Soils and Its Sustainable Management
by Joanna Lemanowicz, Erika Balontayová, Bożena Dębska, Agata Bartkowiak and Piotr Wasilewski
Sustainability 2025, 17(7), 2867; https://doi.org/10.3390/su17072867 - 24 Mar 2025
Viewed by 607
Abstract
Sustainable soil management through the use of an appropriate tillage system can positively change the edaphic parameters. The aim of the present study was to compare the effects that reduced tillage (RT) and conventional tillage (CT) systems have on changes in selected physical [...] Read more.
Sustainable soil management through the use of an appropriate tillage system can positively change the edaphic parameters. The aim of the present study was to compare the effects that reduced tillage (RT) and conventional tillage (CT) systems have on changes in selected physical and chemical properties and enzymatic activity in various soil types. The study included the following soil types: Eutric Fluvisol, Mollic Fluvisol, Haplic Chernozem, Haplic Luvisol, Eutric Regosol, Eutric Gleysol, and Stagnic Planosol. Soil samples were collected in the Danubian Lowland and Eastern Slovak Lowland. The following parameters were determined in the soil samples: soil texture, pH, hydrolytic acidity and the sum of basic exchangeable cations, the contents of carbon (TOC), nitrogen (TN), and dissolved organic carbon (DOC), and the activities of dehydrogenases (DEH), catalase (CAT), peroxidases (PER), alkaline phosphatase (AlP), acid phosphatase (AcP), proteases, and β-glucosidase (BG). The reaction of the analysed soils, in the RT and CT cultivations alike, ranged from acidic to neutral, and the sorption properties differed between individual soil types. The TOC ranged from 16.53 to 42.07 g kg−1 for conventional cultivation and from 15.51 to 38.90 g kg−1 for reduced tillage. The values of enzymatic soil quality indices values correlated with TOC, DOC, and TN, as well as with pH, the sum of exchangeable base cations, cation exchange capacity, and degree of base saturation of the sorption complex. The tillage system determined changes in the activity of the studied enzymes, but the intensity and direction of these changes depended on the soil type. Based on the enzyme activity results, soil quality indices such as GMea and TEI were calculated. TEI proved to be a more sensitive indicator than GMea. It was shown that, of all studied soil types and regardless of the cultivation system, Eutric Gleyosols had the most variable properties. For conventional tillage, Haplic Luvisol and Eutric Regosol were characterised by the greatest uniformity. In general, the edaphic properties of soils under conventional tillage differed from those of soils under simplified tillage. Full article
Show Figures

Figure 1

19 pages, 5447 KiB  
Article
Habitat Suitability Distribution of Genus Gynoxys Cass. (Asteraceae): An Approach to Conservation and Ecological Restoration of the Andean Flora in Peru
by Elver Coronel-Castro, Gerson Meza-Mori, Elí Pariente-Mondragón, Nixon Haro, Manuel Oliva-Cruz, Elgar Barboza, Carlos A. Amasifuen Guerra, Italo Revilla Pantigoso, Aqil Tariq and Betty K. Guzman
Sustainability 2025, 17(6), 2406; https://doi.org/10.3390/su17062406 - 10 Mar 2025
Cited by 2 | Viewed by 1430
Abstract
In this research, species distribution prediction models (i.e., MaxEnt) were applied to analyze the suitability of the ecological environment among the clades of the genus Gynoxys in Peru. Bioclimatic, edaphic, and topographic variables were integrated to predict the areas with the most significant [...] Read more.
In this research, species distribution prediction models (i.e., MaxEnt) were applied to analyze the suitability of the ecological environment among the clades of the genus Gynoxys in Peru. Bioclimatic, edaphic, and topographic variables were integrated to predict the areas with the most significant potential for optimal development of this genus. These data were combined to generate potential distribution maps, taking into account the most relevant variables for each clade. The validation of the MaxEnt model showed an outstanding performance, reaching AUC indices above 0.9, reflecting the high accuracy of the predictions. The results reveal that the key variables influencing the selection of the clade occurrence areas are: mintempwarmest (47.70% contribution) in the Discoide clade, topowet (33.20%) in the Gynoxys clade, and monthcountbytemp10 (33.30%) in the Praegynoxys clade. The potential distribution areas of these clades were 132,594 km2 for Discoide, 168,574 km2 for Gynoxys, and 37,392 km2 for Praegynoxys. The areas with the highest probability of presence of the genus were found in the Andean regions of northern and central Peru. However, a significant proportion of these areas were threatened by habitat fragmentation and land degradation. In terms of conservation, it was found that 32.05, 35.46, and 61.02% of the potential distribution areas of the discoid, Gynoxys, and Praegynoxys clades, respectively, are conserved, which could be a relevant factor for the preservation of this genus. These findings underscore the relevance of safeguarding key areas for conserving Gynoxys and montane ecosystems in Peru, emphasizing the need for protection strategies that guarantee the long-term sustainability of these species and their associated habitats. Full article
Show Figures

Figure 1

15 pages, 294 KiB  
Review
Biochar-Induced Microbial Shifts: Advancing Soil Sustainability
by Meesha Sharma, Rishabh Kaushik, Maharaj K. Pandit and Yi-Hsuan Lee
Sustainability 2025, 17(4), 1748; https://doi.org/10.3390/su17041748 - 19 Feb 2025
Cited by 5 | Viewed by 2117
Abstract
Biochar utilisation as a soil enhancer has gathered considerable interest owing to its notable capacity to boost soil productivity, enhance carbon sequestration, and improve agricultural sustainability. Nonetheless, how biochar affects the soil microbiome, a key to soil health and ecological functioning, remains a [...] Read more.
Biochar utilisation as a soil enhancer has gathered considerable interest owing to its notable capacity to boost soil productivity, enhance carbon sequestration, and improve agricultural sustainability. Nonetheless, how biochar affects the soil microbiome, a key to soil health and ecological functioning, remains a contested subject. Given the critical role microbial communities play in maintaining soil health and functioning, variations in soil microbiota may have a substantial impact on soil fertility and stability. Despite a wealth of studies on the effects of biochar on soil microbial communities, the results demonstrate that the reaction of the microbiome to biochar varies greatly depending on the edaphic and biochar properties and other factors such as the experimental conditions and agricultural practices. Notably, different components of the soil microbiome may respond to soil/biochar properties in a unique way, which makes generalising the impacts of biochar on the soil microbiome a difficult task. In this review, we comprehensively examine the factors governing the impacts of biochar on the soil microbiome, especially in terms of its repercussions on microbial diversity, community structure, and functional dynamics, and the potential ramifications for agricultural productivity and environmental sustainability. Full article
23 pages, 5026 KiB  
Article
The Influence of Edaphic and Climatic Factors on the Morphophysiological Behavior of Young Argan Plants Cultivated in Orchards: A Comparative Analysis of Three Regions in Southwest Morocco
by Fatima Ezzahra Tiouidji, Assma Oumasst, Salma Tabi, Naima Chabbi, Abdelaziz Mimouni, Meriyem Koufan, Naima Ait Aabd, Abdelghani Tahiri, Youssef Karra, Jamal Hallam, Redouan Qessaoui, Rachid Bouharroud, Fouad Elame, Nadya Wahid and Ahmed Wifaya
Plants 2025, 14(1), 126; https://doi.org/10.3390/plants14010126 - 4 Jan 2025
Viewed by 1482
Abstract
Argania spinosa (L.) Skeels is a unique endemic species in Morocco, renowned for its ecological characteristics and socio-economic importance. In Morocco, recent years have seen an exacerbation of the harmful effects of climate change, leading to an alarming decline in the natural regeneration [...] Read more.
Argania spinosa (L.) Skeels is a unique endemic species in Morocco, renowned for its ecological characteristics and socio-economic importance. In Morocco, recent years have seen an exacerbation of the harmful effects of climate change, leading to an alarming decline in the natural regeneration of this species in its original habitats. It seems that the only viable solution lies in the domestication of this genetic heritage. This study marks the first in-depth investigation of the impact of various climatic and edaphic factors on the morphological and physiological traits of Argania spinosa young plants, assessed in six separate orchards and observed over four seasons (March 2022 (Winter), June 2022 (Summer), November 2022 (Autumn), and March 2023 (Winter)). A climatic assessment was carried out at each site, including measurements of rainfall, maximum and minimum temperatures, mean temperature, air temperature, and wind speed. The soil was analyzed for the pH, electrical conductivity (EC), water content, limestone (CaCO3), Kjeldahl nitrogen (N), available phosphorus (P2O5), organic matter (OM), and carbon/nitrogen ratio (C/N). To gain a better understanding of the morphophysiological characteristics of young argan seedlings, we carried out various observations, such as measuring the height and diameter of aerial parts, and the water content of leaves (WCL) and branches (WCB), quantifying chlorophyll (mg/m2) and leaf area. The results revealed a significant impact of edaphic and climatic factors on the morphophysiological parameters of young argan trees. Results revealed significant correlations of young argan plants between edaphic and climatic factors and morphophysiological parameters. The Tamjloujt site, characterized by protective vegetation cover, showed optimal growth conditions with the highest leaf and branch water content (46.89 ± 4.06% and 37.76 ± 3.51%, respectively), maximum height growth (91.33 ± 28.68 mm), trunk diameter (24.85 ± 3.78 mm), and leaf surface area (69.33 ± 19.28 mm2) during Summer 2022. The Saharan zone of Laqsabi exhibited peak chlorophyll concentrations (506.9 ± 92.25 mg/m2) during Autumn 2022, due to high temperatures. The mountainous environment of Imoulass negatively impacted plant growth (mean height: 52.61 ± 12.37 mm; diameter: 6.46 ± 1.57 mm) due to harsh climatic and edaphic conditions. This research provides vital knowledge regarding the environmental factors influencing the establishment of young argan plants within the Argan Biosphere Reserve. This contributes to the development of more effective domestication strategies and the restoration of agroecosystems. The aim is to use this knowledge to promote the rehabilitation and sustainability of argan agroecosystems. Full article
(This article belongs to the Collection Forest Environment and Ecology)
Show Figures

Figure 1

21 pages, 3045 KiB  
Article
Natural and Organic Input-Based Integrated Nutrient-Management Practices Enhance the Productivity and Soil Quality Index of Rice–Mustard–Green Gram Cropping System
by Sukamal Sarkar, Anannya Dhar, Saikat Dey, Sujan Kr. Chatterjee, Shibasis Mukherjee, Argha Chakraborty, Gautam Chatterjee, Natesan Ravisankar and Mohammed Mainuddin
Land 2024, 13(11), 1933; https://doi.org/10.3390/land13111933 - 17 Nov 2024
Cited by 3 | Viewed by 1865
Abstract
The effects of integrated nutrient-management (INM) practices on soil quality are essential for sustaining agro-ecosystem productivity. The soil quality index (SQI) serves as a tool to assess the physical, chemical, and biological potential of soils as influenced by various edaphic and agronomic practices. [...] Read more.
The effects of integrated nutrient-management (INM) practices on soil quality are essential for sustaining agro-ecosystem productivity. The soil quality index (SQI) serves as a tool to assess the physical, chemical, and biological potential of soils as influenced by various edaphic and agronomic practices. A multiyear (2018–2021) field experiment was performed at the University Organic Research Farm, Narendrapur, West Bengal, India, to investigate the influence of integrated and sole applications of different conventional fertilizers, organic (e.g., vermicompost), and natural farming inputs (e.g., Dhrava Jeevamrit and Ghana Jeevamrit) on SQIs and crop productivity of rice–mustard–green gram-based cropping systems. A total of 12 parameters were selected for the assessment of SQI, amongst which only four, namely pH, organic carbon %, total actinomycetes, and bulk density, were retained for the minimum data set based on principal component analysis (PCA). In this study, the maximum SQI value (0.901) of the experimental soil was recorded in the INM practice of 25% organic and 25% inorganic nutrient inputs, and the rest with natural farming inputs, which augments the SQI by 24% compared to the 100% inorganic nutrient treatment. Amongst the different soil parameters, the highest contribution was from the pH (35.18%), followed by organic carbon % (26.77%), total actinomycetes (10.95%), and bulk density (6.98%). The yields in different cropping systems varied year-wise across treatments. Notably, the highest yield in rainy rice was estimated in the 100% organic treatment, followed by INM practices in the subsequent years, and finally, the combination of organic and natural inputs in the final year. In the case of mustard, the combination of organic and natural inputs resulted in the highest productivity in the initial and last years of study, while the 100% organic treatment resulted in higher productivity in subsequent years. Green gram showed a dynamic shift in yield between the 100% organic and integrated treatments over the years. Further, a strong correlation was also established between the soil physico-chemical parameters and the SQI. Overall, this study concludes that the natural and organic input-based INM practice enhances the soil quality and crop productivity of the rice–mustard–green gram cropping system under the coastal saline zone. Full article
(This article belongs to the Special Issue Ecosystem Disturbances and Soil Properties)
Show Figures

Figure 1

15 pages, 1959 KiB  
Article
Sarcocornia fruticosa, a Potential Candidate for Saline Agriculture: Antioxidant Levels in Relation to Environmental Conditions in the Eastern Iberian Peninsula
by Neus Ortega Albero, Sara Vallejo Sardon, Ioan Lupuţ, Monica Boscaiu, Maria P. Donat-Torres, Ana Fita and Sara González-Orenga
Agriculture 2024, 14(9), 1657; https://doi.org/10.3390/agriculture14091657 - 22 Sep 2024
Cited by 1 | Viewed by 1614
Abstract
Sustainable crop production requires an innovative approach due to increasing soil salinisation and decreasing freshwater availability. One promising strategy is the domestication of naturally salt-tolerant plant species with commercial potential. Sarcocornia fruticosa is a highly salt-tolerant halophyte, common in Mediterranean marshes, which may [...] Read more.
Sustainable crop production requires an innovative approach due to increasing soil salinisation and decreasing freshwater availability. One promising strategy is the domestication of naturally salt-tolerant plant species with commercial potential. Sarcocornia fruticosa is a highly salt-tolerant halophyte, common in Mediterranean marshes, which may hold promise for biosaline agriculture. This study included 11 populations of this species spread over the territory of the Valencian Community in eastern Spain. Climatic data for each locality were obtained from the nearest meteorological stations. Soil analyses included texture, pH, electroconductivity, organic carbon and organic matter. Biochemical analyses on wild-sampled plant material focused on antioxidant compounds, such as carotenoids, phenolics, flavonoids and proline with malondialdehyde (MDA) used as a marker of oxidative stress. All variables (climatic, edaphic and biochemical) were evaluated together using Principal Component Analysis and Spearman correlation. The results obtained indicated some climatic differences in terms of mean annual precipitation, with a clear N-S gradient and considerable edaphic variability. However, none of the environmental conditions showed a clear correlation with plant biochemical characteristics. Significant differences in the levels of phenolic compounds, flavonoids and MDA between populations were probably due to genetic factors and cannot be explained as a response to environmental conditions. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

17 pages, 2070 KiB  
Article
Combined Effect of Subsurface Water Retention Technology and Arbuscular Mycorrhizal Fungi on Growth, Physiology and Biochemistry of Argan Seedlings under Field Conditions
by Boujemaa Fassih, Mohamed Ait-El-Mokhtar, Aicha Nait Douch, Abderrahim Boutasknit, Raja Ben-Laouane, Badia Aganchich and Said Wahbi
Plants 2024, 13(15), 2098; https://doi.org/10.3390/plants13152098 - 29 Jul 2024
Cited by 3 | Viewed by 2467
Abstract
The argan (Argania spinosa L. Skeels) ecosystem is severely degrading in arid and semi-arid lands due to climate change, particularly in terms of density loss and reforestation failure. Thus, it is important to adopt innovative effective sustainable practices to optimize the densification [...] Read more.
The argan (Argania spinosa L. Skeels) ecosystem is severely degrading in arid and semi-arid lands due to climate change, particularly in terms of density loss and reforestation failure. Thus, it is important to adopt innovative effective sustainable practices to optimize the densification and reforestation success of the argan tree. The purpose of the present research was to investigate the combined effect of subsurface water retention technology (SWRT) and the use of native arbuscular mycorrhizal fungi (AMF) on edaphic, growth, physiological and biochemical parameters of field-grown argan seedlings in the Essaouira region, Morocco. In this experiment, one-year-old argan seedlings were transplanted in the absence and presence of biodegradable plastic and AMF. Our findings revealed that the application of SWRT enhanced soil profile moisture up to 640% at 40 cm depth compared to the control. The combination of this technology with AMF also improved soil fertility. Furthermore, the application of SWRT, with or without AMF, significantly enhanced argan seedling height (208 and 168%, respectively), stomatal conductance (54 and 33%, respectively), and chlorophyll fluorescence (21 and 20%, respectively). Similarly, the combined application of SWRT and AMF significantly improved protein and sugar content (36 and 57%, respectively), as well as antioxidant enzyme activities (peroxidase and polyphenol oxidase) and chlorophyll pigments content compared to the control. However, this treatment reduced malondialdehyde and H2O2 content in the argan leaves. As a summary, SWRT technology combined with AMF may be used as a valuable strategy to promote the success of argan reforestation and to limit soil erosion and desertification in arid and semi-arid climates. Full article
(This article belongs to the Special Issue Soil-Beneficial Microorganisms and Plant Growth)
Show Figures

Figure 1

21 pages, 7566 KiB  
Article
Irrigation and Agricultural Opportunities: Evaluating Hemp (Cannabis sativa L.) Suitability and Productivity in Lebanon
by Rhend Sleiman, Jocelyne Adjizian Gerard, Salim Fahed, Mladen Todorovic, Mohamed Houssemeddine Sellami, Rossella Albrizio and Marie Therese Abi Saab
Water 2024, 16(13), 1865; https://doi.org/10.3390/w16131865 - 28 Jun 2024
Cited by 1 | Viewed by 1915
Abstract
Within the prevalent challenges posed by climate change and decreasing resources, this research underscores the importance of adopting sustainable agricultural practices combined with efficient water resource management. Employing comprehensive climate and soil suitability analyses, this research analyzed the capacity of hemp (Cannabis [...] Read more.
Within the prevalent challenges posed by climate change and decreasing resources, this research underscores the importance of adopting sustainable agricultural practices combined with efficient water resource management. Employing comprehensive climate and soil suitability analyses, this research analyzed the capacity of hemp (Cannabis sativa L.) to adapt to Lebanon’s heterogeneous environmental landscapes across two distinct growing seasons (autumn and spring). Both climate and edaphic suitability mapping were conducted to study hemp’s suitability. AquaCrop v.7.1 was used to simulate seed yield, biomass production, irrigation needs and yield water productivity in the different agro-homogeneous zones of Lebanon for the two considered seasons. The findings revealed that approximately 30% and 19% of Lebanon’s land exhibit suitability for hemp cultivation during the spring and autumn seasons, respectively. According to AquaCrop model simulations, under the prevailing climatic conditions, the predicted seed yield will range from 3.7 to 5.6 t ha−1 under rainfed conditions and will reach 11.1 t ha−1 for irrigated cultivation. Moreover, employing efficient irrigation techniques during the spring season showed a significant improvement in both yield and biomass of hemp. The enhancement was evident, with notable increases of 112.22% in yield and 96.43% in biomass compared to rainfed conditions. This research highlights the importance of identifying suitable regions within Lebanon capable of supporting hemp cultivation in a sustainable manner. Such research not only promises economic development but also aligns with broader global sustainability objectives. Full article
(This article belongs to the Special Issue Improved Irrigation Management Practices in Crop Production)
Show Figures

Figure 1

21 pages, 5907 KiB  
Article
A Comparative Analysis of Bacterial and Fungal Communities in Coastal and Inland Pecan Plantations
by Shijie Zhang, Ting Chen, Yu Chen, Shucheng Li, Wu Wang, Yuqiang Zhao and Cancan Zhu
Microorganisms 2024, 12(7), 1313; https://doi.org/10.3390/microorganisms12071313 - 27 Jun 2024
Cited by 1 | Viewed by 1329
Abstract
Pecan forests (Carya illinoinensis) are significant contributors to both food and oil production, and thrive in diverse soil environments, including coastal regions. However, the interplay between soil microbes and pecan forest health in coastal environments remains understudied. Therefore, we investigated soil [...] Read more.
Pecan forests (Carya illinoinensis) are significant contributors to both food and oil production, and thrive in diverse soil environments, including coastal regions. However, the interplay between soil microbes and pecan forest health in coastal environments remains understudied. Therefore, we investigated soil bacterial and fungal diversity in coastal (Dafeng, DF) and inland (Guomei, GM) pecan plantations using high-throughput sequencing. The results revealed a higher microbial diversity in the DF plantation than in the GM plantation, significantly influenced by pH and edaphic factors. The dominant bacterial phyla were Proteobacteria, Acidobacteriota and Bacteroidota in the DF plantation, and Acidobacteriota, Proteobacteria, and Verrucomicrobiota in the GM plantation. Bacillus, Nitrospira and UTCFX1 were significantly more abundant bacterial genera in DF soil, whereas Candidatus Udaeobacter, HSB_OF53-F07 and ADurbBin063-1 were more prevalent in GM soil. Basidiomycota dominated fungal sequences in the GM plantation, with a higher relative abundance of Ascomycota in the DF plantation. Significant differences in fungal genus composition were observed between plantations, with Scleroderma, Hebeloma, and Naucoria being more abundant in DF soil, and Clavulina, Russula, and Inocybe in GM soil. A functional analysis revealed greater carbohydrate metabolism potential in GM plantation bacteria and a higher ectomycorrhizal fungi abundance in DF soil. Significantly positive correlations were detected between certain bacterial and fungal genera and pH and total soluble salt content, suggesting their role in pecan adaptation to coastal environments and saline–alkali stress mitigation. These findings enhance our understanding of soil microbiomes in coastal pecan plantations, and are anticipated to foster ecologically sustainable agroforestry practices and contribute to coastal marshland ecosystem management. Full article
Show Figures

Figure 1

20 pages, 4205 KiB  
Article
Impacts of Soil Management and Sustainable Plant Protection Strategies on Soil Biodiversity in a Sangiovese Vineyard
by Sara Del Duca, Stefano Mocali, Francesco Vitali, Arturo Fabiani, Maria Alexandra Cucu, Giuseppe Valboa, Giada d’Errico, Francesco Binazzi, Paolo Storchi, Rita Perria and Silvia Landi
Land 2024, 13(5), 599; https://doi.org/10.3390/land13050599 - 30 Apr 2024
Cited by 6 | Viewed by 2346
Abstract
Vine growing is one of the most economically important sectors of Mediterranean agriculture, but its cultivation practices are highly detrimental to the environment and the associated biota. The application of both natural products inducing endogenous plant defense mechanisms and natural soil management systems [...] Read more.
Vine growing is one of the most economically important sectors of Mediterranean agriculture, but its cultivation practices are highly detrimental to the environment and the associated biota. The application of both natural products inducing endogenous plant defense mechanisms and natural soil management systems represents a potential solution for the preservation and improvement of soil health and biodiversity. The Life Green Grapes project aimed at evaluating the effects of different natural and sustainable vine protection strategies and soil management on vineyard edaphic communities. Soil TOC, TN, C:N ratio, CaCO3 content and pH were measured. Microbial communities (bacteria and fungi) were characterized through NGS, while nematodes and microarthropods were isolated and identified. Obtained data highlighted a relationshipbetween bacteria, fungi and nematodes with soil chemistry, and an effect of the different soil management on the single and total edaphic communities. Network analysis evidenced a positive effect of the application of sustainable soil managements on the relationships among the different investigated soil trophic levels, suggesting that more natural soil managements allow a better interaction between soil organisms. In conclusion, this work confirms the importance of the application of sustainable and natural soil management practices in agricultural ecosystems, with the aim of conserving and improving soil biodiversity. Full article
(This article belongs to the Special Issue Soil Biodiversity in Agricultural Ecosystems)
Show Figures

Figure 1

Back to TopTop