Habitat Suitability Distribution of Genus Gynoxys Cass. (Asteraceae): An Approach to Conservation and Ecological Restoration of the Andean Flora in Peru
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Records of Presence
2.3. Bioclimatic, Topographic, and Soil Factors
2.4. Selecting Variables
2.5. Potential Distribution Modeling
2.6. Associating Potential Distribution with Elevation and Ecoregions
2.7. Determination of Key Areas for Research, Protection, and Restoration
3. Results
3.1. Contribution of Variables
3.2. Distribution Model Performance
3.3. Current Potential Distribution
3.4. Relationship with Elevation and Ecoregions
3.5. Protected and Degraded Areas
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nordenstam, B., XII. Tribe Senecioneae. In The Families and Genera of Vascular Plants; Kadereit, J.W., Jeffrey, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 208–241. [Google Scholar] [CrossRef]
- Escobari, B.; Borsch, T.; Kilian, N. Generic concepts and species diversity within the Gynoxyoid clade (Senecioneae, Compositae). PhytoKeys 2023, 234, 61. [Google Scholar] [CrossRef] [PubMed]
- Coronel-Castro, E.; Revilla Pantigoso, I.; Pariente-Mondragón, E.; Torres-Guzmán, C.; Meza-Mori, G.; Oliva-Cruz, S.M. Género Gynoxys Cass. (Asteraceae) en el Departamento de Amazonas, Perú: Distribución y Nuevos Registros. Folia Amaz. 2023, 32, 1–10. [Google Scholar] [CrossRef]
- Arias, R.; Espinosa-Ortega, N.; Revilla, I.; Ansaloni, R.; Tomasello, S. Gynoxys revolutifolia (Senecioneae, Asteraceae): Una nueva especie del sur de Ecuador. Fitotaxa 2024, 644, 211–219. [Google Scholar] [CrossRef]
- Cabrera, A.L. Especies nuevas o críticas de la Flora Jujeña. VI. Boletín Soc. Argent. Botánica 1974, 15, 319–339. [Google Scholar]
- Myers, N.; Mittermeier, R.; Mittermeier, C.; da Fonseca, G.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Padilla-González, G.F.; Diazgranados, M.; Da Costa, F.B. Effect of the Andean Geography and Climate on the Specialized Metabolism of Its Vegetation: The Subtribe Espeletiinae (Asteraceae) as a Case Example. Metabolites 2021, 11, 220. [Google Scholar] [CrossRef]
- Herrera, B. Revision de las especies peruanas del género Gynoxys (Compositae). Bol. Soc. Peru. Bot. 1980, 8, 3–74. [Google Scholar]
- Beltrán, H.; Granda, A.; León, B.; Sagástegui, A.; Sánchez, I.; Zapata, M. Asteraceae endémicas del Perú. Rev. Peru. Biol. 2006, 13, 64–164. [Google Scholar] [CrossRef]
- Beltrán, H. Las Asteráceas (Compositae) del distrito de Laraos (Yauyos, Lima, Perú). Rev. Peru. Biol. 2016, 23, 195–220. [Google Scholar] [CrossRef]
- Ramirez-Villegas, J.; Cuesta, F.; Devenish, C.; Peralvo, M.; Jarvis, A.; Arnillas, C.A. Using species distributions models for designing conservation strategies of Tropical Andean biodiversity under climate change. J. Nat. Conserv. 2014, 22, 391–404. [Google Scholar] [CrossRef]
- Servat-Valenzuela, G.P. The Role of Local and Regional Factors in the Foraging Ecology of Birds Associated with Polylepis Woodlands. Ph.D. Thesis, University of Missouri-St. Louis, Saint Louis, France, 2007. [Google Scholar]
- Iñiguez, X.; Aguilar, J.M. Ciencia ciudadana e interacciones entre aves nectarívoras y plantas de páramo en el Parque Nacional Cajas. Av. Cienc. Ing. 2022, 14, 1–9. [Google Scholar] [CrossRef]
- Jadán, O.; Donoso, D.A.; Cedillo, H.; Bermúdez, F.; Cabrera, O. Floristic groups, and changes in diversity and structure of trees, in tropical montane forests in the Southern Andes of Ecuador. Diversity 2021, 13, 400. [Google Scholar] [CrossRef]
- Alvarez-Montalván, C.; Parra, C.; Alvarez, J.; Córdova-Mendoza, P.; Julian-Laime, E.; Laredo, I. High Andean Woody Plants, between Nursing and Competition Effects in a High Andean Polylepis Forests. IOP Conf. Ser. Earth Environ. Sci. 2022, 1009, 012010. [Google Scholar] [CrossRef]
- Hind, N. An Annotated Preliminary Checklist of the Compositae of Bolivia, Versión 2. 2007. Available online: https://www.kew.org/sites/default/files/2019-01/Bolivian%20compositae%20checklist.pdf (accessed on 28 January 2025).
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Coronel-Castro, E.; Meza-Mori, G.; Torres, J.M.C.; Mondragón, E.P.; Cotrina-Sanchez, A.; Oliva Cruz, M.; Salas López, R.; Campo Ramos, R.E. Potential Distribution and Identification of Critical Areas for the Preservation and Recovery of Three Species of Cinchona L. (Rubiaceae) in Northeastern Peru. Forests 2024, 15, 321. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Egan, K.E.; Viehman, T.S.; Holstein, D.M.; Poti, M.; Groves, S.H.; Smith, T.B. Predicting the distribution of threatened orbicellid corals in shallow and mesophotic reef ecosystems. Mar. Ecol. Prog. Ser. 2021, 667, 61–81. [Google Scholar] [CrossRef]
- Cotrina Sanchez, A.; Rojas Briceno, N.B.; Bandopadhyay, S.; Ghosh, S.; Torres Guzmán, C.; Oliva, M.; Guzman, B.K.; Salas Lopez, R. Biogeographic distribution of Cedrela spp. genus in Peru using MaxEnt modeling: A conservation and restoration approach. Diversity 2021, 13, 261. [Google Scholar] [CrossRef]
- Rojas-Briceño, N.B.; García, L.; Cotrina-Sánchez, A.; Goñas, M.; Salas López, R.; Silva López, J.O.; Oliva-Cruz, M. Land suitability for cocoa cultivation in Peru: AHP and MaxEnt modeling in a GIS environment. Agronomy 2022, 12, 2930. [Google Scholar] [CrossRef]
- Pariente Mondragón, E.; García Naranjo, L.; Moreano Rodríguez, V.; Ríos Arévalo, L. Refugios de flora y su situación actual en los Andes del Perú. Arnaldoa 2016, 23, 547–568. [Google Scholar] [CrossRef]
- MINAN. Sexto Informe Nacional Sobre Diversidad Biológica: La Biodiversidad en Cifras; MINAM: Lima, Perú, 2019; Available online: https://www.gob.pe/institucion/minam/informes-publicaciones/281709-sexto-informe-nacional-sobre-diversidad-biologica (accessed on 20 September 2024).
- León, B.; Roque, J.; Ulloa, C.; Pitman, N.; Jørgensen, P.M.; Cano, A. (Eds.) El libro Rojo de las Plantas Endémicas del Perú; Revista Peruana de Biología 2006, Número especial; Universidad Nacional Mayor De San Marcos: Lima, Peru, 2006; Volume 13, pp. 1–967. [Google Scholar]
- SERNANP. Áreas Naturales Protegidas de Administración Nacional con Categoría Definitiva; SERNANP: Lima, Perú, 2024; Available online: https://www.geogpsperu.com/2014/10/areas-naturales-protegidas-descargar.html (accessed on 30 August 2024).
- Alvitres, G. Perú ha Perdido más de 3 Millones de Hectáreas de Bosques y la Mitad de sus Glaciares en 37 Años|Nuevo Estudio. MONGABAY. 2023. Available online: https://es.mongabay.com/2023/03/perdida-de-bosques-y-glaciares-en-peru/ (accessed on 13 January 2025).
- Thiers, B. Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff. New York Botanical Garden’s Virtual Herbarium. 2020. Available online: http://sweetgum.nybg.org/science/ih/ (accessed on 20 December 2024).
- GBIF. Gynoxys Cass. In GBIF Secretariat. GBIF Backbone Taxonomy. Checklist Dataset. 2023. Available online: https://www.gbif.org/dataset/d7dddbf4-2cf0-4f39-9b2a-bb099caae36c (accessed on 3 August 2024).
- Wang, Y.; Zhao, R.; Zhou, X.; Zhang, X.; Zhao, G.; Zhang, F. Prediction of potential distribution areas and priority protected areas of Agastache rugosa based on Maxent model and Marxan model. Front. Plant Sci. 2023, 14, 1200796. [Google Scholar] [CrossRef]
- Canelles, Q.; Bassols, E.; Vayreda, J.; Brotons, L. Predicting the potential distribution and forest impact of the invasive species Cydalima perspectalis in Europe. Ecol. Evol. 2021, 11, 5713–5727. [Google Scholar] [CrossRef] [PubMed]
- Cotrina Sánchez, D.A.; Barboza Castillo, E.; Rojas Briceño, N.B.; Oliva, M.; Torres Guzman, C.; Amasifuen Guerra, C.A.; Bandopadhyay, S. Distribution models of timber species for forest conservation and restoration in the Andean-Amazonian landscape, North of Peru. Sustainability 2020, 12, 7945. [Google Scholar] [CrossRef]
- Rojas-Briceño, N.B.; Cotrina-Sánchez, D.A.; Barboza-Castillo, E.; Barrena-Gurbillón, M.Á.; Sarmiento, F.O.; Sotomayor, D.A.; Oliva, M.; Salas-López, R. Current and Future Distribution of Five Timber Forest Species in Amazonas, Northeast Peru: Contributions towards a Restoration Strategy. Diversity 2020, 12, 305. [Google Scholar] [CrossRef]
- Pshegusov, R.; Tembotova, F.; Sablirova, Y.; Mollaeva, M.; Akhomgotov, A. Differentiation of ecological niches of the forest-forming species in the Caucasus. BIO Web Conf. 2021, 35, 00019. [Google Scholar] [CrossRef]
- Fernandez Zarate, F.H.; Huaccha Castillo, A.E.; Quiñones Huatangari, L.; Seminario Cunya, A.; Vaca Marquina, S.P. Producción del Árbol de la Quina (Cinchona micrantha R. y P.); Universidad Nacional de Jaén: Jaén, Perú, 2022. [Google Scholar]
- Guerra, A.R. Diversidad y distribución de los endemismos de Asteraceae (Compositae) en la Flora del Ecuador. Collect. Bot. 2020, 39, 1–46. [Google Scholar] [CrossRef]
- Namgyal, J.; Couloigner, I.; Lysyk, T.J.; Dergousoff, S.J.; Cork, S.C. Comparison of habitat suitability models for Haemaphysalis longicornis Neumann in North America to determine its potential geographic range. Int. J. Environ. Res. Public Health 2020, 17, 8285. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Phillips, S.; Leathwick, J.; Elith, J. dismo: Species Distribution Modeling. R Package Version. 2017, Volume 1, pp. 1–1. Available online: https://cran.r-project.org/web/packages/dismo/index.html (accessed on 20 December 2024).
- Title, P.O.; Bemmels, J.B. ENVIREM: An expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 2018, 41, 291–307. [Google Scholar] [CrossRef]
- Tanner, E.P.; Papeş, M.; Elmore, R.D.; Fuhlendorf, S.D.; Davis, C.A. Incorporating abundance information and guiding variable selection for climate-based ensemble forecasting of species’ distributional shifts. PLoS ONE 2017, 12, e0184316. [Google Scholar] [CrossRef]
- Poggio, L.; De Sousa, L.M.; Batjes, N.H.; Heuvelink, G.B.M.; Kempen, B.; Ribeiro, E.; Rossiter, D. SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. SOIL 2021, 7, 217–240. [Google Scholar] [CrossRef]
- Aguirre-Gutiérrez, J.; Carvalheiro, L.G.; Polce, C.; van Loon, E.E.; Raes, N.; Reemer, M.; Biesmeijer, J.C. Fit-for-purpose: Species distribution model performance depends on evaluation criteria–Dutch hoverflies as a case study. PLoS ONE 2013, 8, e63708. [Google Scholar] [CrossRef]
- Leroy, B.; Meynard, C.N.; Bellard, C.; Courchamp, F. virtualspecies, an R package to generate virtual species distributions. Ecography 2016, 39, 599–607. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Meza-Mori, G.; Barboza-Castillo, E.; Torres-Guzmán, C.; Cotrina-Sánchez, D.A.; Guzman, B.K.; Oliva, M.; Bandopadhyay, S.; Salas-López, R.; Rojas-Briceño, N.B. Predictive Modelling of Current and Future Potential Distribution of the Spectacled Bear (Tremarctos ornatus) in Amazonas, Northeast Peru. Animals 2020, 10, 1816. [Google Scholar] [CrossRef] [PubMed]
- Merow, C.; Smith, M.J.; Silander, J.A., Jr. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Guzman, B.K.; Cotrina-Sánchez, A.; Allauja-Salazar, E.E.; Olivera Tarifeno, C.M.; Ramos Sandoval, J.D.; Hoyos Cerna, M.Y.; Barboza, E.; Torres Guzmán, C.; Oliva, M. Predicting potential distribution and identifying priority areas for conservation of the Yellow-tailed Woolly Monkey (Lagothrix flavicauda) in Peru. J. Nat. Conserv. 2022, 70, 126302. [Google Scholar] [CrossRef]
- He, Y.; Ma, J.; Chen, G. Potential geographical distribution and its multi-factor analysis of Pinus massoniana in China based on the maxent model. Ecol. Indic. 2023, 154, 110790. [Google Scholar] [CrossRef]
- Zvidzai, M.; Mawere, K.K.; N’andu, R.J.; Ndaimani, H.; Zanamwe, C.; Zengeya, F.M. Application of maximum entropy (MaxEnt) to understand the spatial dimension of human–wildlife conflict (HWC) risk in areas adjacent to Gonarezhou National Park of Zimbabwe. Ecol. Soc. 2023, 28, 18. [Google Scholar] [CrossRef]
- Hentschel, A.E.; Beijert, I.J.; Bosschieter, J.; Kauer, P.C.; Vis, A.N.; Lissenberg-Witte, B.I.; van Moorselaar, R.J.A.; Steenbergen, R.D.M.; Nieuwenhuijzen, J.A. Bladder cancer detection in urine using DNA methylation markers: A technical and prospective preclinical validation. Clin. Epigenet. 2022, 14, 1–9. [Google Scholar] [CrossRef]
- MINAM. Ecorregiones del Perú; Dirección General de Ordenamiento Territorial Ambiental: Lima, Perú, 2017; Available online: https://www.geogpsperu.com/2018/03/mapa-de-ecorregiones-minam-shapefile-pdf.html (accessed on 29 August 2024).
- Abdi, H.; Valentin, D. Multiple correspondence analysis. Encycl. Meas. Stat. 2007, 2, 651–657. [Google Scholar]
- Florensa, D.; Mateo-Fornés, J.; Solsona, F.; Pedrol Aige, T.; Mesas Julió, M.; Piñol, R.; Godoy, P. Use of multiple correspondence analysis and K-means to explore associations between risk factors and likelihood of colorectal cancer: Cross-sectional study. J. Med. Internet Res. 2022, 24, e29056. [Google Scholar] [CrossRef] [PubMed]
- MINAM. Estudio para la Identificación de Áreas Degradadas y Propuesta de Monitoreo; MINAM: Lima, Perú, 2021; Available online: https://geoservidor.minam.gob.pe/recursos/intercambio-de-datos/ (accessed on 30 August 2024).
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef] [PubMed]
- Cuesta, F.; Muriel, P.; Llambí, L.D.; Halloy, S.; Aguirre, N.; Beck, S.; Carrilla, J.; Meneses, R.I.; Cuello, S.; Grau, A.; et al. Latitudinal and altitudinal patterns of plant community diversity on mountain summits across the tropical Andes. Ecography 2016, 40, 1381–1394. [Google Scholar] [CrossRef]
- Gentry, A.H. Patterns of diversity and floristic composition in Neotropical montane forests. In Biodiversity and Conservation of Neotropical Montane Forests, Proceedings of the Neotropical Montane Forest Biodiversity and Conservation Symposium, Bronx, NY, USA, 21–26 June 1993; Churchil, S.P., Balslev, H., Forero, E., Luteyn, J.L., Eds.; The New York Botanical Garden: Bronx, NY, USA, 1995; pp. 103–126. [Google Scholar]
- Swenson, J.J.; Young, B.E.; Beck, S.; Comer, P.; Córdova, J.H.; Dyson, J.; Embert, D.; Encarnación, F.; Ferreira, W.; Franke, I.; et al. Plant and animal endemism in the eastern Andean slope: Challenges to conservation. BMC Ecol. 2012, 12, 1–19. [Google Scholar] [CrossRef] [PubMed]
- van der Werff, H.; Consiglio, T. Distribution and conservation significance of endemic species of flowering plants in Peru. Biodivers. Conserv. 2004, 13, 1699–1713. [Google Scholar] [CrossRef]
- Melo-Dias, M.; Huatuco, J.F.A.; Arizapana-Almonacid, M.A.; Castañeda-Tinco, M.I.; Chanamé, F.; Ninahuamán, J.U.; Passamani, M. Living at the top of the forest line: Medium and large mammals in a high-mountain ecotone in Peruvian Central Andes. Biota Neotrop. 2022, 22, e20211307. [Google Scholar] [CrossRef]
- Rolando, J.L.; Turin, C.; Ramírez, D.A.; Mares, V.; Monerris, J.; Quiroz, R. Key ecosystem services and ecological intensification of agriculture in the tropical high-Andean Puna as affected by land-use and climate changes. Agric. Ecosyst. Environ. 2017, 236, 221–233. [Google Scholar] [CrossRef]
- Parra-Sanchez, E.; Edwards, D.P. Spatial extent predicts Andean epiphyte biodiversity responses to habitat loss and fragmentation across human-modified landscapes. J. Biogeogr. 2024, 7, 1315–1327. [Google Scholar] [CrossRef]
- Bax, V.; Castro-Nunez, A.; Francesconi, W. Assessment of potential climate change impacts on montane forests in the peruvian andes: Implications for conservation prioritization. Forests 2021, 12, 375. [Google Scholar] [CrossRef]
- Brain, K.A. The impacts of mining on livelihoods in the Andes: A critical overview. Extr. Ind. Soc. 2017, 4, 410–418. [Google Scholar] [CrossRef]
- Rodríguez-Echeverry, J.; Leiton, M. State of the landscape and dynamics of loss and fragmentation of forest critically endangered in the tropical Andes hotspot: Implications for conservation planning. J. Landsc. Ecol. 2021, 14, 73–91. [Google Scholar] [CrossRef]
- Wisz, M.S.; Pottier, J.; Kissling, W.D.; Pellissier, L.; Lenoir, J.; Damgaard, C.F.; Dromann, C.F.; Forchhammer, M.C.; Grytnes, J.A.; Guisan, A.; et al. The role of biotic interactions in shaping distributions and realised assemblages of species: Implications for species distribution modelling. Biol. Rev. 2012, 88, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Lissovsky, A.A.; Dudov, S.V.; Obolenskaya, E.V. Species-distribution modeling: Advantages and limitations of its application. 1. General approaches. Biol. Bull. Rev. 2021, 11, 254–264. [Google Scholar] [CrossRef]
- Wan, J.Z.; Wang, C.J.; Yu, F.H. Effects of occurrence record number, environmental variable number, and spatial scales on MaxEnt distribution modelling for invasive plants. Biologia 2019, 74, 757–766. [Google Scholar] [CrossRef]
Variable | Symbol | Clade 1 |
---|---|---|
1. Bioclimatic variables | ||
Annual Mean Temperature | bio01 | |
Mean Diurnal Range | bio02 | b; c |
Isothermality | bio03 | b; c |
Temperature Seasonality | bio04 | a |
Max Temperature of Warmest Month | bio05 | |
Min Temperature of Warmest Month | bio06 | |
Annual Temperature Range | bio07 | |
Mean Temperature of Wettest Quarter | bio08 | |
Mean Temperature of Driest Quarter | bio09 | |
Mean Temperature of Warmest Quarter | bio10 | |
Mean Temperature of Coldest Quarter | bio11 | |
Annual Precipitation | bio12 | |
Precipitation of Wettest Month | bio13 | a; b; c |
Precipitation of Driest Month | bio14 | b |
Precipitation Seasonality | bio15 | |
Precipitation of Wettest Quarter | bio16 | |
Precipitation of Driest Quarter | bio17 | |
Precipitation of Warmest Quarter | bio18 | a; b; c |
Precipitation of Coldest Quarter | bio19 | |
Annual potential evapotranspiration: a measure of the ability of the atmosphere to remove water through evapotranspiration processes, given unlimited moisture | Annual pet | |
Thornthwaite aridity index: Index of the degree of water deficit below water need | Aridity indexthornthwaite | a; b; c |
A metric of relative wetness and aridity | Climatic moisture index | |
Average temp. of the warmest month—average temp. of the coldest month | continentality | b; c |
Emberger’s pluviothermic quotient: a metric that was designed to differentiate among Mediterranean-type climates | embergerq | |
The sum of the mean monthly temperature for months with a mean temperature greater than 0 °C multiplied by the number of days | growingdegdays0 | |
The sum of the mean monthly temperature for months with a mean temperature greater than 5 °C multiplied by the number of days | growingdegdays5 | |
Max. temp. of the coldest month | maxtempcoldestmonth | |
Min. temp. of the warmest month | mintempwarmestmonth | a |
Count the number of months with mean temp greater than 10 °C | monthcountbytemp10 | a; b; c |
Mean monthly PET of coldest quarter | eco quartier | |
Mean monthly PET of driest quarter | petdriestquarter | b |
Monthly variability in potential evapotranspiration | pet-seasonality | b |
Mean monthly PET of warmest quarter | petwarmestquarter | a |
Mean monthly PET of wettest quarter | pet wettest quarter | |
Compensated thermicity index: sum of mean annual temp., min. temp. of the coldest month, max. temp. of the coldest month, x 10, with compensations for better comparability across the globe | the mind | |
Terrain roughness index | tri | a; b; c |
SAGA-GIS topographic wetness index | to power | a; b; c |
2. Topographic variables | ||
Elevation above mean sea level | dem | c |
Cardinal orientation of the slope | aspect | a; b; c |
Terrain tilt | slope | a; b; c |
3. Edaphic variables | ||
The bulk density of the fine earth fraction | bdod | b; c |
The proportion of clay particles (<0.002 mm) in the fine earth fraction | clay | b;c |
Volumetric fraction of coarse fragments | Coarse | a; b; c |
The proportion of sand particles (>0.05 mm) in the fine earth fraction | sand | a; b; c |
The proportion of silt particles (≥0.002 mm and ≤0.05 mm) in the fine earth fraction | silt | a; b; c |
Cation exchange capacity | cec | |
Total nitrogen (N) | nitrog | a; b; c |
Soil organic carbon content in the fine earth fraction | soc | b; c |
Soil pH | phh2o | a; b; c |
Clade | Variable 1 (%) | Variable 2 (%) | Variable 3 (%) | Variable 4 (%) | Variable 5 (%) | Total Contribution |
---|---|---|---|---|---|---|
Discoide | mintempwarmestmonth (47.70%) | nitrogen (11.30%) | monthcountbytemp10 (9.00%) | Aridity index Thornthwaite (7.90%) | bio18 (7.00%) | 82.90% |
Gynoxys | to power (33.20%) | pet-seasonality (17.60%) | petdriestquarter (6.90%) | Pet driest quarter (6.90%) | nitrogen (6.90%) | 71.50% |
Praegynoxys | monthcountbytemp10 (33.30%) | elevation (30.00%) | bdod (7.60%) | phh2o (4.50%) | to power (3.90%) | 793% |
Macroregion | Department | Discoide | Gynoxys | Praegynoxys | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Potential Areas (km2) | |||||||||||||
Low | Moderate | High | Total | Low | Moderate | High | Total | Low | Moderate | High | Total | ||
North | Amazonas | 3583.71 | 2202.48 | 5635.53 | 11,421.72 | 2668.05 | 3102.96 | 6482.29 | 12,253.30 | 3066.19 | 2559.67 | 4022.82 | 9648.68 |
Ancash | 4492.13 | 1459.70 | 1152.57 | 7104.40 | 9086.87 | 5925.46 | 3699.27 | 18,711.60 | 813.31 | 243.60 | 75.42 | 1132.33 | |
Cajamarca | 5958.10 | 3889.73 | 6663.43 | 16,511.26 | 4675.98 | 5484.37 | 8067.91 | 18,228.26 | 2990.86 | 771.00 | 261.87 | 4023.73 | |
La Libertad | 3806.58 | 1964.48 | 1746.81 | 7517.87 | 4208.25 | 4174.79 | 3253.46 | 11,636.50 | 305.18 | 97.78 | 54.28 | 457.24 | |
Lambayeque | 137.55 | 139.19 | 308.10 | 584.84 | 153.57 | 127.63 | 412.11 | 693.31 | 102.00 | 24.39 | 1.09 | 127.48 | |
Loreto | 205.84 | 9.30 | 0.00 | 215.14 | 135.93 | 0.00 | 0.00 | 135.93 | 33.56 | 0.00 | 0.00 | 33.56 | |
Piura | 1015.39 | 635.22 | 1366.36 | 3016.97 | 1322.27 | 1159.95 | 2029.53 | 4511.75 | 593.94 | 69.01 | 11.76 | 674.71 | |
San Martín | 3235.75 | 1725.64 | 1949.80 | 6911.19 | 6545.40 | 3139.00 | 2642.90 | 12,327.30 | 2486.67 | 1182.50 | 1105.30 | 4774.47 | |
Subtotal | 22,435.05 | 12,025.74 | 18,822.60 | 53,283.39 | 28,796.32 | 23,114.16 | 26,587.47 | 78,497.95 | 10,391.71 | 4,947.95 | 5,532.54 | 20,872.20 | |
Center | Huánuco | 4976.62 | 2070.00 | 3265.32 | 10,311.94 | 6540.23 | 4653.80 | 4657.50 | 15,851.53 | 2449.91 | 1057.61 | 866.09 | 4373.61 |
Huancavelica | 3939.85 | 1481.97 | 1185.58 | 6607.40 | 3487.70 | 1701.07 | 1,188.52 | 6377.29 | 170.03 | 37.70 | 14.72 | 222.45 | |
Junín | 9266.65 | 3887.67 | 2091.35 | 15,245.67 | 9011.87 | 4875.72 | 3410.76 | 17,298.35 | 2280.22 | 1253.56 | 1411.01 | 4944.79 | |
Lima | 1058.10 | 44.13 | 1.02 | 1103.25 | 4553.80 | 1659.20 | 722.30 | 6935.30 | 12.49 | 0.00 | 0.00 | 12.49 | |
Pasco | 2907.55 | 603.29 | 1121.39 | 4632.23 | 3935.69 | 1652.34 | 1537.91 | 7125.94 | 1326.24 | 691.04 | 926.28 | 2943.56 | |
Ucayali | 37.05 | 0.00 | 0.00 | 37.05 | 197.07 | 0.00 | 0.00 | 197.07 | 257.29 | 40.45 | 12.91 | 310.65 | |
Subtotal | 22,185.82 | 8087.06 | 7664.66 | 37,937.54 | 27,726.36 | 14,542.13 | 11,516.99 | 53,785.48 | 6496.18 | 3080.36 | 3231.01 | 12,807.55 | |
South | Apurímac | 3503.55 | 2233.82 | 2003.85 | 7741.22 | 3927.12 | 1178.42 | 241.69 | 5347.23 | 32.50 | 3.05 | 0.06 | 35.61 |
Arequipa | 272.25 | 0.00 | 0.00 | 272.25 | 92.59 | 29.35 | 3.26 | 125.20 | 0.00 | 0.00 | 0.00 | 0.00 | |
Ayacucho | 4363.92 | 2769.13 | 2197.91 | 9330.96 | 3577.55 | 1218.40 | 410.79 | 5206.74 | 124.29 | 24.31 | 6.49 | 155.09 | |
Cusco | 6391.14 | 4614.20 | 4917.90 | 15,923.24 | 8617.59 | 5299.08 | 5494.60 | 19,411.27 | 1831.27 | 830.75 | 634.51 | 3296.53 | |
Madre de Dios | 138.99 | 77.09 | 83.64 | 299.72 | 160.69 | 82.78 | 178.74 | 422.21 | 262.84 | 124.53 | 70.66 | 458.03 | |
Moquegua | 0.00 | 0.00 | 0.00 | 0.00 | 43.50 | 0.00 | 0.00 | 43.50 | 0.00 | 0.00 | 0.00 | 0.00 | |
Puno | 4625.50 | 2100.60 | 941.90 | 7668.00 | 2421.53 | 1464.20 | 1848.97 | 5734.70 | 400.73 | 79.24 | 14.36 | 494.33 | |
Tacna | 138.16 | 0.00 | 0.00 | 138.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Subtotal | 19,433.51 | 11,794.84 | 10,145.20 | 41,373.55 | 18,840.57 | 9272.23 | 8178.05 | 36,290.85 | 2,651.63 | 1061.88 | 726.08 | 4439.59 | |
Total | 64,054.38 | 31,907.64 | 36,632.46 | 132,594.48 | 75,363.25 | 46,928.52 | 46,282.51 | 168,574.28 | 19,539.52 | 9090.19 | 9489.63 | 38,119.34 |
Degraded Areas | Potential Areas (km2) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Discoide | Gynoxys | Praegynoxys | |||||||
Class | Low | Moderate | High | Low | Moderate | High | Low | Moderate | High |
Loss of land productivity | 478.14 | 225.19 | 285.16 | 606.49 | 314.74 | 274.63 | 120.05 | 52.56 | 48.52 |
Vegetation cover changes | 43.47 | 17.26 | 21.02 | 41.88 | 29.84 | 26.57 | 18.12 | 3.16 | 1.12 |
Loss of land productivity and Vegetation cover changes | 4.55 | 1.72 | 4.14 | 5.09 | 4.97 | 3.91 | 1.3 | 0.4 | 0.04 |
Loss of land productivity and Forest fragmentation | 124.50 | 62.60 | 86.66 | 192.06 | 111.97 | 100.73 | 119.64 | 57.81 | 69.77 |
Loss of land productivity and Forest loss | 43.58 | 19.54 | 24.64 | 98.01 | 48.85 | 28.05 | 43.9 | 20.16 | 21.91 |
Forest loss | 336.61 | 147.65 | 167.76 | 687.82 | 319.04 | 229.69 | 327.98 | 161.57 | 165.43 |
Forest fragmentation | 5927.50 | 3713.76 | 5167.98 | 8093.87 | 5111.48 | 6533.94 | 5995.18 | 3249.75 | 3884.53 |
Total | 6958.35 | 4187.72 | 5757.36 | 9725.22 | 5940.89 | 7197.52 | 6626.17 | 3545.41 | 4191.32 |
Conservation Areas | Potential areas (km2) | ||||||||
Discoide | Gynoxys | Praegynoxys | |||||||
Low | Moderate | High | Low | Moderate | High | Low | Moderate | High | |
Natural Protected Areas | 4688.95 | 2086.68 | 1935.09 | 5441.71 | 3361.63 | 3372.64 | 3018.10 | 1213.38 | 1438.72 |
Buffer Zones | 4000.62 | 2283.45 | 1875.89 | 5057.53 | 3012.16 | 2796.03 | 1881.70 | 810.56 | 932.98 |
Reserved Zones | 281.22 | 17.25 | 53.04 | 366.04 | 82.59 | 221.52 | 55.43 | 6.97 | 27.52 |
Biosphere Reserve | 8586.51 | 6425.85 | 4871.93 | 13,000.69 | 8501.61 | 8235.69 | 4809.03 | 3585.88 | 2670.21 |
Regional Conservation Areas | 1197.17 | 937.90 | 946.53 | 1541.19 | 987.99 | 1010.93 | 744.93 | 280.73 | 382.65 |
Private Conservation Areas | 612.60 | 1254.13 | 442.69 | 598.46 | 1469.03 | 711.03 | 493.22 | 591.77 | 317.19 |
Total | 19,367.07 | 13,005.26 | 10,125.17 | 26,005.62 | 17,415.01 | 16,347.84 | 11,002.41 | 6489.29 | 5769.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coronel-Castro, E.; Meza-Mori, G.; Pariente-Mondragón, E.; Haro, N.; Oliva-Cruz, M.; Barboza, E.; Amasifuen Guerra, C.A.; Revilla Pantigoso, I.; Tariq, A.; Guzman, B.K. Habitat Suitability Distribution of Genus Gynoxys Cass. (Asteraceae): An Approach to Conservation and Ecological Restoration of the Andean Flora in Peru. Sustainability 2025, 17, 2406. https://doi.org/10.3390/su17062406
Coronel-Castro E, Meza-Mori G, Pariente-Mondragón E, Haro N, Oliva-Cruz M, Barboza E, Amasifuen Guerra CA, Revilla Pantigoso I, Tariq A, Guzman BK. Habitat Suitability Distribution of Genus Gynoxys Cass. (Asteraceae): An Approach to Conservation and Ecological Restoration of the Andean Flora in Peru. Sustainability. 2025; 17(6):2406. https://doi.org/10.3390/su17062406
Chicago/Turabian StyleCoronel-Castro, Elver, Gerson Meza-Mori, Elí Pariente-Mondragón, Nixon Haro, Manuel Oliva-Cruz, Elgar Barboza, Carlos A. Amasifuen Guerra, Italo Revilla Pantigoso, Aqil Tariq, and Betty K. Guzman. 2025. "Habitat Suitability Distribution of Genus Gynoxys Cass. (Asteraceae): An Approach to Conservation and Ecological Restoration of the Andean Flora in Peru" Sustainability 17, no. 6: 2406. https://doi.org/10.3390/su17062406
APA StyleCoronel-Castro, E., Meza-Mori, G., Pariente-Mondragón, E., Haro, N., Oliva-Cruz, M., Barboza, E., Amasifuen Guerra, C. A., Revilla Pantigoso, I., Tariq, A., & Guzman, B. K. (2025). Habitat Suitability Distribution of Genus Gynoxys Cass. (Asteraceae): An Approach to Conservation and Ecological Restoration of the Andean Flora in Peru. Sustainability, 17(6), 2406. https://doi.org/10.3390/su17062406